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The position operator revisited

H. BACRY (*)
International Centre for Theoretical Physics, Trieste, Italy

Inst. Henri Poincare,

Vol. 49, n° 2, 1988, Physique , théorique ,

ABSTRACT. - A position operator is proposed for any kind of particle.
The components of this operator are non-commuting for spinning particles.
The properties of such an operator are examined.

RESUME. - Nous introduisons un operateur de position pour tous les
types de particules. Pour des particules a spin, les differentes composantes
de cet operateur ne commutent pas et nous etudions les proprietes de cet
operateur.

I INTRODUCTION

A few years ago I proposed [1] ] a position operator for massless particles
with helicity. There has been a challenge for such particles since the work
of Newton and Wigner [2] ] who concluded that these particles cannot
be localized and, as a consequence, do not possess a position operator.
The operator proposed in Ref. 1 had non-commuting components. It
was suggested by a formal analogy between the massless representations
of the Poincare group and a group theoretical treatment of the Dirac

magnetic monopole. In that paper, I underlined some physical interpreta-
tions of such an operator. I was led to a further investigation by the enligh-
tening discussions I had on that subject with A. Connes. Without them,
I would never have been led to the present paper. It is perhaps interesting
to say in a few words how I arrived at the proposal made in the present work.

(*) Permanent address: Centre de Physique Theorique, Universite de Marseille, Case 907,
13288, Marseille Cedex 09, France.

Annales de l’Institut Henri Poincaré - Physique theorique - 0246-0211
Vol. 49/88/02/245/11/$ 3,10/(~ Gauthier-Villars



246 H. BACRY

Accepting the operator introduced in Ref. 1 for massless spinning particles
would mean the rejection of the Newton-Wigner postulates which led them
to conclude that these particles have no position operator. Giving up these
postulates for only these particles would be nonsense. Therefore the electron
had also to have non-commuting position operator components. Such a
situation could be accepted if we recall the fact that the electron in a

homogeneous magnetic field has a circular trajectory and that the coor-
dinates of the centre of this trajectory do not commute [3 ]. Therefore,
the average position cannot be localized for this rotating charge. Why
would a spinning electron not have the same property?

Consequently, I generalized the position operator of Ref. 1 to all kinds
of particles. On applying it to the Dirac particle, I realized that I was

arriving at the operator introduced by Schrodinger [4 ]. It took some time
for me to obtain this result because i ) my approach was through group
theory instead of field equations and ii) there are many ways of writing
the Schrodinger operator (I will say why). This coincidence has an expla-
nation which will be given here. For the time being, let us explain in a
slightly different way the work of Schrodinger.

In 1930, Schrodinger [4 ], in introducing his new position operator,
wanted to avoid two difficulties of the Dirac equation, namely :

i ) the presence of negative energy states;
ii) the fact that the speed of the of the particle is :t c in any direction, since

where

His operator xs was just what he called the even part of x

where is the Hermitian projection onto the space of positive (respectively
negative) energy states. From a group theory point of view, Schrodinger had
taken the restriction of the operator x to the subspaces describing irredu-
cible representation spaces of the Poincare group. Today, physicists
remember the « lost part of x », that is 03BE = x - acs as the zitterbewegung,
a term introduced by Schrodinger. The two difficulties mentioned above
were solved since.

i ) If we add to the Dirac Hamiltonian a potential written as a function
of xs instead of x, the change is quite small (as shown by Schrodinger
himself) and it has the advantage that a positive energy state will stay in
the positive energy region during its evolution.
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. ii) If we compute the speed of xs, we obtain a satisfactory answer, namely

In Sec. II, we will generalize the Schrodinger approach for any particle
described by a wave equation of fist order. We will treat separately the
case of the photon from Maxwell’s equations in Sec. III. This calculation
leads to the operator introduced in Ref. 1. In Sec. IV, we will give the general
(group theoretical) definition of the position operator. Many comments
on this proposal are made in Sec. V and, finally, we will give, as a conclusion,
the main advantages of this new operator.

II THE POSITION OPERATOR A LA SCHRODINGER
(WAVE EQUATIONS OF FIRST ORDER)

There are essentially two ways of approaching the problem of the position
operator, either by defining the concept of the particle from the Poincare
group, that is the Wigner point of view [5 ], or by using a field equation.
Let us first give a few comments on the first approach.
From the Wigner point of view, the states of a given particle are given

abstractly since they span a representation space of the Poincare group.
The variables x"~ do not enter this description and, if we want to define
a position operator acting on this space, we have to define explicitly the
properties required of this operator. This is, in principle, the way followed
by Newton and Wigner [2 ], except that in studying the case of spinning
particles they used the Bargmann-Wigner equations rather than repre-
sentation theory alone. This work was improved by Wightman [6 who
set the problem in the Poincare group representation context.

