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Operatorial quantization
of dynamical systems subject to constraints.

A further study of the construction

I. A. BATALIN E. S. FRADKIN

Lebedev Physical Institute, Ac. Sci., Moscow,
53 Leninsky Propect 117924 U. R. S. S.

Ann. Inst. Henri Po~c2~,

Vol. 49, n° 2, 1988, Physique theorique

ABSTRACT. 2014 An investigation is carried out of some formal aspects of
the operatorial method developed earlier for generalized canonical quan-
tization of dynamical systems subject to constraints. Within the generalized
Hamiltonian approach the master equation is obtained for the effective
action, as well as an equation that expresses an analog of the basic postulate
of covariant quantization. The generating of the operator gauge algebra
of the most general form is considered both in the canonical and the Wick
realization of the ghost sector, with various most common types of the
normal orderings used. The explicit form of the corresponding structural
relations is also obtained. The phenomenon of quantum deformation of
the structural relations is studied on general ground. It is shown, for instance,
that the central extension of the Virasoro algebra for a string in the critical
dimension appears naturally as an effect of quantum deformation of the
involution relations corresponding to the Wick normal form. The local
analysis is performed of the existence problem of solutions to generating
equations of the operator gauge algebra. It is shown that the solution of
quantum equations for the symbols of the gauge algebra generating ope-
rators can be locally constructed as formal series in powers of the Planck
constant, provided that the corresponding classical solution exists and is
locally Abelized (this is surely the case for a gauge algebra possessing redu-
cibility of any finite stage). Thus it is shown that, once there is no topo-
logical obstacles against the global continuation of solutions for the sym-
bols from a set of overlapping local open vicinities, one can built solutions
to the operatorial generating equations of the gauge algebra in the form
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146 I. A. BATALIN AND E. S. FRADKIN

of formal series in powers of the Planck constant. The formal property
of Abelian factorizability is established for these solutions, which makes
a basis for the separation of physical and non-physical degrees of freedom
at the operatorial level. With the use of this separation it is shown that the
dependence of any physical operator on nonphysical degrees of freedom
can be completely included in the so-called doublet component that does
not contribute into physical matrix elements. It is also shown that the

singlet component extracted from the evolution operator that only depends
upon operators responsible for the physical degrees of freedom, is itself a
unitary operator.

RESUME. - On etudie quelques aspects de la methode operatorielle
precedemment developpee pour la quantification canonique generalisee
des systemes dynamiques contraints. Dans Ie cadre de 1’approche hamil-
tonienne generalisee, on obtient 1’equation maitresse pour 1’action effective,
ainsi qu’une equation exprimant un analogue du postulat fondamental de
la quantification covariante. On considere la generation de 1’algebre ope-
ratorielle de jauge la plus generate en utilisant la realisation canonique
du secteur de fantomes, celle de Wick, ainsi que les types les plus courants
d’ordre normal. On obtient aussi la forme explicite des relations structurelles
correspondantes. On etudie de fagon generate Ie phénomène de deformation
quantique des relations structurelles. On montre, par exemple, que 1’exten-
sion centrale de 1’algebre de Virasoro pour une corde en dimension critique
apparait naturellement comme un effet de deformation quantique des
relations d’involution correspondant a la forme normale de Wick. On
analyse 1’existence locale des solutions des equations qui engendrent
1’algebre operatorielle de jauge. On montre que la solution des equations
quantiques pour les symboles des generateurs de 1’algebre de jauge peut
etre construite localement comme une serie formelle en puissances de la
constante de Planck a condition que la solution classique correspondante
existe et soit localement abelienne (ce qui est toujours Ie cas si 1’algebre
de jauge est reductible a tout ordre fini. Cela prouve (s’il n’y a pas d’obsta-
cles topologiques pour passer du local au global) que 1’on peut construire
des solutions aux equations operatorielles engendrant 1’algebre de jauge
sous la forme d’une serie formelle en puissances de la constante de Planck.
On etablit la propriete formelle de factorisabilite abelienne de ces solutions,
ce qui est fondamental pour separer, au niveau operatoriel, les degres de
liberte physiques des degres non physiques. A 1’aide de cette separation
on montre que la dependance d’un operateur physique quelconque vis-a-vis
des degres de liberte non physiques est completement incluse dans la com-
posante « doublet » qui ne contribue pas aux elements de matrice physiques.
On montre aussi que la composante singulet de 1’operateur d’evolution
(laquelle ne depend que des operateurs correspondants aux degres de liberte
physiques) est elle-meme un operateur unitaire.
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INTRODUCTION

In our previous papers [1 ]- [6 ], the operatorial version of the generalized
method for canonical quantization of dynamical systems subject to cons-
traints of general form was, in the main, constructed. The most important
aspects of the process of the operatorial quantization as well as of the
construction of the unitarizing Hamiltonian within the extended phase
space concept [7 ], [8] were considered in those papers. We shall not restate
here the basic components of this concept, but shall merely recollect the

sequence of the main steps in the procedure of the general canonical quan-
tization itself. Simultaneously, we shall present some motivations and

explanations concerning the therminology we keep to in what follows.
First of all, proceeding from the nature of the constraints inherent in

the theory, one should establish the structure of the complete set of cano-
nical operator pairs in the extended phase space. As it is known [9 ], in
the most general case all the constraints can be divided into those of first
and second class. The first-class constraints generate gauge symmetries,
while the ones of the second class just carry out the reduction of the phase
space of the system, with the symplectic structure retained. When second-
class constraints are present in the system one can always turn them into
first-class constraints by defining new degrees of freedom [5 ], [6 ]. So, the
first-class constraints are, in a way, a more fundamental concept. Hence,
in what follows we shall adhere to the position that we are handling first
class constraints alone. In the simplest case of irreducible (i. e. linearly-
independent) first-class constraints, the complete set of canonical operator
pairs in the extended phase space includes, according to ref. [1 ], the dyna-
mical variables of the original phase space, the dynamically active Lagrange
multipliers to constraints and ghosts, and the ghost dynamical variables.
In a more general situation, when the first-class constraints are reducible

(i. e. linearly dependent), the complete set of canonical operator pairs
includes, in principle, analogous groups of dynamical variables. In fact,
however, it has a more complicated structure described in detail in ref. [4 ].

In what follows we keep to a terminology somewhat different from the
one used in our previous papers [1-6 ]. First, we give up the division of
the manifold of the operator-valued phase variables into the minimum
and auxiliary sectors. Second, we adhere to the principle of discrimination
using the ghost number. To be more exact the complete set of canonical

pairs of operators is divided in two main sectors : that of the original varia-
bles, and the ghost sector. The original variable sector is defined as the one
including all the canonical pairs with zero ghost number, while the ghost
sector includes all the other canonical pairs.

Technically, the most difficult step in the generalized canonical quantiza-

Vol. 49, nO 2-1988.



148 I. A. BATALIN AND E. S. FRADKIN

tion is to find the fermion and boson generating operators of the gauge
algebra. Universal generating equations for these operators were found
in our paper [1 ]. Solutions to these equations are sought for, in the general
case, in the form of normally ordered series in powers of ghost operators.
The coefficients in these series only depend on the operators of the original
dynamical variables, and are structural operators of the gauge algebra.
The lowest structural coefficients in the expansions of the fermion and
boson generating operators are identified, respectively, with the constraints
of the theory and its original Hamiltonian. The basic equations for gene-
rating operators of the gauge algebra lead to a set of recurrence equations
for the structural operators. These recurrence equations make a sequence
of coupled structural relations of the gauge algebra, where every relation
provides the fulfilment of the necessary compatibility conditions for pre-
vious ones. Therefore, in the lowest order in ghost operators, involution
relations appear for constraints and the Hamiltonian. In the next order,
the lowest Jacobi relations arise, that provide the fulfilment of the necessary
compatibility conditions in the set of involution relations. Later when
we go to higher orders in ghosts, the higher Jacobi relations arise in

sequence, etc.

The process of generating the operator gauge algebra outlined above
is characterized by two main features. The first is that the explicit form of
the structural relations depend on a special choice of normal ordering of
ghosts in expansions of the generating operators. The second feature is

due to the phenomenon of quantum deformation of the structural relations.
This phenomenon, first found in our work [1 ], means that essentially
quantum terms appear in the structural relations and that they cannot
be removed by any alteration of the ordering in the product of the structural
operators provided the ordering of ghosts in the generating operators is
fixed. Entirely unpredictable classically, as they are, the contributions res-
ponsible for the quantum deformation of structural relations are, neverthe-
less, quite necessary for providing the algebraic compatibility in the ope-
rator domain. A special example of quantum deformation in the involution
relations is provided by the central extension of the Virasoro algebra for
a string in the critical dimension.

After the solution for the generating operators of the gauge algebra has
been found, an expression for the total unitarizing Hamiltonian in the
extended phase space is readily constructed using the universal formula
of ref. [1]. Apart from the generating operators, already found, this formula
for the unitarizing Hamiltonian includes another necessary ingredient,
the so-called gauge fermion operator. This operator generates gauge condi-
tions, necessary for removal of the degeneracy. When duly defined, the
physical dynamics does not depend on any special choice of the gauge
fermion.

Now, that we have, in the main, recalled the schedule of the generalized
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149OPERATORIAL QUANTIZATION OF DYNAMICAL SYSTEMS SUBJECT TO CONSTRAINTS

canonical quantization, we are in a position to formulate the main objects
of the present paper. They pursue a more profound investigation of the
above operatorial construction with the emphasis on those of its aspects
that are related to general properties of the generating equations of the
gauge algebra. Now we shall give necessary explanations and, at the same
time, describe in detail the organization of the present paper.

In section 1 we study some general consequences of the operatorial
dynamical description of gauge systems in the extended phase space. We
formulate the Heisenberg operator equations of motion induced by the
total unitarizing Hamiltonian in presence of external sources, introduced
in a special way. With the use of generating equations of the gauge algebra

. in the representation that depends on external sources, we obtain an ope-
ratorial version of the Ward relations for the gauge system of the most
general type, as a consequence of equations of motion. Then we define an
effective action for the system and derive for it the so-called master equation
from the operatorial Ward relation. We also obtain here an equation that
expresses an analog to the main postulate of the covariant quantization
scheme accepted in the Lagrangian formalism [10-12 ].

In section 2 the structure of the basic formula for the unitarizing Hamil-
tonian is discussed and the notion of the gauge-independent physical
dynamics is defined. In addition, we discuss there the connection between
the generalized Hamiltonian approach and the covariant quantization
postulate in terms of the Feynman integral in configuration space.

In section 3 the process of generating a gauge algebra is considered using
the normal-ordered expansion of the corresponding generating equations
in powers of ghost operators. Explicit forms of structural relations are
found here both for the canonical and Wick realizations of the ghost sector,
which correspond to the most common ways of the normal ordering of
ghosts in expansions of generating operators. Relations are given between
the structural operators corresponding to different types of normal ordering
of ghosts, as well as formulas that express the transformation laws of the
structural operators under the Hermite conjugation. General properties
of the structural relations are discussed and the essentially quantum terms
due to the quantum deformation effect are pointed out. In that section
the general definition of the ghost number operator is also given, as well
as its explicit form in the canonical and Wick realizations of the ghost
sector.

In section 4 the existence problem for solutions of the generating equa-
tions of the operator gauge algebra is studied as a quantization problem.
First, we list some facts and relations necessary for what follows, that con-
cern the correspondence problem between a symbol and its operator.
Next, we accomplish a formal expansion of the equations for symbols of
the gauge algebra generating operators in powers of the Planck constant.
After that, the main theorem is proved using the induction method, that

Vol. 49, n° 2-1988.



