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ABSTRACT. 2014 We review various aspects of the thermal properties of
event horizons in connection with the nonlocal nature of quantum states.

RESUME. 2014 Nous presentons divers aspects des proprietes thermiques
des horizons des evenements en liaison avec la nature non locale des etats

quantiques.

1. DE SITTER HORIZONS

Nothing better illustrates the connection between quantum nonlocality
and the global structure of spacetime than the remarkable thermal pro-
perties of event horizons discovered by Bekenstein [7] and Hawking [2 ],
and subsequently elaborated by many authors. The essence of the connec-
tion is that a pure quantum state defined on the whole (i. e. maximally
extended) spacetime manifold appears as a thermal state to an observer
restricted to the region of spacetime « outside » an event horizon. Particle
states are defined in terms of modes which straddle the event horizon,
and the thermal nature of the system outside the horizon can be attributed
to the observer’s obligation to relinquish information about the quantum
state beyond the horizon. It is hence a direct consequence of the nonlocal
nature of the quantum state.

Bekenstein and Hawking supported these ideas by introducing the
concept of black hole entropy, defined as

Sbh = 203C0A ( 1.1 )

Annales de I’Institut Henri Poincaré - Physique théorique - 0246-0211
Vol. 49/88/03/297/10/X Gauthier-Villars



298 P. C. W. DAVIES

where A is the event horizon area of the hole, and I have used units with
~ = c = 87rG = k = 1. Then a « generalized second law of thermodyna-
mics » may be stated : the total entropy, consisting of Sbh plus the entropy
of any matter fields, Sm, is non-decreasing. Thus

The generalized second law has been verified in a variety of scenarios
involving the exchange of energy and entropy between a black hole and
its environment [3 ]. As a result, the interpretation of the event horizon
area of a black hole as a measure of the hole’s entropy is now generally
accepted.

Black holes are, however, only one type of global structure that contain
event horizons. Many cosmological models also have event horizons.
The thermodynamic status of cosmological horizons remains to be clarified.
Is the horizon area still a measure of entropy? Will the generalized second
law continue to hold for reasonable assumptions about the matter content
of the spacetime ?
One cosmological case has received a lot of attention, namely, de Sitter

space. Gibbons and Hawking [4] ] have asserted that the generalized second
law extends to de Sitter horizons, and detailed investigation [5] confirms
this.
On the other hand, the thermodynamic status of the event horizon in

de Sitter space differs in a rather deep way from the black hole case. First,
the thermal character of the horizon is rather subtle. An inertial particle
detector in a de Sitter-invariant vacuum state responds as if it is immersed
in a bath of thermal radiation of temperature

where H is the (constant) Hubble parameter for de Sitter space [5 ]. However,
unlike in the black hole case, the stress-energy-momentum tensor of this
quantum state does not correspond to that of thermal radiation [6 ]. Indeed,
any thermal radiation present in de Sitter space is rapidly redshifted away
by the expansion. There is no asymptotically flat spacetime region where
the thermal radiance of the horizon may be compared to that of an ordinary
hot body. A related fact is that different inertial observers see differently
located event horizons.

Secondly, in the black hole case it is possible to quantify the entropy
of the hole in terms of the loss of information concerning the matter that
imploded to form the hole in the first place [1]. This argument depends
upon the existence of a well-defined black hole mass-energy, and the use
of the first law of thermodynamics (conservation of mass-energy). The
horizon structure of de Sitter space is quite different. The observer is located
« inside » rather than « outside » the horizon. The absence of an asymptotic
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flatness precludes a meaningful definition of the mass-energy of de Sitter
space, and hence precludes a use of the first law.

In some sense, the amount of information hidden in the infinite volume
of space behind the de Sitter horizon is infinite. This reflects the fact that
there are an infinite number of non-overlapping regions of de Sitter space
each containing a (different) horizon. Alternatively, however, one can try
to quantify the horizon entropy around a given location by « growing »
de Sitter space from a matter-dominated.cosmology.

Take, for example, a radiation filled k = 0 Friedmann model with
non-zero cosmological constant A. The Friedmann equation is readily
solved for the scale factor

which has the form a ~ t2 near t = 0 and a  exp ] as t --+ oo.

