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ABSTRACT. — The classical problem of the direct construction of inte-
grals for a Hamiltonian system in the neighbourhood of an elliptic equi-
librium point is revisited in the light of the rigorous Nekhoroshev’s like
theory. It is shown how the results about stability over exponentially large
times can be recovered in a simple and effective way, at least in the non-
resonant case, and in fact even more conveniently than with the usual
indirect method involving normalizing canonical transformations. An
application is also made to the problem of the freezing of the harmonic
actions in classical models.

REsumE. — Nous étudions le probléme de la construction d’intégrales
premiéres d’un systéme Hamiltonien au voisinage d’un point fixe elliptique
par une méthode de type Nékhoroshev. Nous montrons comment les
résultats de stabilité sur des temps exponentiellement longs peuvent €tre
retrouvés simplement dans les cas non résonnants, et en fait plus aisément
que par la méthode habituelle des transformations canoniques. Nous
donnons une application a I'invariance de l'action harmonique dans des
modeéles classiques.
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424 A. GIORGILLI

1. INTRODUCTION

The study of a Hamiltonian system in the neighbourhood of an elliptic
equilibrium point can typically be reduced, as is well known, to the study
of the Hamiltonian

(1.1) H(x,y) = Z Hy(x, y),
where "=
(1.2) Ho(x, y) = Z %(x? + i),

=1

and Hy(x, y) for s > 1, is a homogeneous polynomial of degree s + 2 in
the canonical variables (x, y) € R?"; the harmonic frequencies

(wy,...,0,) =weR"

are assumed to be all different from zero, and the Hamiltonian is assumed
to be analytic in some neighbourhood of the origin of R?". This is of interest
in many fields of mathematical physics and astronomy, mainly in connec-
tion with the problem of the stability of the equilibrium.

Indeed, while the stability problem is easily solved if all the frequencies
are positive (or negative), since in such case the equilibrium point is a local
minimum (or maximum), no straightforward solution exists instead if the
frequencies have different signs. For example, if one considers the trian-
gular Lagrangian equilibrium points of the restricted spatial three body
problem, such equilibrium is a saddle point of the Hamiltonian, and the
discussion about the stability must take into account the nonlinear terms.

A more complex problem, which is met even when the equilibrium is
proven to be stable, is that of finding concrete estimates for finite times, in
the spirit of perturbation theory. This is of interest for example in connec-
tion with the freezing of the harmonic actions in classical mechanical
models.

The formal solution of such problems is a classical topic: the system can
be proven to be formally integrable if the frequencies are nonresonant,
i. e. if the condition k- w # 0 for 0 # ke Z" is satisfied. Two methods are
usually found in the literature. The first one, going back to Birkhoff [/],
consists in performing a formal canonical transformation (x, y) — (x’,)’)
which gives the Hamiltonian a normal form, in the sense that the trans-

e . . . 1
formed Hamiltonian H’(x’, y’) is a function of the n quantities I; = E(xf 2+y5)
only, so that the system is immediately seen to be formally integrable. The
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RESULTS FOR THE INTEGRALS OF A HAMILTONIAN SYSTEM 425

second method, used by Whittaker [2] and Cherry [3], and which I will
call the direct one, tries to build n independent formal integrals, i. e. formal

1
power series ®P =1, + X, ,®P with I, = E(x,2 + y?), by recursively

solving the equation { H,®"} = 0, where {-,-} is the Poisson bracket;
no canonical transformation is introduced, and one always works with
the original variables (x, y). The normal form method is the most common
one, and has the advantage of being easily generalized to the resonant
case [4]. The direct method has the disadvantage of requiring an explicit
proof that the equation { H,®"} = 0 can be consistently solved to all
orders. In fact, although a method of solution was proposed by Cherry
and explicitly used by Contopoulos [5], the consistency was directly proven
only with some restriction on the Hamiltonian, namely in the so called
reversible case [6]. This will be discussed below in some more detail.

All these results are formal, in the sense that they rely on power series
developments which are generally known to be divergent [7]. Rigorous
results proving the existence of orbits which do not leave a neighbourhood
of the origin can be given instead in the framework of KAM theory, which
guarantees that many n-dimensional invariant tori of the unperturbed
system H, are preserved. However, such invariant tori do not fill an open
region, so that the possibility of the so called Arnold diffusion cannot be
excluded, except for the two dimensional case.