150 I. A. BATALIN AND E. S. FRADKIN

states that the solution for the symbols of the generating operators can be
locally constructed as formal series in powers of the Planck constant pro-
vided the corresponding classical solution exists and is locally Abelizable
(the latter is the case for gauge algebra of any stage of reducibility). If,
besides, there are no topological obstacles against the global continuation
of the germs of symbols from the system of overlapping local open vicinities,
then one can state also that there exists a solution of operatorial generating
equations of the gauge algebra as formal series in powers of the Planck
constant.

When proving the basic theorem we use the local Abelizability of classical
solutions as the property of Abelian factorizability of the classical counter-
part of the fermion generating operator. It is this property, that provides
the possibility of canonical reparametrization that effectively realizes, at
the classical level, local separation of physical and nonphysical degrees
of freedom. This leads next to the possibility of extracting the pure singlet
component, that depends on physical degrees of freedom alone, from any
classical observable, while the dependence on all nonphysical degrees of
freedom is concentrated in the so-called doublet component that has a
pure gauge origin.
That section is completed by a consideration of quasiclassical expansion

of the Weyl symbol of the unitarizing Hamiltonian, as well as of path
integral representation in the extended phase space, for the Weyl symbol
of the evolution operator.

In section 5 we proceed from the fact that the formal solution of opera-
torial generating equations has been already constructed in the form of
power series in the Planck constant. We establish for this solution the

property of Abelian factorizability of the generating fermion operator,
analogous to the corresponding classical property. Then a canonical
reparametrization is considered that performs the effective separation
of physical and nonphysical degrees of freedom at the operator level.
In analogy with the classical situation, this enables one to decompose
the operator of any physical observable into the sum of its singlet and
doublet components. Here the singlet component to be extracted only
depends on operators of physical degrees of freedom, while the doublet
component entirely absorbs the dependence on operators of nonphysical
degrees of freedom and thus does not contribute into physical matrix
elements. By employing this decomposition we establish the important
fact that the extracted singlet component of the evolution operator is

unitary. That section is completed by considering the extraction of the
singlet component of a physical state.

In the last section 6 we come back to analysing the quantum defor-
mation phenomenon in the involution relations, confining ourselves to
the case, most important in practice, of rank-1 irreducible theories. We
obtain an explicit form of the quantum deformation of the involution
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relations corresponding to every type of normal ordering of ghosts in
generating operators considered. The section is completed by a conside-
ration of the central extension of the Virasoro algebra understood as an
effect of the quantum deformation of the involution relations, corresponding
to the Wick normal form.

Finally, let us explain some basic notation to be used henceforth. Ope-
rators are considered to be primary objects and are not marked by any
hats thereby. As usual, the Grassmannian parity of an operator A is desi-
gnated as E(A), while the ghost number, as gh (A). The supercommutator
of operators A and B is also defined in the usual way as

C-numerical functions defined in a classical phase space (including the
phase variables themselves) are marked with a tilde, e. g. Ã(r). The Planck
constant is set equal to unity throughout the paper, except for the for-
mulas where it serves as a formal expansion parameter and is therefore
left to be explicitly present. Other notations will be clear from the context.

1. BASIC RELATIONS OF THE OPERATORIAL APPROACH.
MASTER EQUATION FOR THE EFFECTIVE ACTION

The fundamental objects within the operatorial method for quantization
of gauge systems are the fermion operator Q that generates the gauge
algebra of constraints, and the boson unitarizing Hamiltonian H. These
operators are governed by the following universal equations

Physical states of the theory are specialized by the condition

Denote the whole set of operator-valued dynamical variables of the
extended phase space of the system as r. Their time evolution in a certain
interval (ti, t f) is determined by the standard equations of motion with
the Hamiltonian H subject to (1.2)

and operators r(ti) for initial data.
First of all we have from ( 1. 4) in virtue of ( 1. 2) that

i. e. the operator Q is conserved in time. Thus condition (1. 3) specializing

Vol. 49, n° 2-1988.



152 I. A. BATALIN AND E. S. FRADKIN

physical states, if imposed at the initial time, remains unchanged at everylater time. On the other hand, equation (1.1) precludes obtaining furtherrestrictions on the vector I 1», by repeatedly applying the operator Q
since (1.1) is equivalent to the requirement that the operator 03A9 be nilpotent,03A92 = 0.
Using the solution of the equations of motion (1.4) consider the

generating operator ~;) obeying the following equation

Here J(t) are classical external sources of the operators r(t ). The functionsdenoted as ( r*(t ) ~ are classical external sources to variations of the
operators r (t ) generated by the operator Q. The dot (-) in products like J- r
or ( r* ) - r denotes henceforth the contraction over the correspondingindices of the multiplied quantities. The external sources J and  r* areof opposite statistics

Using a solution Z(t, of the problem ( 1. 6), ( 1. 7), let us map each
operator A(t ) in the initial F-representation whose time evolution is deter-
mined by eq. ( 1. 4) into an operator A’(t ) taken in a new representation
determined by the external sources J and ( r* )&#x3E;:

In virtue of (1.7) both representations coincide at the initial time

The basic equations (1.1), (1.2), evidently, retain their form in the new
representation

For the operators r(t) that correspond to r(t) in the sense of the defi-
nition (1. 9) we obtain with the help of (1.4), (1.6) the following equationsof motion in the new representation

Using (1.11) one obtains from this the following equation for the ope-
rator Q’, instead of the conservation law (1.5)

Note now, that the following relation holds true owing to ( 1. 6) and ( 1. 7)

Annales de Henri Poincaré - Physique théorique



153OPERATORIAL QUANTIZATION OF DYNAMICAL SYSTEMS SUBJECT TO CONSTRAINTS

Eq . ( 1.14) enables us to represent ( 1.13) in the form

Let be a normalizable physical state from (1. 3). By integrating
(1.15) over t within the interval (ti, tf) and calculating the expectation
value in the state 1&#x3E; B one obtains

where the functional W(J, ( r* ~ ) is defined as

Let us, further, define the average values  T(t ) ~ in a usual way as varia-
tional derivatives of the functional (1.17) with respect to external sour-
ces J(t)

assume, as usual, that (at least within the perturbation theory) equa-
tion (1.18) is uniquely solvable with respect to the source J and enables
one to express the latter as a functional of the quantities ( r ), ( r* &#x3E;

Then, let us define an effective action in the standard way

where the substitution (1.19) is understood in the r.-h. side.
The following relations hold true for the effective action (1.20)

where the derivative in the r.-h. side is calculated taking into account its
explicit dependence on ( r* )&#x3E;, the substitution (1.19) being performed
after that.

Finally, after substituting the r.-h. sides from ( 1. 21 ) into ( 1.16), one
obtains
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Consider now the following formal definition. Let functions and

c~A(t ), A = 1, ...,~, of opposite statistics

be given in the interval ~ ~ ~ and let and C*) be any
two functionals that depend on these functions, 8x and 8y being Grassma-
nian partities of X and Y, respectively. Following ref. [10-12 ], let us define
the binary combination

called antibracket. With the identification

equation (1.22) takes its most compact and symmetric form in terms of
the antibracket ( 1. 24)

Equation of the form of ( 1. 26) is known as the master equation in the
covariant (Lagrangian) quantization method of gauge systems [10-12 ].
In the covariant approach it appears at two levels. First, its proper solution
determines (up to a local measure) the total action in the functional inte-
grand and the Feynman rules in the Lagrangian formalism thereof. Second,
the master equation holds true already for the effective Lagrangian action
that results from the path integration and the Legendre transformation
with respect to the external sources of the Lagrangian variables. It is in
this second role, i. e. as an equation for the effective action, that the Lagran-
gian master equation is a direct counterpart to equation (1.26). It is,
however, essential, that equation (1.26) has been obtained by us within
the generalized canonical formalism as a consequence of exact operator
equations of motion, whereas within the Lagrangian approach the master
equation is introduced following special postulates of covariant quantiza-
tion that are not, at first glance, directly connected with the requirement
of physical unitarity. As a matter of fact, it turns out, nonetheless, that the
equation that is a counterpart at the basic covariant quantization postulate
immediately follows from the generalized canonical formalism.
Let us consider, indeed, the functional Fourier transformation for the

functional W ( 1.17)

where we have set in the r.-h. side
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for the sake of symmetry in notations. Eq. (1.27) is an analog to the gene-
rating functional of covariant Green functions. In its turn, the functional

. W(r, r*) is nothing but an analog to the total covariant action that creates
covariant Feynman rules. Now it follows directly from ( 1.16) that

or, what is the same, that

where the antibracket in the l.-h. side is defined relative to the variables

Equation of the form of (1.30) expresses the basic quantization postulate
in the covariant approach. ,

It is essential to note that in every equation of the present section, from
(1.4) on, the set r should not necessarily be the complete set of dynamical
variables in the extended phase space, but may be its certain part, as well.
It is only needed that the unique solvability of equation ( 1.18) in the sense
of (1.19) take place for this part. In case r is the complete set of dynamical
variables indeed, equations ( 1. 26) and ( 1. 30) are more informative than
their counterparts in the covariant approach. It would correspond to
the covariant approach if one took for r (after a certain canonical trans-
formation) the part. of the complete set of dynamical variables that makes
the relativistic configuration space of the system. Simultaneously, the
r.-h. side of equation ( 1. 30) is proportional to  (this is apparent if the
explicit way of writing is used) is the contribution of the configurational
(local) integration measure. Therefore, disregarding the local measure,
one can reduce, indeed, equation (1. 30) to the master equation [10-12 ].

2. SOLUTION FOR THE UNITARIZING HAMILTONIAN.
GAUGE FERMION. GAUGE INDEPENDENCE

Following [7-6] we shall seek for a solution to equation (1. 2) for the
unitarizing Hamiltonian in the form

Representation (2.1) reflects the natural arbitrariness in solution of the
equation (2.1), satisfied, in virtue of (1.1) and (2.2) for any B{I subject
to (2.3). The fermion generator ~ is intended for generating necessary
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gauge conditions. This operator comprises the total gauge arbitrariness
of the theory and is hence, called the gauge fermion. The gauge indepen-
dence of a physical dynamics is its independence of any special choice
of the gauge fermion ~P. Let us consider this in more details.

Let r be again the complete set of dynamical variables of the extended
phase space. Denote as the solution of equations of motion (1.4)
with the Hamiltonian H (2 .1 ) and initial data The subscript ~ in 
indicates the dependence of the dynamical evolution on the gauge fermion Bf
involved explicitly in the Hamiltonian (2 .1 ). The initial data r(ti) are meant
to be independent of 03A8. Under an arbitrary form-variation 03A8 ~ Bf + 
of the gauge fermion the operators Ep transform according to the law

where the transformation operator is determined by the equation

Define physical entities to be functions of the operators r (but not
of their time-derivatives) subject to the condition

Utilizing eqs. (2.4) and (2. 5) in their infinitesimal ~F -~ 0
we can represent the gauge variation of the operator ø(r q) subject to (2. 6),

in the form

Thus, the matrix element of the gauge variation (2.8) relative to any two
states from (1.3) vanishes

and we come to the statement : physical matrix elements of physical ope-
rators do not depend on a specialization of the gauge fermion 03A8 in (2.1).

Let us present now the physical dynamics in an explicit gauge invariant
form. After writing the equations of motion with the Hamiltonian (2 .1 )
for physical operators and calculating their matrix element between any
two physical states from (1.3) we have

where J~ is the gauge-independent part of H defined by (2. 2) (i. e. the first
term in (2.1) alone).
The second equality in (2.10) already confirms (2.9), but does not yet

provide a closed description of the physical dynamics, since the r.-h. side
has not been yet expressed exclusively in terms of the physical matrix
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elements of the physical operators (!) and ~f. To make the next step we
shall use the results of the important works [7~], [14 ].