The constant B is related to the energy density p of the radiation by
B = Pa4.
The proper radius of the event horizon is given (for k = 0 models) by

For the scale factor (1.4)

Thus initially Ria ~ 0 and the horizon area (hence entropy) is negligible.
There will, however, be matter (radiation) within the horizon volume at
all times as t -~ 0. As the universe expands, some of the radiation flows
across the horizon and is lost to a hypothetical observer within the horizon
volume. There is a back reaction on the gravitational dynamics that causes
the horizon area to change. This back reaction is given exactly by the
solution (1.4). Eventually, all the radiation is essentially lost, and the
horizon settles down to the de Sitter value ( 1. 7).
Now one could regard the growth of the de Sitter horizon area from

zero to 12~c -1 as « paid for » by the information conveyed across the horizon
by the particles of matter. To test this hypothesis assume that the universe
is filled with identical particles of mass m. Each particle carries In 2 ~ 1
bit of information. The total number of particles within the horizon volume
as t -~ 0 is If one now makes the restriction that the wave-

length of the particle must be less than the horizon size Rh to qualify for
the designation « within the horizon volume », then the maximum infor-
mation content is obtained by letting m ,: Rh 1. The total information
content is then approximately A -1, using ( 1. 6). But
the final de Sitter horizon area is also approximately A -1, so one may
conclude that the de Sitter entropy is indeed given quantitatively (to within
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an order of magnitude) by the information conveyed across the horizon
by the particles during the transition from a matter-dominated Friedmann
model to de Sitter space.

If, instead of N particles of mass m, one considers thermal radiation,
then the entropy density of the radiation ~ 03C13 4 = The radiation

entropy in a horizon volume R2 is thus, as t ~ 0, approximately 
whereas the final horizon entropy is A -1. The entropy therefore rises by
a factor A- 4 ,: (Rh/Planck length)2 » 1. The generalized second law is
thus well satisfied. The reason for the rise in entropy is due to the fact
that the radiation temperature is whereas the instantaneous
horizon temperature is Rh 1 : Thus Tr  Th. The
system is therefore far from thermodynamic equilibrium and so the heat
flow across the horizon generates a lot of entropy.

2. MORE GENERAL COSMOLOGICAL HORIZONS

In spite of the pleasing consistency of the thermodynamic quality of
de Sitter horizons, questions still remain concerning more general cosmo-
logical horizons. Is the horizon area still a satisfactory measure of entropy ?
Can the horizon area shrink as a result of quantum processes, and if so
will the generalized second law still apply ?
The first step is to establish an analogue of the Hawking area theorem [8] ]

for black holes. In the case of a Friedmann universe filled with a perfect
fluid with pressure p and energy density p, the following may be shown :

THEOREM. 2014 If p + j9 ~ 0 and ~ oo as t ~ oo then the horizon
area is non-decreasing with time.
A proof of the theorem (which applies for k = 0 and :t 1) will be given

elsewhere [9 ]. .

If the universe recontracts to a final singularity at t = ts, at which a = 0,
the horizon radius integral (1.5) must be truncated at the singularity.
One finds [9] ] -

so that, in the approach to the singularity, the horizon area shrinks.
This shrinkage can be attributed to the rapid contraction of the universe

near the singularity. Note that the condition p + ~ ~ 0 necessary for the
validity of the area theorem is also the condition required by the singularity
theorem [9 ]. If p + p  0, it is possible for the universe to « bounce »,
avoiding the singularity. Under these circumstances the horizon could
shrink during the period of rapid contraction prior to the bounce.
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The (so-called dominant) energy condition

whilst physically reasonable, is by no means sacrosanct. Recently it has
been questioned by Morris and Thome [10 ]. In fact, it is known to fail
under a number of circumstances. One of these is in the vicinity of a black
hole in which the matter environment is in certain quantum vacuum states.
It can then happen that p  0, leading to a failure of (2.2). This produces
the so-called Hawking effect, in which the black hole shrinks due to the
inward propagation of negative energy across its horizon.

In spite of the fact that the area theorem is violated by the Hawking
effect, the combined quantity 27rA + Sm, where Sm is the entropy of the
matter field, remains non-decreasing. This is because thermal radiation is
produced by the black hole, which « pays » for the loss of the horizon area.