In their postulates, Newton and Wigner wanted to define « localized
states » from Which a position operator would be derived. It follows from
their approach that if a particle has no localized state, no position ope-
rator can be defined for it. A localized state is a state for which a measurement
of the coordinates x, y, z is possible. It implies that x, y, z are the eigenvalues
of three commuting operators, as is the case in non-relativistic quantum
mechanics.
The conclusions of the (beautiful) works of Newton-Wigner and Wight-

man were disappointing in many respects. The worst one concerned the
massless particles with non zero helicity which had no localized states [7 ],
and therefore no position operator, in the N ewton- W igner sense. That
the photon has no localized states can be easily seen with the aid of dimen-
sional analysis. If the electric vector E, or the combination i E or the
vector potential A was given a probability amplitude interpretation for

Vol. 49, n° 2-1988.



248 H. BACRY

the photon, then E2 or 132 + E2 or A2, multiplied by some universal
constant would have the dimensions of a (volume) -1. That this is
impossible is easy to check. This is sufficient to prove that the photon is not
localizable.
For the discussion we will have later, I mention here the relationship

between the Newton-Wigner position operator q for spinning particles
of mass m and the generators of the Poincare group..

rotation generators J == ~ n p + s
boost generators

space translations P = p

time translations Po = p2 + m2c2.
These expressions are known as the Foldy « canonical representation »

of the infinitesimal generators of the Poincare group. These generators
act on the Hilbert space spanned by the sections of the vector bundle
which has the mass shell (of mass m) as a base and the 2s + 1 dimensional
spin representation space as a fiber. The symbol s represents three

(2s + 1) x (2s + 1)-matrices generating an irreducible representation of
the spin group.

Let us now examine the case where the spinning particle is described by
a wave function with n components. This number n is loosely related with
the spin s of the particle. It could be n = 2s + 1, as it is the case for the
neutrino described by the Weyl equation, or n = 2(2s + 1) as in the Dirac
case ; but for the photon, the field is supposed to obey extra conditions
and n = 6 if we adopt the Maxwell field description. In all cases, the wave
function obeys a first order equation of the type

6’ _,

where cpo = i~ and o H is an operator expressed in terms of p # and « internal »
at

matrices. The generators of the Poincare group are

Here, the n x n matrices E, E’ generate the Lorentz « internal » group which
makes the n-dimensional field covariant. Obviously, Eq. (6) must imply
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249THE POSITION OPERATOR REVISITED

If m is not zero and if the parity is implemented then the equation implies
both a positive and a negative mass as is the case in the Dirac equation.

Let us denote by E the space of the n component fields and by Ei the
subspaces of the solutions of (6) associated with the irreducible representa-
tion pl of the Poincare group. Of course

Let us denote by ~i the Hermitian projection operator on Ei

The difficulty is that for spinning particles, f’ # 0 and the operator x
does not leave Ei invariant. If we follow Schrodinger, we would define
as a new position operator

Due to the fact that

we get

as obtained by Schrodinger in the Dirac case.
As an easy application, we apply the procedure to the 2-component

neutrino equation. In this case, we have only one irreducible representation.
The equation is

The Hamiltonian H = cr p. The only projection vr is given by

where p = p 2. We have

Vol. 49, n° 2-1988.
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III. THE PHOTON CASE

The photon case is slightly different from the general case studied in
the last section. This is due to the transversality conditions. In fact, the
photon field B - i E obeys not only

that is

where [8] J

but also the transversality equation

which is said to discard the longitudinal photons.
The 3 x 3 matrix S ~ p has three eigenvalues, namely p, - p and zero,

the zero eigenvalue corresponding to the non-existing longitudinal states.
The projection on the other kinds of states (helicity ± 1) is given by

for a given value of p. We can check that 7r has a trace equal to two cor-
responding to the two possible states of polarization of the photon.

This projection operator is the one we have to use because it projects
on the set of all possible states of the photons (we are permitted to combine
linearly the ± 1 helicity states). Therefore, our position operator is

(If the reader is going to check this result, he must be aware that he could
arrive at a different answer ; the reason being that there are many ways
of writing an operator for which only- a restriction to some subspace is
specified. If many expressions can be given for the Schrodinger operator
in the Dirac case, here the situation provides us with even more freedom,
due to the transversality conditions).

Annales de Henri Poincaré - Physique theorique
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If is interesting to compute the commutation relations between the
components of R. We find, for instance,

or, since

depending on the helicity. This relation (25) is exactly the one obtained by
the « monopole approach » [1 ].
To conclude this section, it is interesting to give the expression for the

most general field which is an eigenfunction of the operator It is, in
the momentum space,

Here, G is an arbitrary function and a is the eigenvalue of We readily
see that a complete set of observables involving RZ is given by { RZ, px + ~,

We will make the appropriate comments about these results in the last
section.