Let 1/ be a vector space (its metrics is in defined) where our operators r
are to act. Denote as c 1/ the set of states |03A6 &#x3E; from 1/ obeying
eq. ( 1. 3). Denote, finally, as 1/’s c the set of states Cs) from 
that satisfy the condition

The states I 1&#x3E;s &#x3E; are called singlets.
Under the assumption that (1.1) holds true and that the ghost number

operator has only integers as its eigenvalues it was proved in refs [13 ], [7~] ]
that the following key statement is valid for any I 1&#x3E;’ &#x3E; and I 1&#x3E;" &#x3E; from 

where P(’~S ) is the projection operator onto ~S .
Due to a special choice of the metric structure (of the basis) in the space

of states 1/, the arbitrariness inherent in the definition (2.11) of the singlet
states was lifted in ref. [14 ] in a natural way, the definition of the projection
operator P(1/s) being made singlevalued thereof.
Accepting the starting principles of the papers [13 ], [7~] we shall employ

relation (2.12) to represent equation (2.10) in the form

Equation (2.13) provides already a closed description of the physical
dynamics. It shows that the restriction of the physical operator J~ onto
the singlet subspace 1/s of the physical space controls the time evo-
lution of the physical operator (!) when restricted onto the same physical
subspace 1/ s .
Another very important consequence of the relation (2.12) is the uni-

tarity of the evolution operator in the physical sector. Owing to the formal
hermiticity of the Hamiltonian (2.1), the evolution operator corresponding
to it

is formally unitary

After calculating the matrix element between any two states ~’ ~ and
I 03A6" &#x3E; from Vphys and using (2.12), one has

Therefore, the evolution operator (2.14), when restricted onto the

physical subspace ~S of singlet states, remains unitary in this space.
To conclude this section, we concentrate again on expression (1.27).

Since all the gauge arbitrariness of the theory is comprised, at the operator
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level, in the gauge fermion operator’I’ in the Hamiltonian (2.1 ), as mentioned
above, it is expected that the arbitrariness of the functional integral ( 1. 27)
is also gathered in the fermi-function ’ÎÍ(r) of the integration variables.

If the Hamiltonian (2 .1) is substituted into the operator-valued equations
of motion (1.12) in the representation determined by external sources,
it is readily seen that, at the quasiclassical level, i. e. when the commutators
become Poisson brackets, the gauge fermion q enters in the r.-h. side
of ( 1.12) through

It is therefore natural to expect that the functional integral (1.27) also
contains, at least at the quasiclassical level, a combination analogous
to (2.17), which corresponds to the replacement of r* (1.28) by

Equation ( 1. 30) retains its form under this replacement. As it is known

[10-12 ], the covariant analogue of eq. (1. 27) contains the gauge fermion
just in the combination (2.18).

Employing the closed continual solution of the operator-valued equa-
tions of motion ( 1.12), one can show that, up to terms responsable for
the ordering of equal-time operators in the total Hamiltonian in (2.12),
the generating functional of the theory has indeed the structure corres-
ponding to (2.18).

3. GENERATING THE GAUGE ALGEBRA.
NORMAL-ORDERED EXPANSIONS

OF THE GENERATING EQUATIONS IN POWERS
OF THE GHOST SECTOR OPERATORS

In this section the process is considered through which the operator
gauge algebra of the most general type is generated within the generating
equations (1.1), (1.2). The solution of these equations for the generating
operators will be found in the form of normal-ordered series in powers
of the ghost operators. Coefficients in these series only depend on dynamical
operator-valued variables of the original phase space of the system, and
are the structural operators of the gauge algebra. The lowest terms in the
expansions of the operators D and J~ contain as the structural coefficients
the operators of the initial constraints and the Hamiltonian, respectively.
The substitution of the normal-ordered expansions of the operators Q
and ~P into equations (1.1) and (2 . 2) gives, after their I.-h. sides are reduced
to the normal form, recurrence equations for the structural operators,
in each order with respect to the ghosts. These equations are nothing,
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but the structural relations of the operator gauge algebra. For instance,
in the lowest order, one obtains the involution relations for the operators
of the initial constraints and the Hamiltonian. In the next order one obtains
relations that provide the fulfilment of the necessary conditions of compa-
tibility in the system of involution relations, etc. Thus, a sequence of coupled
structural relations arises, in which each solution provides the fulfilment
of the necessary compatibility conditions for the previous ones.
A peculiarity of the operator approach is in that both the structural

operators themselves and the form of the structural relations for them
depend on a specialization in the normal ordering of ghosts. From the
pure formal point of view this specialization is in no way restricted. Only
special features of a given dynamical system may provide a preference
for certain type of normal ordering. Throughout our previous works on
the operatorial quantization we were using the normal form that places
all ghost momenta to the left of all ghost coordinates. This type of normal
form (as well as of the one dual to it) is most convenient for the purpose
of general analysis of the structural relations, since only this normal form
guarantees linearity to every structural relation with respect to the struc-
tural operators defined by it. Among other possibilities of specializing
the normal ordering, the Weyl and Wick normal forms are of special
interest. The Weyl form is distinguished by its property of being invariant
under linear canonical transformations. On the other hand, the Wick
form is most stable when one goes to an infinite number of degrees of
freedom.

In this section we shall study in detail the expansions of the generating
equations of the gauge algebra, accepting different types of normal ordering
of the ghost operators including both the one used before and the Weyl
and Wick normal forms.

A. Canonical ghost sector.

Assume that the ghost sector of the theory is represented by the canonical
operators pairs

so that among the equal-time supercommutators only the following

are nonvanishing. Assume further, that the operators (3.1) transform
as follows under the Hermite conjugation

The ghost sector (3.1)-(3.3) will be called canonical.
Al. GG-normal form.

In this item we consider the expansion of the generating equations (1.1)
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and (1.2) in powers of the operators belonging to the canonical ghost
sector (3 .1)-(3.3), taking it in the GG normal form, i. e. with every Gplaced to the left of all G.

Let us start with equation (1.1), whose solution will be sought for usin gthe Ansatz °

Consider classical analogs to operators (3.1)

and define the symmetrizers

to be used for defining symmetrization of any quantity

The structural operators X in expansion (3.4) are symmetric in the sense
of the operation (3. 8)

By substituting (3 . 4) into the I.-h. side of the first equation in ( 1.1 ) andreducing it to the normal form we obtain the following recurrence relationsfor the structural operators

where the following notation is used:
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Analogously, the second equation (1.2) when taken together with (3.3),
produces the transformation laws of the structural operators under the
Hermite conjugation

where c8s is given by (3.12) at p = 0, q = 0 and, besides, the notation

is used.
The third equation in (1. 2), coupled with the second equation from (3.1),

determines the distribution of statistics of the structural operators

where the parities from (3.15) enter in the r.-h. side.
Finally, the fourth equation in (1.2), joined with the third equation

in (3.1), provides conditions on admissible values of m and n in the expan-
sion (3 . 4) :

Concentrate now on equations (2.2), whose solutions are to be sought
for as a GG-normal expansion, the same as (3 . 4) :

with the structural operators Y symmetric under the operation (3.8)

After substituting the expansion (3.18) into the l.-h. side of the first equa-
tion in (2 . 2) and reducing it to the GG-normal form, we obtain the following
recurrence relations for the structural operators
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where the notations are used

with C%s and Eq given by (3.12) and (3.13), respectively.
The second equation in (2.2), when coupled with (3. 3) gives

where Cqs, EA, EB are defined in the same way as in (3.14), and, besides,
the notation

is used.
The third equation in (2.2), together with the second one in (3.1) gives

where the parities from (3.15) appear in the r.-h. side.
The fourth equation in (2.2), together with the third equation from (3 .1),

produces the condition to be obeyed by the values m and n in the decompo-
sition (3 .18) .

The structural relations (3.10), (3 . 20), conjugation properties (3.14), (3 . 23),
distributions of statistics (3 .16), (3 . 25) and of the ghost number (3 .17), (3 . 27)
exhaust the conditions imposed by the equations (1.1) and (2.2) on the
structural operators X and Y in the GG-normal expansions (3.4), (3.18).

A2. Weyl normal form.
In this item we consider the expansion of the generating equations (1.1)

and ( 1. 2) in powers of the operators (3 .1 ) of the canonical ghost sector
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in the Weyl normal form. Here we denote again as X and Y the structural
coefficients in the expansions for Q and ~, although now these are appa-
rently the operators other than the structural coefficients in expansions (3 . 4)
and (3.18) of the preceding item.
We start again with equations (1.1) and seek for its solution in the form

of the Weyl-ordered expansion

where G and G are classical counterparts (3.5) of the operators (3.1).
The structural operators X in expansion (3.27) are symmetric under (3 . 8),
so that (3.9) holds true for them.

After substituting (3 . 27) into the l.-h. side of the first equation from ( 1.1 )
and reducing it to the Weyl-normal form, we obtain for the structural
operators the recurrence relations of the form of (3.10), in which, this
time the new operators

are involved instead of (3 .11). Here the notations are used :

The second equation in (1.1), together with (3 . 3), gives rise to the trans-
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formation law under the Hermite conjugation of the structural operators
in the expansion (3.27)

with the parities from (3.15) appearing in the r.-h. side.
The distribution of statistics of the structural operators, and the condi-

tion for admissible values of m and n in the expansion (3 . 27) coincide with
(3.16) and (3.17), respectively.

Consider now equations (2.2), solutions for which will be again sought
for as Weyl-ordered expansions

The structural operators Y are symmetric in the sense of the operation (3 . 8),
so that eq. (3.19) holds true for them.

After using the expansion (3 . 33) in the l.-h. side of the first equation in (2 . 2)
it may be reduced to the Weyl-normal form to give the recurrence relations
of the form (3.20) for the structural operators, with the new operators

entering (3.20) this time, instead of (3.21). We refer to the designations

with ~ and 0 Cqs defined 0 as (3.30) and 0 (3.31), respectively.
The second 0 one of equations (2.2), when taken together with (3.3),
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creates the Hermite conjugation law for the structural operators in the
expansion (3.33)

where parities from (3.15) appear.
The distribution of statistics of the structural operators and the condi-

tion to be obeyed by the values of m and n in expansion (3.33) coincide
with (3.25) and (3.26), respectively.
To conclude this item, we list formulas that relate the structural ope-

rators corresponding to the GG-and Weyl-normal forms. There are

Here c8s is given by (3 .12) with p = 0, q = 0 ; Eçø is defined as (3 . 24).

B Wick ghost sector.

- 

In the preceeding subsection A we proceeded from a unique principle
. of arranging the ghost sector of the theory formed as a set of canonical

operator pairs (3.1). Now we go into more details. Assume that the ghost
sector contains, first, the Wick operator pairs

so that only the following equal-time supercommutators are different
from zero for them

In prospect of considering the limiting case of infinite number of degrees
of freedom, assume that the parameter which becomes infinite in this
limit is just the dimension run by the index « a » that numbers the Wick
pairs (3.40). 

’

Assume, second, that, besides (3.40), that ghost sector can also contain
a finite number of ordinary canonical operator pairs like (3 .1)-(3. 3)
labelled by the index « ao ». These operators are called, conventionally,
null modes.
From the physical point of view, it is the Wick pairs that correspond

to the gauge symmetry understood literally as a local symmetry, whereas
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the null modes correspond to an admixture of the global symmetry in
the gauge transformation algebra. A typical example is provided by the
Virasoro algebra for the boson string.
The complete set (3 .1 )-(3 . 3) of the ghost canonical pairs can be formed

by the Wick pairs and null modes, following e. g. the relations

When studying the generating of the gauge algebra we shall only perform
an explicit expansion of the generating operators Q and Jf in powers
the Wick pairs (3.40), keeping the dependence upon the null modes inside
the operator-valued coefficients along with the original dynamical variables.
Accordingly, we certainly shall not assume the ghost number of the ope-
rator-valued coefficients to be zero. Once the recurrence relations for the
coefficient operators are obtained, they can readily be further expanded
in powers of the null modes (if any) using the means analogous to those
presented in subsection A. In the cases interesting for practice whe number
of null modes is usually small, which is a source of further simplifications
in cases when they are all fermions.

