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PREFACE

Ann. Inst. Henri Poincaré

Vol.49,~1,1988 Physique theorique

The aim of the present work is to study some interesting phenomena in
statistical physics connected with a continuous symmetry property of the
model. We restrict ourselves to a special example, because we are unable
to overcome the technical difficulties which arise in the study of more general
models. But we believe that analogous results hold in the general case, and
even the method of proof may be similar.

In this work we investigate the large-scale limit of the equilibrium state
of Dyson’s vector-valued hierarchical model at low temperatures. This
model has a Hamiltonian function invariant with respect to rotations. We
are going to show that this invariance (in the literature generally called
symmetry), has very deep consequences. In the language of probability
theory large-scale limit problems mean questions about multi-dimensional
limit theorems for appropriately normalized partial sums of random varia-
bles. In problems of statistical physics these random variables have a Gibbs
distribution which depends on the Hamiltonian function and a physical
parameter, the temperature. We are mainly interested in the dependence
of the large-scale limit on this parameter. In interesting models there is a
particular value of the parameter, the critical temperature, at which large-
scale limit has a non-typical, « critical» behaviour. In this case an unusual
normalization has to be applied, and the limit may be non-Gaussian. We are
going to show that our model, due to its continuous symmetry, has an even
more complex behaviour. It shows a behaviour similar to the critical one for
all low temperatures. We explain this in some more detail.

The Hamiltonian function of our model depends on a parameter c which
measures the strength of the interaction. It plays a role similar to that of
dimension in translation invariant models; it strongly influences the behaviour
of the model. At low temperatures a so-called spontaneous magnetization
occurs, and it is natural to .investigate the large-scale limit in the direction
of the magnetization and in the direction orthogonal to it, separately. In
our paper [5] ] we have investigated this problem in the case ~  c  2,
and now we consider the case 1  c  ~, which is essentially different
from the previous one. In the direction orthogonal to the magnetization an
unusual normalization has to be applied in both cases, and a Gaussian limit
is obtained, but the behaviour in the direction of the magnetization is different
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2 PREFACE

in the two cases. For ~  c  2, a classical normalization has to be applied,
and the limit is Gaussian, but for 1  c  ~ neither the normalization is
classical, nor the limit is Gaussian.

The large-scale limit o,f’ Dyson’s model can be described by solving two
analytical problems. Since they playa most important role in our investigation,
and similar problems may occur in other cases we are going to discuss them
in more detail.
The first problem arises when we want to determine the asymptotic distri-

bution of the average spin in a large volume with a Gibbs distribution in this
volume without boundary conditions. The second one appears in the investi-
gation of the Radon-Nikodym derivative of the limit Gibbs distribution
with respect to the Gibbs measure defined in the first problem. Both problems
lead to the investigation of products of certain integral operators, more
precisely they are equivalent to describing the asymptotic behaviour of this
product applied to a function which depends on the temperature. The solution
of these two problems enables us to construct the limit Gibbs state and then
to investigate its large-scale limit.

Since the investigation of these two problems require essentially different
arguments, we have divided our work to two parts. In Part I we solve the

problem connected with the behaviour of the average spin, in Part II we
consider the problem about the Radon-Nikodym derivative, and carry out
the limiting procedure leading to the description of the large-scale limit.

Finally, the proofs of some results are presented in an Appendix.
The unusual normalization in the direction orthogonal to the magnetiza-

tion is connected with the problem about the behaviour of the Radon-Niko-
.dym derivative discussed in Part II. The solution of this problem is

similar in cases 1  c  ~ and ~  c  2. The situation is quite different
with the analytical problem discussed in Part I. Here one has to find the
right scaling under which a sequence of real functions converges, and also
to describe the limit. A different scaling has to be applied in the cases 1  c  ~
and ~  c  2, and also the limit is different in these two cases. In this
problem one has to study the powers of a d-dimensional integral operator
whose one-dimensional version has been discussed for instance in [8 ]. 1 n
that paper it has been shown that the « critical» behaviour of our model at
a certain parameter value is closely connected with the following instability
property of this operator : the behaviour of the function obtained by applying
a large power of this operator to a starting function heavily depends on this
starting function. The unexpected phenomenon observed in Part I of our
work is also ’closely connected with this instability. In classical probability
theory the case is quite different. In that case, a large power of the convolution
operator (i. e. of the convolution of a , function with itself), which is the
natural counterpart of our operator in probability theory, turns all nice
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3PREFACE

functions to an almost Gaussian density function, according to the central
limit theorem. This difference is crucial, since the above mentioned instability
is not a peculiarity of our model, but it is quite common in statistical physics.
By our opinion, this is the most essential difference between problems in
classical probability theory and probabilistic problems in statistical physics.