IV . THE POSITION OPERATOR VIEWED
FROM THE POINCARE GROUP

Obviously we could imagine, in principle, the last calculation made
on the wave equation satisfied by the four vector potential AJl. The calcula-
tion would be more difficult, not only because the order of the partial diffe-
rential equation is higher but also because the space on which the Poin-
care group is acting is in fact a factor space since A  and A  + must

be considered as equivalent.
Since we are interested in free fields only, the wave equation to be used

- 

is irrelevant and all equations leading to the same representation of the
Poincare group have the same physical contents. Therefore, it is more
natural to give a group theoretical definition of the position operator R.

It is clear that R must belong to the envelopping algebra (in a wide
sense) of the Poincare Lie algebra. Such a property guarantees that R

Vol. 49, n° 2-1988.
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will act on any state of the Hilbert space. The definition induced by the
article [1] ] is defined from the boosts and the time translations generator Po
only by

It readily follows that

In particular, for a massive particle, we get, from Eq. (5)

which shows the relationship between our position operator and the New-
ton-Wigner one.

V. CONCLUSIONS

We could have studied the non-relativistic Schrodinger equation with
the aid of the Galileo group. In that case, even with a spinning particle,
the restrictions of the operator x to the space of solutions would have given x
itself, as expected. In fact, if we perform a contraction, an operation which
permits us to go from the Poincare group to the Galilei group, both the
Newman-Wigner q and the operator R become ac. This does not mean that
we cannot obtain something else near the non relativistic limit, that is in
the case of small momenta (without making c -~ (0). We will examine
this point at the end of this article.
We will now present three arguments in favour of our position operator.

1. The photon localizability.
It is clear that the fact that we are able to associate a position operator

with the photon does not ensure the measurability of its position, because
we cannot measure more than one position coordinate at a time. To see
the advantage of such a situation, we examine the case where a photon has
essentially a momentum in the z direction, then the uncertainty relation
for the other components x and y gives

which means that the uncertainty in measuring the position in an ortho-
gonal direction is of the order of the wave length. This is satisfactory since
it means that the localizability increases with the frequency of light.

Annales de l’Institut Henri Poincaré - Physique theorique
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As a consequence, we get a better explanation of the electron slit expe-
riment [10 ]. It is well-known that if we use an intense light source to know
which slit the electron went through, the interference pattern disappears.
If we decrease the intensity of light, the fringes reappear progressively.
To explain why, we usually need two kinds of arguments depending on the
way the intensity of the light source decreases; i ) if we keep fixed the fre-
quency of the light and decrease the number of photons emitted per second,
then the probability of a photon-electron scattering diminishes and there
are electrons which will not be seen and will contribute to the interference

pattern. ii) If we make the intensity of light diminish by increasing its wave
length then we need an argument taken from classical electrodynamics :
the image of an electron will not be a point but a spot, the width of which
is proportional to the wave length. Therefore, it will be more and more
difficult to know which slit the electron went through.

It is not a satisfactory situation to call on the classical theory to interpret
the electron slit experiment. Our formula (30) permits us to provide a purely
quantum interpretation.

2. All particles are equal.

One of the important ideas of the century was that of de Broglie, who
proposed in 1923 to put matter and radiation on the same footing. An irony
of history was that this « democracy » was destroyed by the Born statistical
interpretation of the wave function, an interpretation that the photon field
cannot have. Obviously, such an interpretation was a non-relativistic
property but it was believed that it was valid also for relativistic waves.
With our proposal, the symmetry between all kinds of particles is

recovered. First each kind of particle has a position operator. All spinning
particles have in common the property of not being localizable. Since all
stable particles are spinning, this provides the spin with a fundamental
character.

3. T he non-relativistic limit.

We have already mentioned that the electron has, as a possible position
operator,

In the non-relativistic limit, we know that the Newton-Wigner operator q
becomes the standard non relativistic Schrodinger position operator x.
It is clear that if we make c go to infinity the second term in Eq. (31) vanishes
and the limit of R is also x. But this limit is the Galilean limit to be dis-

tinguished from the non-relativistic limit, which corresponds to the case
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of small linear momenta. Therefore, the non-relativistic approximation
of the operator R is

It is natural to replace in the Schrodinger-Pauli equation the potential 
by V(R). For a spherical potential, we get as a first approximation

and

which is the spin-orbit coupling with the right Thomas factor -.
This is, in our opinion, the best argument in favour of the operator R.

It is also an encouragement in favour of a new investigation of the two-
component Schrodinger-Pauli equation theory with the systematic replace-
ment of the potential described by Eq. (33).
To conclude, it is perhaps useful to mention that the non-localizability

of stable particles must have some consequences in our formulation of
quantum field theory. We hope to discuss this point in a forthcoming paper.
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