Bl. W ick normal form.
In this item we perform the expansion of the generating equations ( 1.1 )

and (2.2) in powers of the Wick pairs (3.40) of the ghost operators taken
in the Wick-normal form, i. e. placing all Gt, Gt to the left of all G, G.

, The same as in items Al and A2, we continue to designate the structural
coefficients in expansions for Q and Jf as X and Y. The operators X and Y
now bear each four groups of small Roman indices enumerating the Wick
pairs (3.40), and do not, evidently, coincide with the structural coefficients
in the expansions (3.4), (3.18), nor in (3.27), (3.33).
We begin, the same as before, with equations (1.1) and seek their solution

in the form of the Wick expansion

Consider classical counterparts to the operators (3 . 40) :
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and define the symmetrizers

involved in the definition of the symmetrization operation of any quantity K
bearing four groupes of indices

Structural operators X in expansion (3.46) are symmetric under (3.51)

After substituting expansion (3.46) into the l.-h. side of the first equation
in (1.1) and reducing it to the Wick normal form, we obtain the following
recurrence relations for the structural operators

where the symmetrization (3 . 51) appears in the l.-h. side, and the notations
are used
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The second equation in ( 1.1 ) induces the Hermite conjugation law

The third equation ( 1.1 ) gives rise to the distribution of statistics

The fourth equation in (1.1) results in restricting the admissible values
m, n in expansion (3 . 46) :

Consider now equations (2.2), for solving which the Ansatz analogous
to (3.46) will be used
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with the structural coefficients Y symmetric under (3.51)

Substituting (3.46), (3.61) into the first equation in (2.2) and reducing
it to the Wick normal form results in the following recurrence relations
for the structural operators

where the symmetrization (3.51) appears in the I.-h. side, and the nota-
tions are referred to

with ;~~~, I’ , q~~ given by (3.55), (3.56), (3.57), respectively.
f,M

The second equation 2.2 creates the Hermite conjugation property

The third equation in (2.2) leads to the distribution of statistics

Finally, the fourth equation in (2.2) provides the condition on admissible
values m, n in expansion (3 . 61) :
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We conclude this item by studying the connection between structural
operators corresponding to the Wick and Weyl normal forms for ghosts.
Unfortunately, the relations that connect directly the Wick and Weyl
structural operators as explicitly as (3.38), (3.39), prove to be very cum-
bersome. By this reason we display here only a closed generating formula,
whose expansion in powers of the classical variables induces the relations
between the corresponding structural operators.

Let us write the division (3.44), (3.45) as

and understand that the set of classical variables (3.5) corresponding to
operators (3.1) has been divided in analogous way.

Let us denote as

the result of the action of the operator

v~ ~ ~-

on the sum ... in cq. (3.27), taken at Ga° == 0, G,, = 0.

Then, let us denote as

the expansion to be obtained from (3.46) by the formal replacement of
the operators (3.40) by the following values of their classical counter-
parts (3 . 47) : .

Operators (3 . 71) and (3 . 73) are related by the following generating formula

By expanding (3 . 76) in powers of the classical variables present as arguments
in (3 . 71 ), (3 . 73) we obtain the formulas connecting the Weyl and Wick
structural operators.

Defining the operators

with the help 0 of expansions (3 . 33), (3 . 61), in full analogy with (3 . 71), (3 . 73),
we shall obtain a generating £ formula ’ analogous to (3. 76) for them.
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C Some remarks on structural relations.

Thus, we have obtained structural relations corresponding to the GG 2014,
Weyl and Wick normal orderings of the ghost operators. Note to
the point, that the case of GG - normal form has been as a matter of fact
also included here, since, owing to (3 . 3) the GG - normal expansions
of the generating operators Q and ~f are obtained from (3.4) and (3 .18)
by means of the Hermite conjugation. Hence, the GG - and GG - struc-
tural operators are interrelated as follows

where EA is defined in (3.15). The operators in the l.-h. sides of eqs. (3 . 78)
and (3.79) obey the structural relations to be obtained by the Hermite
conjugation from (3.10)-(3.13) and (3.20)-(3.22), respectively. The ope-
rators in the r.-h. sides of eqs. (3 . 78) are given by (3 .14) and (3 . 23).

Consider now the most characteristic general properties of the structural
relations.

First, in accord with the above, we can observe from the formulas of
section 3 that both the structural operators themselves, and the explicit
form of the structural relations they are subject to, depend essentially
on a special choice of the way of normal ordering in expansions of the
generating operators Q and J~. It is seen from the connection formulas
(3.38), (3.39), (3.76), (3.78), (3.79) that the quantum correction acquired
by each structural operator as the normal ordering of ghosts is changed
is given by a linear superposition of correlated traces of all possible struc-
tural operators of a given type (i. e. X or Y) over their super- and subscripts.

Second, a peculiarity of the operator gauge algebra is in that the essential
quantum terms are present in its structural relations, that are not removable
by any alteration in the way of ordering the structural operators when
multiplied among themselves. We call this phenomenon, first observed
in our work [1 ], the quantum deformation. Consider, for example, the
operator (3.11) in the l.-h. side of the structural relations (3.10). All the
terms in the sum in (3.11) with s &#x3E; 1 are the quantum deformation. Only
the term with s = 1 has a classical analog. Exactly the same situation takes
place for the sum over s in (3.21). Next, in the Weyl structural relations
the operators (3.28), (3.34) are present in the l.-h. sides instead of (3.11),
(3 . 21 ). Here the quantum deformation is made by every term in the sum
over the values r + s &#x3E; 1. Finally, in the Wick structure relations (3.53),
(3.63) every term in the sums (3.54), (3.64) with t + u &#x3E; 1 corresponds
to the quantum deformation. The phenomenon of quantum deformation
proves to be a very peculiar feature of the operator approach since the
corresponding terms in the structural relations, although unpredictable
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from the classical point of view, are, nevertheless, quite necessary for the
algebraic compatibility to be fulfilled in the operator domain. As we shall
see in what follows the quantum deformation, when taken into account
in the evolution relations of constraints, leads immediately to the correct
central extension of the Virasoro algebra in case of bosonic string in the
critical dimension.

Third, we must emphasize the nontrivial nature of the operatorial
existence problem for the generating equations (1.1), (2.2) and, hence,
for the corresponding structural relations. The heart of this problem
thought of as a problem of quantization lies in the following. Assume
that there exists a solution to the classical analogs of the generating func-
tionals (1. 2), (2. 2) corresponding, in the classical sense, to the gauge system
under study. One may ask, whether it is possible to find in a constructive
way a corresponding solution of the operator equations ( 1.1 ), ( 1. 2) at
least as formal operator expressions, given in the form of series in powers
of the Planck constant.
Below we shall give affirmative answer to this question, at least in what

concerns a system possessing a finite number of degrees of freedom and no
profound dynamical pathology.

D Ghost number operator.

Limitations due to the fact that there exists such an internal dynamical
characteristic as the ghost number are of extreme importance for quantiza-
tion of gauge systems. These are discrete selection rules that should be
respected by every admissible operator in the theory. They are given by
the fourth equations of ( 1.1 ), ( 1. 2) and (2 . 2) and the third equation of (2 . 3).
As applied to the structural operators, these limitations are presented
by conditions (3.17), (3.26), (3.60), (3.68) that separate admissible terms
in the expansions (3 . 4), (3.18), (3 . 27), (3 . 33), (3 . 46), (3 . 61) of the generating
functionals Q and powers of ghosts.
The ghost number is a peculiar dynamical characteristic, only born

by the ghost sector operators. Every entity of the theory that depends on
ghost operators, is constructed so as to possess a definite value of the ghost
number. As all our basic objects, including the generating operators Q
and Jf of the gauge algebra, the gauge fermion ’P, the unitarizing Hamil-
tonian H, etc., are found in as series expansions in powers of ghosts, the
requirement that any of these quantities should have a definite ghost
number reduces to the mere uniformity condition, which reads that for all
monomials present in the expansion of a given quantity in powers of ghosts
the sum of the ghost numbers of the elementary operators included into
them must be the same. This simple selection rule is used directly and
suffices for treating ghost numbers of operators. If, however, we are going
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to attribute definite values of the ghost number also to states (at least to
some of them), we should have at our disposal a special conserving operator
that would correspond to the ghost number, as itself. This operator is,
quite naturally, called the ghost number operator. It is denoted as G and
is a hermitian boson

By definition, any operator A possessing the value gh (A) of the ghost
number, obeys the condition

that automatically guarantees the correct multiplication composition law
for the ghost number.

Although, at first glance, it looks a paradox, the operator G itself obeys
the relation

that follows from (3.81). In accordance with (3.81), the fourth equation
in ( 1.1 ), ( 1. 2) is equivalent to the conditions

The second of them provides the conservation of the ghost number operator
in time

In full analogy with (3 . 83), the fourth equation in (2 . 2) and the third in (2 . 3)
are equivalent to the conditions

We are now in a position to find an explicit expression for the ghost number
operator in terms of elementary operators of the ghost sector. We shall
study the two equivalent possibilities :

i ) canonical ghost sector (3 .1 )-(3 . 3)

ii) the Wick ghost sector (3 . 40)-(3 . 43)

Here the Wick pairs enter in the first sum in (3. 87), while the second one
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is comprised by canonical pairs of the null modes. The fulfilment of condi-
tions (3. 80) and (3. 81) for elementary ghost operators is verified straight-
forwardly.

It remains to define the ghost number for states. By means of the ope-
rators (3.86) or (3. 87), this is done in a quite obvious way. By definition,
a state I I&#x3E; &#x3E; has its ghost number equal gh ( ~ D ) ) providing the condition

is obeyed. A particularly important class of such states is made by singlets
defined as (1.3) and (2.11) that have zero ghost number. These states are
most closely related to physical degrees of freedom, singlet out, in the
classical sense, by constraints and the unitary gauge.

4. OPERATORIAL EXISTENCE PROBLEM
FOR THE GENERATING EQUATIONS OF THE GAUGE ALGEBRA

VIEWED ON AS A PROBLEM OF QUANTIZATION

In this section we shall try to answer the following important question.
Let a solution for the classical analogs of the generating equations (1.1),
(2.2) be given, that correspond to a given gauge system. One may ask,
if there can be found (at least in the form of series in powers of the Planck
constant) a solution of the corresponding operator equations that would
have this classical solutions as 0 limit. We shall show that this

correspondence can be indeed established for systems with a finite number
of degrees of freedom at least locally, i. e. in every domain where an admis-
sible gauge exists.

Since we are going to essentially exploit the technique of symbols, we
find it appropriate to remember some elementary facts concerning the
relations between operators and their symbols.

A. Operators and Symbols.

Assume that a complete set r of operator-valued dynamical variables
is given as a set of canonical pairs

so that the only nonzero equal-time supercommutators for them are

We display the Planck constant ~ explicitly throughout this section.
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Denote as

the classical counterparts of the operators (4.1).
Let (a) mark a certain way of the normal ordering for operators (4.1).