After formulating the main results of Part I in Section l, we translate
the problem into an analytical problem in Section 2. The first important step
in its solution consists of finding the right scaling, under which our sequence
has a non-trivial limit. Then a problem of the following type arises. There
is a sequence of real functions defined with the help of a starting function
and a sequence of operators Qn acting on the space of real functions by
the recursive relation fn + 1 - Qnfn, n = 0,1, .... For large n the operator Qn
can be well approximated by an operator T, independent of n. We want

to prove that the sequence fn(x) has a limit. We say that such problems belong
to the theory of asymptotic renormalization group theory, since it differs
from problems of renormalization group theory by the dependence of the
operators Qn on n. Now we have to study a problem of the following type:
find the limit of the sequence f"(x) defined by the recursive relations
(*) fn + 1 - Tfn + Gn,
where- En is a small error term. Let us remark that problems of this type play
a most important role in several mathematical areas like dynamical systems,
KAM theory, etc. There is a standard way of attacking such problems, but
generally one has to overcome serious mathematical difficulties, connected
with the special character of the given problem, when carrying out this

program. First the solution of the fixed point equation f = T f has to be
found, and then the stability of this fixed point with respect to the operator T
has to be investigated, i. e. it has to be studied whether the sequence T"g tends
to the fixed point f for a general function g, and whether the convergence
is fast enough. If it is so then it is natural to expect that the sequence fn
converges to the fixed point f.

In Section 2 we find the solution of our fixed point equation f = T f and
show that it is sufficiently stable. This stability argument works only for
1  c  )2, and this is the reason why the results of Part I do not hold for
~  c  2 any longer. Let us remark that we could express the right speed
of convergence to the fixed point only in the space of the Fourier transforms,
hence we met some technical problems when exploiting this property in the
original space..
We must admit that at this introductory level we have made a simplification

in the formulation of the analytical problem. In order to guarantee the conver-
gence of our sequence of functions we had to shift the function fn(x) by an
appropriate constant Mn, which depends on n. The application of this shift
is needed to guarantee that the functions f"(x) do not move away to plus or
minus infinity. The stability of the fixed point with respect to the operator T
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4 PREFACE

holds only after the application of this shift in the operator. Originally there
was an unstable direction in the problem, and we eliminated it by the help
of the sequence Mn. 1 n the precise proof it is not enough to know the conver-
gence o,f’ the sequence ,f’n(x) in itself, but we have to establish the convergence
of the sequence of pairs ( fn, Mn) to a pair ( f, M) with some M &#x3E; 0. More-

over, the operator T (defined in the main text) actually depends on Mn.
On the other hand, studying the pairs ( fn, Mn) rather than the functions fn
does not cause any essential change in the proof, the convergence of the
sequence Mn to M is sufficiently fast, and the dependence of the operator T
on Mn is very weak. That is why we decided to disregard the dependence of
M and T on n, at least at this heuristic level. Nevertheless, there are some
interesting problems (the Thouless effect for instance), which are closely
connected with the more intricate behaviour of the sequence Mn. (See Sec-
tion 8 in Part II, where some conjectures and open problems are discussed.)
A most important step in the proof of the result in Part I is to formulate

a good inductive hypothesis about the behaviour of the functions fn(x),
which should reflect their most important properties, in particular their

convergence to the fixed point. The formulation of a proper inductive hypo-
thesis, which is closely related to the more intricate behaviour of the operator T,
is a highly non-trivial problem, and Section 3 is devoted to this question.
We mention two peculiarities o_f the analytical problem we are dealing

with in Part I, which may seem to be rather technical at first glance. N ever-
theless, we think that these phenomena have deeper, non-technical causes.
The first peculiarity is that we have to argue differently for small and large
indices n. In problems of type (*) appearing in the literature, the starting
function generally contains a so-called small parameter, and the inductive
procedure can be carried out for small n owing to this small parameter. I n
our problem the starting function also contains such a small parameter, and
for small n the behaviour of our functions can be controlled b y its help. But
it does not enable us to carry out the induction procedure for small n, since
during this procedure the operator Qn should have been replaced by T, and
the resulting error is negligible only for large n. We prove the results neces-
sary for us for small n in Section 4, and thereafter we can restrict our atten-
tion to large n. We believe that similar difficulties often appear in statistical
physics when the large-scale limit is non-Gaussian.