It is easy to establish an analogous scenario for cosmological event
horizons. In this case there is no corresponding evaporation effect. How-
ever, if one relaxes the dominant energy condition, not by allowing p to
become negative, but by allowing p  - p, then the horizon area will
again shrink. One way to do this is to consider the effect of bulk viscosity.
If the cosmological medium has equation of state p = (y - l)p and bulk
viscosity 11 = ocp (oc = constant &#x3E; 0), then the effective pressure p’ = p - 3Hocp.
If y  3H03B1 then p’  - p.
To investigate this, one can solve exactly the Friedmann equations for

a k = 0 model with bulk viscosity :

and

Then

where tf and af are the final values of t and a. Integrating by parts and
using (2.4) .

and

Vol. 49, n° 3-1988.
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Direct solution of (2.4) yields

and

where C and to are constants.
The behaviour of the solutions depends crucially on the sign of

There are four distinct classes. The case C = 0 corresponds to 3Hoc = y,
H = constant. This is a curious de Sitter solution discovered by Barrow [77].
Unlike the standard vacuum de Sitter model, which exists in thermodynamic
equilibrium, this is a viscous-driven model, rather akin to a stable « dissi-
pative structure » familiar from far-from-equilibrium thermodynamics [12 ].
Entropy is generated throughout, and flows continuously away across the
horizon to produce a steady state. The de Sitter horizon temperature and
the temperature of the viscous medium which fills the space, are different.
For C &#x3E; 0, H &#x3E; 0 for all time, so a f = oo. An event horizon will exist

if y  ,2/3, and one sees from (2 .10) that 3Hoc - y &#x3E; 0. It follows from (2 . 7)
that R~, &#x3E; 0 and the horizon area increases with time.

If - 3(x/y  A  0, then 3Hoc 2014 y  0, so H  0, H &#x3E; 0 and a increases
with time. Examination of (2.10) shows that when Ca303B3/2 = - 3x/y then
H = oo. Computation of the scalar curvature confirms that there is a
spacetime singularity here. The universe expands monotonically, from
a ~ 0 at t -~ - oo to a = a f = 3x/Cy I2/3y at the singularity.

Substituting (2.9) into (2.7) we find

because a/af  1 and Y  2. Thus the horizon area shrinks from 3a /Y a t

t= --00 to0-ata=a. 
3

The nature of the singularity is very strange. Usually spacetime singula-
rities are associated with catastrophic gravitational collapse, in which the
curvature diverges as a -~ 0. Here the curvature diverges as a result of
catastrophic expansion of the universe, and occurs at a finite value of a.
The divergence arises because the expansion rate becomes infinite. This
type of singularity is the counterpart for cosmic repulsion (i. e. A-type
terms) of the more familiar singularities associated with gravitational
attraction. The occurence of such a singularity is determined by the sign
of C, which in turn fixes the Hubble parameter H at a given value of a
(or t). If H (i. e. the expansion rate) is great enough, the viscous term 3H03B1
will start to dominate, and runaway expansion will ensue. The accelerated
expansion is assisted by y being close to zero.

Annales de l’Institut Henri Poincare - Physique theorique
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For the special case y = 0, direct solution of (2.4) yields

which clearly demonstrates how the horizon shrinks steadily from 00

at t -~ 2014 00 to 0 at the singularity at t = to.
The regime C  - 3oc/y corresponds to a contracting universe (H  0),

as may be seen from (2.9). In this case the 3Hoc term in (2.4) acts in the
opposite sense, enhancing the y term, and accelerating the collapse. Inspec-
tion of (2 . 8) shows that The universe contracts at
an accelerating rate, and becomes singular, not at a = 0, but at

a = a f = 3x/Cy p~. Once again the viscosity term causes a singularity
at finite a. The horizon area shrinks throughout.
To investigate the generalized second law of thermodynamics I shall

restrict the analysis to quasi-equilibrium, in which the model departs
only slightly from (k = 0) de Sitter space and the viscous fluid is in thermal
equilibrium with the horizon at a common temperature Th.

First note that when the cosmological model departs from de Sitter
space, the spectrum of radiation registered by an inertial particle detector
is no longer thermal, and the concept of a well-defined temperature breaks
down. However, if a particle detector is adiabatically switched on and off
for a period of time during which the change in the value of H == a/a is
negligible, then it can be shown that the spectrum is thermal (to that approxi-
mation), with an « instantaneous » Hawking temperature 

Small departure from de Sitter space requires y ~ 0 and 9oc/2 « H -1
(small viscosity). It then follows from (2.6) and (2.7) that

This loss of horizon entropy will be offset by the gain in conventional
entropy resulting from the bulk viscosity of the fluid generating heat.
Following Weinberg [13 ], the latter is given by

for a horizon volume. Putting T = 1/203C0Rh, and using (2.3) and (2.6),
one finds

which is exactly the negative of (2.14). Thus, the generalized second law
is satisfied in this case. Note that if the temperature of the fluid were greater
than that of the horizon, T &#x3E; Th, then (2.16) will not be large enough to
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offset (2.14). But in this case extra entropy will be generated as heat flows
from the hot fluid across the cooler horizon, thereby rescuing the second
law (see ref. [5]).