Then any operator A(F) is defined providing a function of classical varia-
bles (4. 3)

is given according to the formula

where

and designates normal ordering of the type (x) for operators r.
The function Aa(r) is called the a-symbol of the operator A(r). Ope-

rator (4.6) replaces, effectively, classical arguments r of the a-symbol
by the corresponding operators r arranged in accord with the ordering
rule 

Let us display three examples of normal form, most commongly used
in the canonical basis (4 .1 ) : .

i ) the PQ-normal form (a = PQ) :

ii) the QP-normal form (ex = QP) :

iii) the Weyl-normal form (a = Weyl) :

Operators (4.7)-(4.9) are related as

This leads to the corresponding relation for the symbols
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Formally, the classical variables (4 . 3) are basic elements of the commutative
superalgebra of functions on the phase space, while the operators (4.1)
are basic elements of the noncommutative superalgebra of the corres-
ponding operator functions. Eq. (4.5) gives for every (0153) a one-to-one cor-
respondence

between elements of these two superalgebras, such that

Eq. (4.13), where ~a is a differential operator determined by (a) that acts
both to the right and to the left, gives a non-commutative (but associative)
*-multiplication law for a-symbols. In its turn, eq. (4.14) defines the *-com-
mutator of a-symbols. For the normal forms (4.7)-(4.9) the operator is
given by the relations

Equations (4 .11 ) and expressions (4 .15), (4 .16) are particular cases of
the following general relations

valid for any specialization of the normal ordering of the operators r.
Moreover, it turns out that these formulas hold true in the general case
of dynamical variables, when not only the canonical pairs (4.1) also any
other set of operators whose all possible equal-time supercommutators
make a c-numerical reversible matrix, proportional (f~), can be used
as operators r.
From now on, we shall omit the subscript indicating the type of a symbol.

Unless indicated otherwise we shall mean that any normal ordering can
be used in the general basis of the dynamical variables.
Now we shall give some general relations for expanding *-products

and *-commutators of symbols needed in what follows. Assume that
the symbols A and B of operators A and B allow to be expanded in powers of
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Then, for the *-product (4.13) of these symbols one has the expansion

where X is the concise notation (with the subscript (X omitted) for the ope-
rator Da from (4.18). -

In its turn, for the *-commutator (4.14) of the symbols (4.19) one has
the expansion

where we have denoted

For = 1, the binary operation (4.22) coincides with the Poisson super-
bracket

which takes its standart from in the canonical basis

In the classical limit ~ -+ 0 eqs. (4.20), (4.21) result in

The last remark of this subsection will concern behaviour of the symbol
of a given operator under the Hermite conjugation. Generally, the Hermite
conjugation of an operator maps its a-symbol into the complex conjugate
(at)-symbol, where is the normal form, Hermite-conjugate relative
to (a). In the general basis of dynamical variables it is natural to require
that the complete set of elementary operators r be closed with respect
to Hermite conjugation :

where 11 is a reversible c-numerical matrix. If, besides, the normal form
(a) chosen is Hermite-symmetric

then under Hermite conjugation of an operator its a-symbol only undergoes
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the complex conjugation, while the symbol of a hermitian operator is a
real function.

In the canonical basis (4 .1) condition (4 . 27) is fulfilled as a consequenceof the usual hermiticity requirement for operators Q and P :

Then, property (4.28) holds true for the Weyl-normal form ( 4.9 ), so thatthe Weyl symbol of any hermitian operator is real:

Finally, we shall need two important properties of the binary operation
(4. 22) corresponding to the Weyl-normal form (i. e. for X in (4. 22) coin-
ciding with X Weyl from (4.15), (4.16)) :

B Expansion of generating equations of the gauge algebra
in powers of the Planck constant.

Henceforward in this section we shall only refer to the Weyl symbols
characterized by eqs. (4.9), (4.16), (4.30), (4.31). Denote as S2 and ~f the
Weyl symbols of generating operators Q and ~f, respectively. In virtue
of the equations (1.1), (2.2), of the correspondences (4.13), (4.14) and also
of the properties (4.4), (4.30) ,we have the following equations for the
symbols

where the *-commutators are defined by eqs. (4.13), (4.14) with a= Weyl,
as well as by (4.16) together with (4.15). For more convenience, we reproduce
this definition here again in a more explicit form

where

We shall solve " equations (4.32), (4.33) using the expansion in powers
of (i fii) : 
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With the help of the formulas (4. 21), (4. 22), (4. 35) for expansions of *-com-
mutators, one obtains the following equations for the coefficient func-
tions Qn and 

where n = 1, ..., and the r.-h. sides are given as

The braces without subscripts {,} in eqs. (4 . 37)-(4 . 40) and eqs. (4 . 41), (4 . 42)
stand for the Poisson superbracket (4.24), while the braces with subscripts
{, }z denote the binary operation (4 . 22) with the operators A from (4 . 35).
In the r.-h. sides of equations (4.38), (4.40) the coefficient functions on
which eqs. (4.41), (4.42) in fact depend are indicated in the brackets.
The lowest equations (4.37), (4.39) are classical, whereas the higher

equations (4. 38), (4.40) determine quantum corrections in a recurrent way.
One sees that, e. g. the n-th equation (4. 38) contains the quantity Qn to
be fixed by it, only in its l.-h. side, while its r.-h. side (4.41) contains only
the preceding quantities Qm with m  n. The same situation occurs in

equations (4 . 40) for the quantities Here, however, the r.-h. sides
contain also all the quantities Qz with l  n found from (4.37), (4.38).
In virtue of the lowest equation (4. 37), every n-th equation out of the higher

Vol. 49, n° 2-1988.



180 I. A. BATALIN AND E. S. FRADKIN

equations (4.38) or (4.40) requires for its solvability that the necessary
compatibility conditions

be fulfilled as consequences of the preceding equations for 52m with m  n,
or ~m with m  n.

The set of equations (4.37)-(4.40) is equivalent to the first equations
in (4.32), (4.33). The second equations are the reality conditions for the
symbols Q and Jf. They give

The third and fourth conditions from (4.32), (4.33) are straightforwardly
extended to the coefficient functions

C The basic theorem.

Assume that we have at our disposal a regular solution Qo ? 0 of the
classical equations (4.37), (4.39), obeying the conditions (4.44), (4.45)
for n = 0, such that any regular solution of the equation 

.

can be represented, at least locally, as

where Y is also a regular function.
Then, we state that, at least locally, there exist and are regular all func-

tions &#x3E; 0 satisfying the equations (4.38), (4.40) and the condi-
tions (4. 44), (4. 45). Thereby, the quantities Q and ~f, that satisfy equations
(4 . 32), (4 . 33) exist as formal series (4. 36) in powers of the Planck constant ~
and hence, in virtue of the correspondence (4.12), there exist formal expan-
sions in powers of  for the operators Q and Jf, that satisfy equations (1.1),
(2 . 2).

The proof will be given following the induction method.

i ) For n = 0 and n = 1 the statement of the theorem is evident.
ii) Suppose, there exist functions n, n, n  N, for which the statement

of the theorem holds true (the induction assumption).
iii) Let us prove then that there exist functions ~+1, for which

the statement of the theorem also holds true.

Consider first equations (4.38) for the functions On.
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Let us form the partial sum

of the functions fin with n  ~ whose existence is provided by the induc-
tion assumption. Then

Since the induction assumption implies that the function ~

satisfy equations (4 . 38), every term of the the r.-h. side of (4 . 49)
disappears for each n.

Let us employ now the identities valid for symbols

By setting A = 5~~~’’’~~ one obtains from (4.49), (4.50) in the (% + l)-th
order in (i ~) that _, ~ _.

as a consequence of equations (4.38) for n  N.
Further on, in accord with the induction assumption, the functions fin

with n  JV are regular and satisfy the conditions

Then, it follows from the explicit formulas (4.41) that the functions An
with n  N + 1 are also regular and possess the properties

Then, in virtue of (4 . 53) and of the implication (4 . 46) ==&#x3E; (4 . 47) the general
regular solution of equation (4. 51) with respect to has the form

where is a regular function.
It remains to prove that the function can be subjected to the

condition (4.44) for n = .AI" + 1. In accord with the induction assumption
the function 03A9n, with n  N satisfies eq. (4.44). Then it follows from (4. 31),
(4.41) that 

--
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From (4. 54) and (4. 56) for n = % + 1 we conclude that

The homogeneity of equation (4.57) shows that the new function

obeying the condition

obeys also equations (4. 54), (4. 55) with all the functions % being
same, including the same 

The key point here is the circumstance that the transformation (4.58)
only alters the subsequent functions with n &#x3E; J~), and not the pre-
ceding ones with n  N : this fact guarantees that for any classical
function Qo chosen in accord with the theorem premise we are always
able to step-by-step guarantee the existence of all functions J~,
Q~+ 1 , ... , for which the statement of the theorem would hold true. The
quintessence of these considerations is that we can without loss of gene-
rality, in the sense just mentioned, to merely subject the function 
to condition (4.44) with n + 1

Thus, as far as equations (4. 38) are concerned the proof of the theorem
is completed.

Consider now equations (4.40). Here our treatment is quite close to
the above. We, hence, describe it in less details, at least in some points.

Let all the functions S2n, n &#x3E; 0 have been found. Let us make up the

partial sum

of the functions whose existence is provided by the induction
assumption concerning the equation (4.40). Then we have
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Since, in accord with the induction assumption, the functions ~, ~ ~ J~
satisfy equations (4.40), each term in the summand in (4.40) vanishes.

Using, further, (4.46), with % replaced by % + 1 and taking into
account the fact that all the functions fin satisfy equations (4.37), (4.38),
we have

From (4.64), (4.65) we obtain in the + l)-th order in (i~)

as a consequence of equations (4.40) for n  N.

By the induction assumption, the functions are regular
and obey the conditions

On the other hand, all functions S2n with n &#x3E; 0 have been already proved
to be regular and satisfy conditions (4.45). Then it follows from the explicit
formulas (4.42) that the functions K~ ~ ~ ~ + 1, are also regular and

possess the properties 
j

Then, in virtue of (4 . 68) and of the implication (4 . 46) =&#x3E; (4. 47) the general
regular solution of equation (4 . 66) for has the form

where is a regular function. N

The induction assumption implies further that the functions ~n with

satisfy conditions (4.44), whereas all the functions S2n satisfy
these conditions in accord with what has been proved. Then it follows

from the explicit formulas (4.42), owing to the property (4.31), that the
functions Kn with ~ ~ ~ + 1 possess the property

From (4.69), (4.71) with n = % + 1 we conclude that
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Following the same arguments that have lead us to (4.62), it may be

concluded from (4 . 72) that the function ~~,.+ 1 can be subjected to the
condition

Thus, in what concerns equations (4.40), the theorem has been completely
proved, as well.

D Some further consequences.

Note, first of all, that all conditions of the theorem proved above are
certainly fulfilled for any gauge system with a finite number of degrees
of freedom and with constraints of finite stage of reducibility in every
neighbourhood of initial data, where admissible gauges exist. This assertion
includes a number of statements of pure classical nature, whose proof
is to be performed using the method of ref. [7~ ], adjusted to the Hamiltonian
formalism. We shall not prove here all these statements, but confine ourselves
to a brief explanation concerning the implication (4.46) ~ (4.47) that
took a crucial part in the proof of the basic theorem.
The key point here is the property of Abelian factorizability, which is

a possible version of the known general property of the local Abelizability
of a gauge algebra.