In order to prove the convergence of the sequence fn(x) to the fixed point,
we also have to show that the error term Gn in (*) is really small, and this
demands unexpectedly serious efforts. This is the second peculiarity of the
problem, and it is closely related to the unusual normalization. We discuss
this question in more detail. In the integral expression Qnfn, the function j’n
has a rather complicated argument
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When we turn to the operator T instead of Qn then we replace this argument
x v2

by the simpler expression x c ::!: u + 
2M, 

i. e. by the main term in its Taylor

expansion. The smallness of the error term En depends on whether the error
caused by the replacement of the argument of fn in the expression Qnfn
is small or not. A relatively simple calculation shows that, roughly speaking,
it has’the order of const. C-"f"(x). Here the term c-" should guarantee the
smallness of this expression, but we also have to know that f"(x) is not too
large. The final result of Part 1 shows that this statement really holds, because
the functions f" converge together with their derivatives. But this infor-
mation cannot be applied at the start. Hence a separate argument is

needed in order to bound the functions f"(x) together with their derivatives.
The bound we have given also implies that our sequence of functions is not
degenerate, i. e. we have applied the right scaling. The proof of such a bound
is one of the most essential steps in the proof, and most technical difficulties
arise at this point. We proved this bound in Sections 5 and 6. We had to exploit
the stability of the operator T and the heuristic argument leading to the
convergence of our sequence to the fixed point in an implicit way. The beha-
viour of the functions f"(x) and their Fourier transforms had to be controlled
simultaneously.
In Section 7 we prove some properties of the solution of the fixed point

equation. With the help of this information we can turn the heuristic argument
about the convergence of the sequence f" to the fixed point f to a rigorous
proof This is done in Section 8. We also need some estimates on the decrease
of the functions fn at plus and minus infinity. They are obtained in Sections 9
and 10.

In Part 11, we first construct the limit Gibbs state we are investigating,
and then determine its large-scale limit. We make the following construction.
We take a small external magnetic field and construct the Gibbs state in a
finite volume in the presence of this external field. Then we get the limit
Gibbs state by letting the volume tend to infinity and the external field to
zero. This construction is explained in the main text in more detail.

Both in the construction of the limit Gibbs field and in the investigation
of the large-scale limit, the solution of the following problem plays an impor-
tant role : take an external magnetic field with some h, construct the Gibbs
state in a large volume in the presence of this field, and restrict it to a smaller
volume. Consider the Radon-Nikodym derivative of this restricted measure
with respect to the Gibbs state without boundary condition in the smaller
volume, and give a good asymptotic formula for it. This problem leads to
a purely analytical question where the asymptotic behaviour of a sequence
of real functions defined recursively by means of an integral operator has
to be studied. This problem was solved in the case ~  c  2 in our paper [5],
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and since both the result and the method of proof is very similar in the present
case, we discuss this problem in this introductory part more briefly.

The most striking feature of this problem is that the Radon-Nikodym
derivative has the same asymptotic behaviour in the cases 1  c  ~ and
~  c  2. More precisely, there is a typical domain, where we give a

good asymptotic formula on the Radon-Nikodym derivative, and the main
term in this asymptotic formula is the same in the two cases. In the non-typical
domain it is enough to give some upper bounds. On the other hand, the kernel
of the integral operator through which the Radon-Nikodym derivative is

computed contains the density function of the average spin of the Gibbs
state without boundary condition investigated in Part I, and this function
is essentially different in the two cases. This means that the integral operators
we are working with are different in the two cases, their action nevertheless
is the same, at least. asymptotically. The reason for this surprising fact
is explained in our paper [6]. The right formulation and proof of the upper
bound in the non-typical domain is also an important part of the proof, but
since it has a rather technical character we do not discuss it here. We only
mention that this upper bound is very similar in the cases 1  c  ~ and
~  c  2. The main part, the first five sections of Part II, deals with
the investigation of the Radon-Nikodym derivative. Then, with the help
of this result and the result of Part I, we can prove the existence of the limit
field in Section 6 and describe its large-scale limit in Section 7. Finally, in
Section 8 we formulate some conjectures and open problems.
The results proved in the Appendix can be found in different papers. The

only result with some novelty value is the statement that the measure we

have constructed through a limit procedure in Part II is really a Gibbs state.
There are several similar results in the literature, but we have found none
which could have been directly applied in our case. To prove such a statement
one has to justify a formal limit procedure, and the main technical difficulty
in our case is caused by the facts that the potential of the model has an
infinite range interaction, and the spins take values in a non-compact space.

In the Preface we wanted to explain the main results of this work and to
discuss the most important and interesting analytical problems needed in

the proofs. We have tried to explain our approach to the problems we are
investigating without being too technical.
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