3. DISCUSSION AND SPECULATIONS

Ever since Hawking’s discovery of black hole entropy, there has been
a widespread assumption that all event horizons possess an associated
entropy. In the general case, however, the issue is far from trivial. The
existence of an area theorem for general Friedmann cosmological horizons
subject to p + ~ ~ 0 is evidence in favour of an entropic association, even
though there is no well-defined temperature in this case. The fact that even
when viscous processes cause a departure from the condition A ~ 0 the-
generalized second law of thermodynamics remains valid is strong support
for the interpretation of event horizon area as entropy.

If this position is accepted, it then becomes of interest to speculate whether
some of the formalism that has been applied to black holes will extend
to the cosmological case too, for example, the membrane paradigm of
Thorne et al. [14 ]. Interestingly, it is possible to prove similar area theo-
rems for cosmological particle horizons. Application of the membrane
paradigm here might lead to practical techniques for the investigation of
the early universe.
The discussion of horizon entropy given here should be placed in the

context of the longstanding search for a generalization of the Hawking
black hole entropy to a universal « gravitational entropy » [15 ]. As we
have seen, cosmological horizons are generally not in thermal equilibrium
at a well-defined temperature, so these studies provide another set of sys-
tems in which to test non-equilibrium gravitational thermodynamics along
the lines of the work of Candelas and Sciama [16 ].
The search for a generalized gravitational entropy could receive a clue

from the fact that the horizon area of a cosmological model that contracts
to a final singularity decreases with time. This is a clear violation of the
generalized second law. (One could choose pure radiation as the cosmo-
logical fluid; its entropy will not change during the approach to the singu-
larity.) One might argue that the concept of horizon entropy simply fails
in this case. Alternatively, one could propose to modify the definition of
the gravitational entropy so as to save the generalized second law of thermo-
dynamics. This would entail adding to the horizon area another gravita-
tional entropy term that increases as the universe collapses to compensate
for the loss of horizon area. Such a term would accord with the general
observation that the gravitational entropy ought to provide a measure
of the « clumpiness » ot a seif-gravitating system [15 ].
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An elegant way to formulate this proposal would be to define the total
gravitational entropy in a certain spatial volume in terms of a volume
integral plus a surface integral over the boundaries of the system, i. e. the
event horizon. For a static spacetime, such as that of a black hole, the
volume integral would yield only a constant, which could be defined away
by rescaling the (arbitrary) zero of entropy. But in the case of a collapsing
cosmological model the volume integral would be time-dependent and
represent a rise of gravitational entropy.

If a generalized second law extended to cosmological horizons is accepted
it can be used to rule out certain theories. For example, there has been much
speculation about « hyperinflation », i. e. inflation in which increases
faster than an exponential. As this corresponds to decreasing event horizon
area, one might argue that such models are in conflict with the second
law of thermodynamics and so are unacceptable.

Hyperinflation occurs in gravitational theories with quadratic Lagran-
gians R + ER2. This theory possesses the solution [77] ]

For ~ &#x3E; 0 the horizon area decreases with time. Hence one may wish to

rule out such theories as unphysical.
Whether one should rule out only the solution (2 .17) or the entire Lagran-

gian is an interesting issue. A case could be made that any theory
(i. e. Lagrangian) which permits a violation of the second law of thermodyna-
mics, even in principle, is unacceptable, on the basis that a sufficiently
resourceful intelligence could then contrive an entropy-decreasing solution
and thereby construct an effective perpetuum mobile. The issue is not the
same for gravitational entropy as for conventional entropy, where it is
well known that a Maxwell demon who attempts such a strategy is ine-
vitably stymied. Solutions such as (2.17) require the establishment only
of a gross boundary condition, not the detailed manipulation of all the
individual microscopic components of the system. This reflects the essen-
tially non-statistical nature of gravitational entropy which, as has been
noted by Hawking [18 ], sets it apart from ordinary entropy, giving it a
more « objective » character. Thus, horizon area decreases can be achieved
without a Maxwell-demon style information gathering exercise.

If one therefore adopts this stronger approach to horizon-decreasing
theories, it could be used to filter out not only a large class of gravitational
Lagrangians, but a large class of matter Lagrangians too. Thus might a
restriction on the global structure of spacetime become a very general
regulator of local quantum field theories through the nonlocal character
of quantum states.
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