Let the index « ~c » label all independent constraints in the theory,
contained among the full set of constraints, both initial, and those arising
at every stage of reduction for the ghosts of the previous stage (in the irre-
ducible case all is exhausted by the initial constraints, that are then inde-
pendent). Let ~  and ( - be the distributions of statistics and of ghost
numbers of independent constraints, respectively (in the irreducible case
the ghost number of every irreducible constraints is zero). The Abelian
factorization is expressed by the following representation for

where the functions 0~ are all independent and canonically conjugated
to independent functions 
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So that a local vicinity inside the phase space { r } allows the regular cano-
nical reparametrization

with { phys} taken as the phase subspace of physical degrees of freedom.
Representation (4.74)-(4.76) makes the fulfilment of the classical equa-

tion (4. 37) and of the first and second conditions out of (4.45) evident for
n = 0. The validity of the first condition in (4. 44) with n = 0 is guaranteed
by the fact that one can subject the functions (E, ê) to the conditions

The nontrivial aspect of the Abelian factorization is that the representa-
tion (4.74) satisfies also boundary conditions that correspond to any
gauge system belonging to the class considered.

Let, now, the following equation be given

The reparametrization (4.81), when taken together with eq. (4.74) puts
equation (4.85) to the following standard form

where we have denoted

In what concerns the standard equation (4.86) with the independent
variables J and Z possessing opposite statistics, a Lemma was proved in
ref. [15 ], that states that any regular solution allows the representation

where s = 1, ....
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To avoid a possible misunderstanding, we should emphasize that we
have pointed the overall dependence of solutions of equation (4.86) on
the variables J, Z in (4.90). Referring to the reparametrized (in the sense
of (4. 81)) form (4.88) of writing we note that the components of (4. 87)
enter in through aux defined by (4. 82). As for the dependence on fphys
in (4. 89), (4.90), the latter is meant, but not shown explicitly for the sake
of brevity.
Coming back to the r-parametrization in (4. 89), we obtain the following

representation for the solution of equation (4.85)

where we have denoted

The first term in the r.-h. side of the expansion (4.91) given by eq. (4.92)
is called a singlet component of the classical observable X subject to equa-
tion (4.85), while the second one is referred to as a doublet component.
From (4.92) we conclude that

So that the implication (4.46) ~ (4.47) follows immediately from (4.91),
(4 . 94). If, however, gh (X) = 0 the representation (4 . 91 )-(4 . 93) provides
an essential additional information.
Once the implication (4.46) ~ (4.47) is established we can derive the

principal consequence of the theorem proved above. This is : to any finite-
dimensional gauge system given classically by a solution S2o, 0 of equa-
tions (4. 37), (4. 39) supplemented by corresponding initial data, one really
can put into correspondence formal expressions for the operators Q, ~f,
satisfying the generating equations ( 1.1 ), ( 1. 2). 

-

Clearly enough, this correspondence is far from being one-to-one. Let,
indeed, ’n and "n simultaneously satisfy equations (4. 38), (4.40)
for some n &#x3E; 0. Then

Hence we derive, referring to (4 . 91 ), (4 . 94), the second consequence
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where eqs. (4.97) provide the fulfilment of (4.44), (4.45) for the given n.
The arbitrariness (4.96) any affects the higher functions Qm, ~m with
m &#x3E; n.

Consider, finally, quasiclassical expansion of the Weyl symbol at the
total unitarizing Hamiltonian (2.1)

where ~f and S2 are represented by the series (4 . 36), the *-commutator’
is defined in (4. 34), (4. 35), and q is the Weyl symbol of the gauge fermion
operator

By writing the expansions

where

and employing expansion (4 . 2) for the *-commutator, one obtains for Hn :

From this we have, for instance

Let us also display the equations for the functions n, n, n = 1, 2 in a
more explicit form
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Solution for 1 has the form

After substituting this into (4.108) and taking (4. 39) into account we find

from where the solution for ~1 follows to be

With the help of the symbols (4.98) of the total Hamiltonian one can
represent the Weyl symbol of the evolution operator (2.14) as a path
integral in the phase space (4.3)

Here the external phase argument is denoted as ro, while the virtual phase
trajectory is called f~). The integration includes all the trajectories subject
to the condition 

’

The matrix in the « action » in (4.113) is inverse to the Poisson bracket
matrix of the variables (4.3).

Condition (4.114) can be explicitly satisfied provided that one sets

and takes specifically the phase space velocities

for the functional integration variables. Then

The first equality here defines the volume element in the phase spacevelocities while the second one fixes the step function 8(t - t’), discontinuous
for equal times, in a fashion coordinated with the symmetrical character
of the Weyl-normal form. This additional fixation is necessary for makingthe formal calculation of the functional integral (4.113) based on the sta-
tionary phase method single-valued.
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Using the expansion (4.102), one can write eq. (4.113) in the following
instructive form

The exponent in (4.118) contains the explicitly displayed classical
action that only includes the classical Hamiltonian (4.103). It is this action
that determines the extremum serving the calculations within the stationary
phase method. The admissibility conditions when imposed on the gauge
fermion ’O make the classical action nondegenerate. In (4.118) the quantum
terms of the expansion (4.102) are gathered into the integration measure
(4.119). It is of interest to study in detail the lowest term in the exponential
in (4.119) that includes Hi (4.104). This term is specialized by the fact
that its contribution into (4.119) is of the zeroth order in and hence,
in the course of calculations following the stationary phase method its
extremum solution remains in the exponent. With the use of solutions
(4.110) (4.112) eq. (4.104) can be written as

The meaning of the individual terms in the r.-h. side of (4.120) is quite
transparent. The first term is (up to 0((~)~)) the result of a canonical trans-
formation applied to Ho. The second term is the physical contribution
itself, while the third one is of pure gauge origin and can be removed by
the following choice of q 1 :

At this point we finish our study of the solvability problem for the gene-
rating equations of the gauge operator algebra, which is the quantization
problem for gauge systems. To conclude this section the following two
remarks are in order.

First, to use specifically Weyl symbols was in our analysis technically
convenient, but by no means necessary. It was already mentioned, though,
that with the number of degrees of freedom finite, all the types of normal
orderings are quite equivalent and any priority in their choice should be
only a matter of technical convenience. In the limit of infinite number of
degree of freedom, as it was also pointed above the Wick symbol is most
stable, which fact distinguishes it in reality. Certainly, wemight well exploit
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the Wick symbols in our analysis, instead of the Weyl ones. Unfortunately,
this does not imply any possibility of the direct extension of our results
to the situation with infinite number of degrees of freedom. The unitary
nonequivalent representations of the commutation relations present in the
latter case may give rise to new restrictions that must be fulfilled for the
basic implication (4.46) =&#x3E; (4.47) to remain valid. An example of these
restrictions is provided by the necessity of critical dimension in string
theories.

Second, the requirement that symbols of the generating operators
should allow to be expanded in powers of  is a source of an essential
limitation in our analysis. The correspondence principle cannot rule out
nonanalytical solutions of the generating equations at the point ? = 0.
The study of such situation would require different methods and lies

beyond the scope of the present considerations.

5. RETURN TO OPERATORS.
DYNAMICAL SUPERALGEBRA OF GAUGE SYSTEMS

Let us turn again to our basic operator equations. Let us gather together
the generating equations (1.1), (2.2) and equations (3.83), (3.85) for the
hermitian fermion Q and bosons rg, ~ :

These equations may be thought of as defining the universal dynamical
superalgebra of gauge systems.

Let 9t be a unitary boson operator with its ghost number zero

and let 91 be an antihermitian fermion operator with the ghost number
equal to ( - 1 ) :

Then a natural automorphism of the superalgebra (5.1)-(5.4) is given as

Denoting the total unitarizing Hamiltonian (2.1), depending on the gauge
fermion 03A8 as
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we see that it transforms under (5.7), (5.8) as

In the classical domain (~ = 0) a classical analog of the superalgebra
(5 .1)-(5 . 4) occurs in terms of the Poisson superbrackets. As for this classical
dynamical super algebra it was pointed above that it can be locally Abelized
by means of the classical analog of the automorphism (5.7), (5.8). This
possibility is expressed by the classical factorization (4.74) and, as its

consequence, by eq. (4.91), presenting the structure of a classical quantity
that is physical in the sense of equation (4. 85). Our goal now is to establish
operator counterparts of these facts in quantum domain.
The basic Abelizability property of the operator super algebra (5.1)-(5.4)

is expected to be as follows : there exists a unitary operator 9t involved
in (5 . 5), such that the relation holds true

where ~A are hermitian operators of Abelian constraints, and GA are
ghost coordinates operators from (3.1)-(3.3).

In case of irreducibility, the Abelian constraints ~A do not depend on
the ghost operators (3 .1) and, hence, are functions of the original operator-
valued dynamical variables alone, whose ghost numbers are zero by defi-
nition. In case of reducibility the Abelian constraints ~A can contain,
apart from dependence on the original operator-valued dynamical variables,
only linear dependence on the ghost momenta operators GA from (3.1),
but not on the ghost coordinates operators. Thus, for every value of sub-
script « A » the following relations are true for the general Abelian constraint

We are going now to perform expansion in powers of  in the equation
for Abelization (5.11), like what we did in the preceding section when we
dealt with the generating equations (1.1), (2.2). There is, however, a subtle
point here. The matter is that the operator U in (5.11) is, clearly, essentially
nonanalytic in the point ~ = 0. It cannot therefore be expanded in powers
of ~, whereas the I.-h. side of equation (5.11), as a whole, can. To avoid
this difficulty we shall use the exponential Ansatz for the unitary operator 9t
(the Planck constant ~ will be kept explicitly up to eq. (5.29))

where 6 is a hermitian boson operator with zero ghost number. We claim
that if the Abelization equation (5.11) is written for symbols, then pertur-
bation theory in powers of  exists for the symbol of the generator S.

Vol. 49, n° 2-1988.



192 I. A. BATALIN AND E. S. FRADKIN

To make this evident, let us introduce a numerical parameter a into (5.14),
so that the operator family

appear. Define the a-dependent operator

where Q is the generating operator from the I.-h. side of eq. (5.11). After
differentiating the definition (5.17) with respect to a and taking eq. (5.16)
into account we find that the Abelization equation (5 .11 ) can be equiva-
lently presented as the set of equations

After changing here to the Weyl symbols according to (4. 5), (4. 9) we have

where the *-commutator is most explicitly defined by (4.34), (4.35).
By using the expansions

together with the first expansion in (4. 36) and also eq. (4.21) for the expan-
sion of the *-commutator we obtain from (5.20), (5.21) the following
equations for the coefficient functions
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Here 60 is an operator defined for any A by

the functions Qn are coefficient functions for the first expansion (4.36);
the r.-h. side of the second equality in (5 . 26) can be more explicitly written as

where ~nA are coefficient functions in the expansion in powers of of
the Weyl symbols of Abelian constraints

In virtue of the second equations in (5.12) and (5.13), we have for the
symbols (5.29)

while the first equation in (5.13) implies that the symbol ~A does not

depend on GA for any value of the subscript. From (5 . 29), (5 . 30) we have

By solving (5.24)-(5.26) as linear differential equations for we

find the following equations for the coefficient functions C~n of the second
one of the expansions (5.22) serving the symbol 6 of the generator S
from (5 .14), (5 .11) :

Equations (5.31)-(5.36) should be solved according to the following
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scheme. Once the classical gauge system is Abelizable, we have at our
disposal the Abelian classical constraints ~oA

so that in fact we know the classical function

as well as the classical generators 60 from (5.27), (5.33). Then, equations
(5.31), (5.32) should determine the coefficient functions in the expansion
(5.29) of the symbols of Abelian constraints for n &#x3E; 0, while equa-
tions (5.34)-(5.36) should determine those in the second expansion in
(5.22) of the symbol of the generator for n &#x3E; 0.

Clearly, solvability of equations (5. 31)-(5. 36) is not evident beforehand,
so that the existence problem is actual for them. Nonetheless, one can
prove that, given classical Abelian constraints subject to (5.37) and a
classical generator from (5.33) there exist all coefficient functions in the
(second of) expansions (5.22) and (5.29) possessing the needed special
properties :

and satisfying equations (5. 31)-(5. 36). The proof of this fact by induction,
although technically more complicated than that of the basic existence
theorem given above is very close to it in its structure. We shall not there-
fore display here the corresponding considerations.

Let, now, the symbols 6 and ~ of the generator and the Abelian cons-
traints, respectively, be at our disposal, as well as the operators 21 and
:!A from (5.11), (5.12). Let us then write the Abelization equation for ope-
rators (5.11) in a more explicit form 

’

It can be shown that operators of the reducible Abelian constraints ~A
allow separation of independent Abelian constraints T. .

Here the filtering operators PA and P: do not depend on the ghost
operators in (3.1), and obey the conditions
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where E,~ and EA are defined in (5.44) and (3.1), respectively. Then we have
from (5.42)

and

The independent commuting operators O"~ allow an introduction of
the canonically coniueate operators S == 

Representation (5.48) is nothing but the operator analog of the classical
Abelian factorization (4.74).

In case of irreducibility, i. e. when the Abelian constraints (5.43) are
independent and do not contain ghost operators, every linguistic diffe-
rence between the subscripts « ,u » and « A » in the r.-h. side of (5.43) dis-
appears, since now they have the same nature and dimensionality. One may
set

Similarly to (4.81), (4.82), the operatorial Abelian factorization defines
in a natural way the canonical reparametrization for the complete set { r }
of canonical pairs of operator-valued dynamical variables that make the
extended phase space of the system

Here rphYs is the set of canonical operator pairs corresponding to physical
degrees of freedom. The canonicity of the reparametrization (5 . 60) implies,
in particular, that

Let us now consider the operator equation of the form
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carry out the reparametrization (5.60) in it

and pass to the Weyl symbols relative to the new operators

Here the sign of substitution 10 indicates that the zero values of the classical
variables phys and raux are to be taken.

Using the Abelian factorization (5 . 48), we obtain from (5 . 63) the following
equation for symbols

The terms free of derivatives, as well as the ones containing the second
derivatives, all cancel, and we are left with

We are facing again the standard equation (4.86)-(4.88) whose solution
allows the standard representation (4.89), (4.90). Basing on it, we draw
immediately the conclusion that the general solution of equation (5.63)
can be written as

where

Here ~’ in the r.-h. side of (5.69) is a solution of equation (5.67), while
in the r.-h. side of (5 . 70) is related to  from (5 . 67) through the standard

formula (4.90) with the notations (4.87) used for the variables involved
in (5.67).

In full similarity with the classical expansion (4.91), the first term in
the r.-h. side of expansion (5. 68), defined by eq. (5. 69), is called the singlet
component of the operator-valued observable X from equation (5.63),
whereas the second term of the r.-h. side of (5.68) is called the doublet
component. Consider the basic properties of singlet operators (5.69).
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First, the same as in the classical case there holds

so that there is an operator analog of the classical implication
(4. 46) =&#x3E; (4 . 47), i. e. each regular solution of the equation

can be presented in the form

Second, it appear that for any operators X subject to (5 . 63), the restriction

is associative relative to the multiplication, in full analogy with the classical
situation.

Indeed, let X’ and X" be two operators subjected to (5 . 63). Then, according
to (5.68), we have

By multiplying these equalities we get

On the other hand, by applying the expansion (5.68) directly to the pro-
duct X’X" we find

The subtraction of (5.76) from (5.77) results in the equation

whence

as well as

Equations like (5 . 78) are worth being now considered from a somewhat
more general point of view. Let us consider, instead of (5 . 63), the equation
of the form that look, at first glance, more general

Here the r.-h. side F is an operator that does not depend on the operators
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raux from (5.61) after reparametrization. Going over to the Weyl symbols
for the operators (5.61) we have

where the notations (4. 87) are used for the variables corresponding to the
operators raux involved in (5.61), while is defined as (5.64), (5.65).

Following [7J], let us apply to (5 . 82) the Fourier-transformed operator

The zero in the r.-h. side is just due to the fact that the r.-h. side of (5 . 82)
w

does not depend on the variables Equation (5.84) has exactly the
same form as it would have if F in the r.-h. side of equation (5 . 81 ) were
zero, so that the latter coincided with (5.63).
The method of ref. [7~ ], when applied to equation (5.84), leads directly

to representation (4.89), (4.90) for the regular solution of this equation.
Hence we have ome to representation (5 . 68) for solution of equation (5.81).
Then, it is obvious, however, that

Thus, if the r.-h. side F of equation (5 . 81) does not depend on the operators
involved in (5.61), a regular solution to equation (5.81) only exists

provided that (5.85) is satisfied. In this case it coincides with the solu-
tion (5.68) of the homogeneous equation (5.63). This result has a clear
physical sense: by its nature, the doublet component (the I.-h. side of (5 . 81))
cannot reproduce the « extracted » contribution of physical degrees of
freedom alone for any regular X.

If, now, we come back to equation (5.78) it will be completely clear
that its consequence (5. 79) is nothing but a particular case of (5. 85) while
(5.80) is an equation of the form (5.63).

Representation (5 . 68) for the solution of equation (5.63) is the main
result of the study performed in this section. We have established the general
structure of any physical (in the sense of the definition (2.6)) operator

Let us apply this result to the two principal physical operators involved
in our theory, i. e. to the unitarizing Hamiltonian (2.1) and the corres-
ponding evolution operator (2.14).
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First of all, in accord with (5.86) we have the following representation
for the operator Jf in (2.2)

Then the hermiticity of J~ implies

This in an equation of the form of (5.81). Due to the implication
(5.81) =&#x3E; (5.85) we get from (5.88)

Then we find for the unitarizing Hamiltonian (2.1)

so that in the class of gauges

we obtain

Let us turn now to the evolution operator (2.14) corresponding to the
unitarizing Hamiltonian (2.1). In this case we also have

The multiplication of these equalities, and the use of the unitarity pro-
perty (2.15) leads to

These are again equations of the form of (5 . 81). Hence we obtain from them

Equation (5.96) shows that the extracted singlet component of Ephys
is also a unitary operator.
To conclude this section we shall study the consequences of the Abelian

factorization (5.48) regarding physical states.
The use of (5.84) in the definition (1.3) implies that

From this we readily conclude that
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so that the physical matrix elements of operators ~% ~, vanish :

Now we shall obtain the analog of expansion (5. 86) for physical states.
For this to be possible it is important that the set of operators as well
as the set O~‘ be divisible in a symmetric way in two sets of equal dimen-
sionality with the same distributions of statistics and ghost number.

This division puts operator Q to the form

Let us also make the explicit division of the set of operators rphys from
(5.60) into pairs of canonically conjugated momenta PphYs and coordi-
nates Qphys

Consider the realization of the operator (5.102) in the representation
where the operators

are diagonal and have the eigenvalues

In this representation operators g-’ and e" can be realized in the form

Denoting the components of the vector ~ ~ ~ in the basis of the representa-
tion (5.104)-(5.107) by

we can write equation (5.98) with the operator (5.102) 

which only differs from equation (5.67) considered above in the dimen-
sionality of the variables involved.
Using the notations
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in equation (5.109), we come again to the standard equation (4. 86), whence
we conclude, with the help of (4.89) that

where the notation

is used, and the function ’1.’ is given by the representation (4.90) in the
variables (5.110) and with the components (5.108) for i’(J,Z).

Eq. (5.111) gives the needed expansion that serves for the physical
state as an analog of the operatorial expansion (5.86). Restriction (5.112)
defines the singlet component of the state, while the second term in (5. Ill)
gives the doublet one.

Expansions (5 . 86), (5.111) show that the contribution from nonphysical
degrees of freedom raux can be completely included into the corresponding
doublet components - i [Q, B ] in the case of physical operators from (2 . 6),
and into Q~ in the case of physical states from (1. 3), while the corresponding
singlet components and 03A6phys only contain the extracted contribution
of physical degrees of freedom .

One should, however, take some care, when expansions like (5.86),
(5.111) are used for finding explicitly the norms of physical states or

physical matrix elements of physical operators. A sharp « switch
off » of nonphysical degrees of freedom, that separates pure singlet
components in expansions (5.86), (5.111) can, generally, lead to uncer-
tainties in expressions for the norm or the matrix elements. To avoid this,
one should be using the « contraction » formulas (4.89), (4.90) in the
form to be obtained by the replacement

made in the r.-h. sides of (4. 89), (4 . 90 b), supplemented by the substitution
of ao in place of the zero in the lower integration limit over oc in (4 . 90 a).
In the final expressions for the norm and the matrix elements, and no sooner,
one should go to the limit 03B10 ~ 0.

6. QUANTUM DEFORMATION
IN THE INVOLUTION RELATIONS

In this section we shall study in more detail the phenomenon of quantum
deformation of structural relations, already outlined in Section 3. We
confine ourselves to the practically most interesting case of irreducible
rank-1 theories and shall as a matter of fact only analyse the involution
relations for constraints and the Hamiltonian. The same as in Section 3
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we consider here both the canonical and Wick realizations of the ghost
sector. Here, however, we refrain from explicitly using the standartized
way of writing accepted in Section 3 for expansions of the generating
operators Q and ~f in powers of ghosts but use, instead, more conventional
normalizations for writing these expansions. It goes without saying that,
nevertheless, the same basic types of normal orderings for ghost operators
will be covered, as those dealt with in Section 3.

A. Canonical ghost sector.

Let us start with consideration of the canonical ghost sector (3.1)-(3.3)
in the case of irreducibility, when

Consider also the notation

where ~A in the r.-h. side in the Grassmanian parity of ghosts from (3.1).

Al. GG-normal form

In this normal form we have the following expression for generating
operators in the irreducible rank-1 theory

Equations (1.1), (2 . 2) give rise in the G2-order to the following involution
relations for operator-valued constraints TA and the Hamiltonian Ho

These equations differ from their classical counterpart to a small extent.
The operatorial character of the involution (6 . 5), (6 . 6) shows itself formally
in two points. The first is that, instead of the Poisson superbracket, the
supercommutator enters in the I.-h. sides and the second, that the order
of multipliers in the r.-h. sides is fixed so that the operator-valued constraints
are located to the left of the structural operators U and V.

Relations (6.5), (6.6) are apparently linear in the structural operators.
The terms of quantum deformation are absent from here.
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A2. Weyl-normal form.
In this normal form the generating £ operators are ’ written as

To avoid a misunderstanding we should note that although the

constraints, the Hamiltonian and the structural operators are designated
in (6. 7), (6. 8) in the same way as in (6. 3), (6.4), they are certainly different
operators now.

Equations (1.1), (1.2) give rise in the G2-approximation to the following
involution relations for the operators involved in (6. 7)

Contrary to (6.5), (6.6), symmetrized products of the operator-valued
constraints and structural operators are present in the r.-h. sides of (6.10).
Besides, the r.-h. sides of (6.9), (6.10) contain terms quadratic with respect
to structural operators (these are [U,U] ] in (6 . 9) and [V,U] ] in (6.10)).
It is these terms that correspond to the quantum deformation of the Weyl
involution.

B Wick ghost sector.

Let now the ghost sector be realized according to (3.40)-(3.43) together
with the sector of null modes satisfying (3 .1)-(3. 3) for A = ao.
In case of rank-1 irreducible theories one has

where the collective notations are referred to

as well as
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and ~a and ~aO are the Grassmann parities, respectively, from (3 . 41) and (3 .1)

B1. Wick-normal form.
In this normal form we have the following expressions for the generating

operators

These expressions contain both Wick ghost pairs and canonical pairs
of ghost null modes in a unique way. In writing (6.15), (6.14) it was assumed
that the components of the structural operators in the ao-sector of null
modes obey the relations that provided the Weyl-normal form for the
corresponding canonical pairs 

Since the Weyl-normal form in the canonical ghost basis has been
already considered above, we do not display here the explicit form of the
complete set of involution relations that follow from (1.1), (2.2), (6.14),
(6.15) in every ghost sector, but confine ourselves, instead, to consideration
of the only case when the null mode sector is absent. Then only the pure
Wick sector is left, with the following involution relations

All the terms quadratic in the structural operators correspond here to
the quantum deformation of the Wick involution.

B2. Central extension of the Virasoro algebra
vieyved upon as quantum deformation effect.

A particular example of a gauge system with rank-1 - irreducible
gauge algebra is given by the bosonic string. The quantum gauge algebra
of this system is the central-extended virasoro algebra. The central exten-
sion of this algebra arises naturally as a consequence of the quantum defor-
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mation described by the third term in the r.-h. side of the involution rela-
tion (6.17). The explicit expression for the generating operator (6.14) for
the case of the Virasoro algebra was obtained in ref. [16 ]. We shall not
reproduce it here, but consider directly the involution relation that is in
this case an analog to relation (6.17) distinguished by the presence of the
null mode

here

are generators of the operator Virasoro algebra, and

are structural coefficients that are in this case c-numbers. In (6.21) the
fixation

is meant.
The third term in the r.-h. side of (6 .19) is an obvious analog of the similar

term in (6.17), while the counterpart of the fourth term in the r.-h. side
of (6.17) in the case of the Virasoro algebra is absent, since every Un
vanishes in this case.

Using (6.21), (6.22) one readily finds .

Here the first term in the r.-h. side exactly corresponds to the correct central
extension of the Virasoro algebra in the critical dimension a = 26, while
the second term can be removed from (6.19) by the change in the definition of

It is remarkable that the correct central extension (6.23) is obtained

without exploiting any regularization, in a purely formal way. As for the
contribution of infinite p, q into the summation in (6.26), it is eliminated
by the 8-function present in the expression (6.21) for the structural coeffi-
cients. A similar mechanism leads to correct central extensions of algebra
for every type of strings known.

CONCLUSION

Here we point out two problems that need further study.
The first is to formulate closed operatorial postulates concerning the
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initial constraints and the Hamiltonian, that would guarantee directly
the existence of solutions for the generating equations of the operator
gauge algebra, with the needed properties in the classical limit. In the present
paper we built the solution of generating equations step by step, in powers
of the Planck constant, starting straight from the classical level. The non-
closed character of this construction is evident : all the structural operators,
including the operator-valued initial constraints and the Hamiltonian

operator, are built in an iterative way, whereas a correctly posed closed
postulate should be an exact assertion concerning the original operators
of the theory.
The second problem, though not independent of the first one, is the need

of a general and technically efficient description for the structure of solution
of an equation for physical states.

Annales de Henri Poincare - Physique ’ theorique ’



207OPERATORIAL QUANTIZATION OF DYNAMICAL SYSTEMS SUBJECT TO CONSTRAINTS

APPENDIX 1

FORMAL OPERATORIAL QUANTIZATION
OF ANTISYMMETRIC SECOND-RANK TENSOR FIELD

IN INTERACTION

Classically this system is given in terms of Lagrange variables A(x) and B~y(x) = 2014 
by the action (*)

or by an equivalent Hamilton action

where Aa and Ba are canonical momenta and coordinates, respectively,

Dab - + and Bai are Lagrange multipliers to first-class constraints.
Action (A. 3) generates a Hamiltonian gauge algebra of the first stage of reducibility.

Following ref. [4 ], we shall construct a formal operator expression for the complete uni-
tarizing Hamiltonian that corresponds to (A. 3). To this end consider the following set
of operator-valued canonical momenta PM and coordinates QM of the extended phase
space (4.1) in the case of first stage reducibility ,

with the following distribution of statistics

and the ghost number

The only nonzero equal-time supercommutators for the operators (A. 4) and (A. 5) evi-
dently are those of the type of (4.2).

In terms of the complete canonical set (A. 4), (A. 5) we have the following expressions
for the fermion and boson generating operators of the gauge algebra :

(*) Throughout this Appendix the Greek subscripts ,u, v, p, 7 refer to the 4-dimensional
Minkowski space, the Roman subscripts i, j, k refer to its 3-dimensional subspace, while
the Roman superscripts a, b, c are the internal indices labelling the adjoint representation
of the semisimple compact group whose structural constants are 
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where the designation is used

The complete unitarizing Hamiltonian of the theory has the general form (2.1):

where the operators D and Jf are given, respectively, by (A. 8) and (A. 9), (A. 10), whilethe operator-valued gauge fermion 03A8 has the general structure

Here xoi, xi, xfa, xfa are the gauges for Ba, Coi, Coi, respectively. The simplest is the
choice of covariant nonsingular linear gauges

The unitarizing Hamiltonian given by eqs. (A. 8-16) leads, as far as a formal functional
integral is concerned, to the following covariant effective action in the configuration space

The time components Ba0i, Coo, Coo of the relativistic fields B:,, Ca0  are identified as:
Boi = Coo = ~i~ Coo = Cia. We have designated, besides, C1 = The time compo-nent Ao of the field A~ is the integration variable serving the Gaussian parametrization,
which reproduces the second-class constraint Ao = - Da, see (A. 9), (A 10). ~
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APPENDIX 2

PHYSICAL UNITARITY
WITHIN THE FUNCTIONAL INTEGRAL FORMALISM

IN THE THEORIES
WITH DEPENDENT FIRST-CLASS CONSTRAINTS

As it has been said in Section 2 above the proof of physical unitarity for general gauge
systems was as a matter of fact given within the operatorial approach in refs. [13 ], [14 ].
Besides, it was shown in Section 5 of the present paper, independently of the result of
ref. [13 ], [14 ], that the extracted singlet component of the evolution operator is itself a
unitary operators. These results hold true both for the systems with independent first-class
constraints and for a more general case when the constraints may be linearly dependent.
Therefore, these general results make already a basis for the assertion that e. g. in the model
of interacting antisymmetric tensor field, studied briefly in the preceding Appendix, the
quartet mechanism of Kugo and Ojima is indeed realized and the physical unitarity holds
true. -

On the other hand it is not at present conventional, as a rule, to handle gauge field theories
directly in the operator formalism; instead, the Hamiltonian functional integral, heuristically
constructed at the formal level, is used as a basis for the quantization procedure. Within
this approach, the formal reduction of the Hamiltonian path integral to the phase space
of independent physical degrees of freedom is referred to as a « proof » of the physical
unitarity. Just to illustrate the matter, we shall trace here this procedure for the case of
linearly dependent first-class constraints, confining ourselves for simplicity to theories of
first-stage reducibility (i. e. to the ones where the null-vectors of the original first-class
constraints are linearly independent) without second-class constraints. We start by remem-
bering, once again, the general algorithm for the formal construction of the Hamiltonian
path integral in the extended phase space for such theories.

At the classical level the theory is fixed in the original phase space of canonical variables

by the Hamiltonian Ho(p, q) and the first-class constraints

that possess, generally, the linearly-independent null-vectors

that is

the genuine number of independent physical degrees of freedom on the constraint hyper-
surface To = 0 being

The extended phase space of the system
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is spanned by the complete set of canonical momenta

and coordinates

with the following distribution of statistics

and the ghost number

The unitarizing Hamiltonian of the system is written as

Here the functions Q and  are a solution of our standard equations

with the special structure

The functions 03A9min and Jf min are a solution of the same equations (A. 29), (A. 30), but only
depend on the variables of the so-called minimum sector

Besides, these functions satisfy the conditions

where /0 denotes the substitution of zero values for all the variables from (A. 34) that have
their ghost number nonzero.
The function 03A8 in (A. 28), obeying the conditions

is written as

where xo, x 1, xf are gauges imposed on Co, ~.o ~ Co respectively :
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These conditions of gauge admissibility must be fulfilled on the hypersurface of the complete
set of constraints and unitary gauges (see below).
The formal expression for the transition amplitude (the S-matrix) is given as the following

Hamiltonian functional integral over paths in the extended phase space

where the unitarizing Hamiltonian H is given by eq. (A. 28).
Our next goal is to reduce the path integral (A. 41) to the phase space of independent

physical degrees of freedom. This object will be, in fact, attained provided that we reduce
eq. (A. 41) to the standard form, corresponding to independent constraints and unitary
gauges, since the latter form is already known to be equivalent to canonical quantization
of physical degrees of freedom alone.

Note, first of all, that eq. (A. 41) does not depend on the gauge fermion 03A8 involved in
the r.-h. side of eq. (A. 28). To see this, let us make the following transformation in eq. (A. 41)

Then, denoting the r.-h. side of (A. 41) by we have in virtue of (A. 29), (A. 30) :

which means that the integral (A. 41) does not indeed depend and hence on the choice
of any gauge function in the r.-h. side of (A. 38).
We may use the fact of the gauge independence (i.e. ~-independence) of eq. (A. 41)

to introduce parameters so, Bb Bf into it by the following formal change of the gauge func-
tions in the r.-h. side of (A. 3 8) :

Owing to (A.45), expression (A.41) remains independent of the parameters Eo, E1, Ei after
the formal change (A. 46), (A. 47) is made.

Let us fulfil now the unimodular- transformation of the integration variables in (A. 41)

After the change (A. 46), (A. 47) and the transformation (A. 48-50) the limiting transition
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leads to the following form of eq. (A. 41), corresponding to unitary gauges

Here we restrict ourselves to the following class of gauges, which will be sufficient for our
purposes

This class is a minimum in the sense of fulfilling the conditions of gauge admissibility (A. 39),
(A.40). In this class of gauges functions xl(Co) and xi(Co) prove to be automatically linear,
due to (A.37). We choose functions to be also linear and, moreover, to obey the
conditions

The action in (A. 52) only contains kinetic terms for canonical variables of the original
phase space. All the other variables in (A. 52) are dynamically passive. In this sense, the
r.-h. side of (A. 52) corresponds to effective linearly dependent second-class constraints

7Co ). It remains to reduce eq. (A. 52) to the form which corresponds to linearly inde-
pendent constraints and gauges. In this way we shall come to the independent effective
second-class constraints.

Denoting the linear-independent constraints contained in the complete set of original
constraints (A .19) as

we have

In the same way, denote the linearly independent gauges contained in the complete set
of functions /~° as

They are subject to the property

Then we have

The natural arbitrariness contained in the definition of the functions allows one

to impose the conditions
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Let us introduce now the new integration variables in

with the property

Then we get

The expression in the r.-h. side of (A. 70) just corresponds to the case of linearly independent
constraints T" and unitary gauges XiX. Using the collective notations

for the 2(mo - ml) effective linearly independent second-class constraints, we can write
the path integral (A. 70) in a more conventional form

As for the latter expression, it is well known to allow an equivalent representation in the form

where (p*, q*) are 2n* = 2(n - (mo - mi)) canonical variables that correspond to n*
independent physical degrees of freedom on the hypersurface of constraints ~" = 0, while
H* designates the physical Hamiltonian

We summarize. Having started with the Hamiltonian functional integral (A . 41) over
paths in the extended phase space (A. 23-25), we came finally to the Hamiltonian integral
(A. 72) or (A. 73) over paths in the physical phase space as if the physical degrees of freedom
(p*, q*) governed by the physical Hamiltonian (A. 74) were alone subjected canonical
quantization. This situation is usually claimed to contain a proof, or at least a strong evidence
in favour of the physical unitarity. A more consistent treatment requires, certainly, an
appeal to the operator formalism, as it was clarified above.
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