An alternative approach in getting rigorous theorems consists in looking
for results which are valid only over a finite time interval, but give an effec-
tive bound on the Arnold diffusion. Such kind of results, which were already
investigated by Moser [8] and Nekhoroshev [9], have been proven to be
able to give effective bounds in practical applications [/0]. Roughly
speaking, one shows that the system admits a number of approximate
integrals whose change in time can be controlled to be small over an
exceedingly large time interval. In particular, for a system like (1.1) the
approximate integrals are just the formal power series expansions dis-
cussed above, truncated at a suitable order.

Such results are usually obtained via the normal form methods, by
looking for a normal form of the Hamiltonian up to a finite order. In parti-
cular, ref. [I0] contains the general treatment of the Hamiltonian (1.1)
by such methods. However, the direct method, although being less general,
allows to get similar results in a much simpler way, so that it is more conve-
nient for a general introduction to such kind of problems. It then seemed
to be worthwhile to develop here a rigorous perturbation scheme on the
basis of the direct method. As the reader will see, the technical difficulties
are substantially reduced in comparison with those of the normal form
methods. In particular, the computation is quite trivial if one considers
the case of a polynomial Hamiltonian, for example just the one with
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426 A. GIORGILLI

H,(x, y) = 0 for s > 1. Such case, which is particularly instructive, could

be easily discussed by adapting the general treatment given below.
Before entering the technical scheme, let me briefly illustrate the results.

Consider the Hamiltonian (1.1), and give initial values I, o, 1<I<n to

. . 1 . o
the harmonic actions I, = i(x,2 + y,z); this corresponds to considering

a given distribution of the harmonic energies of the oscillators, without
taking care of the phases. The question is then whether such initial distri-
bution is qualitatively maintained or not during the evolution of the system.
More precisely, having fixed I,(0) = I, , > 0, one looks for a bound like
I min < Ii(t) < Ijmaxs With O < I} in < I;0 < Ijmax, OVer a time interval
| t] < T, where T is a possibly large (or even infinite) time. A weaker result,
which is enough in order to answer the question of the stability for finite
large times, is obtained if one renounces to keep I)(t) away from zero, and
only looks for a bound Ij(t) < I; max. In such case, the initial values of the
actions are not required to be all different from zero.

In order to handle such problem, one makes the restriction, which is
usual in classical perturbation theory, that the harmonic frequencies
satisfy the nonresonance condition

(1.3) lk-w|>7y|k|™, keZr

with real constants y>0and ¢ >0 (it is known [/1] that this is true for a set of
w’s of large measure if t > n — 1 and y is small enough), and builds approxi-
mate integrals ®*" = I, + X7_,®? which are polynomials of degree r + 2;
precisely, one determines ®“"” by requiring ®®" = 247, namely
{H,®"" } = 247, where 2" are power series whose lowest degree term
is at least of degree r + 3. If one could forget Z%"(x, y), i. e. if the P®”
were exact integrals, then the change in time of the harmonic energies I,
would be estimated as a deformation due to the difference | ®*" — I;|
between the integrals and their harmonic approximations; such deforma-

tion turns out to be of order @3, with ¢ ~ max, /21, . Thus, Z*" plays
the role of the source of a kind of additional noise which causes the approxi-
mate integrals ®"” to slowly change. Such change can be estimated via
the known size of £2*", which turns out to have a bound like c,o" "3 with
a certain coefficient c,. If one allows the change | ®""(t) — ®*"(0)| to be
of the same order ¢* of the deformation, then the limits I,y and I max
can be computed, and the bound above on I(t) thus holds at least up to a
time T, ~ ¢, 107"

Now, in agreement with general considerations on the divergence of
the series expansions of Hamiltonian perturbation theory, the estimated
value of ¢, is found to increase as fast as g, "(r!)**?, g, being a constant,
so that the limit # — oo cannot be reached. Thus, one has a result strongly
dependent on the truncation order r of the approximate integrals, which
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is arbitrary, and appears as an extraneous element introduced by the
perturbation scheme. This cannot of course be avoided if one plans to
actually compute explicit expressions for the approximated integrals at
a given order, but can be removed if one simply looks for a bound like the
one indicated above. To this end, r can be chosen in such a way that the
noise 2" is close to a minimum, so that the correspondingly estimated
stability time T is as large as possible. Looking at the bound above, one
sees that r can be chosen larger and larger when g, i. €. the harmonic energy,

1
is smallerandsmaller. The natural choice turns out to be r=r,,, ~ (¢4/0) **1,
and the estimated stability time, which is now a function of g, turns out

1

to be T ~ exp(o,/0)"*}, i.e. to exponentially increase when the energy

of the system approaches zero.

The aim of the present note is to develop such perturbation scheme,
and to give explicit estimates of all constants entering the theory. The
paper is organized as follows. In sect. 2 the classical formal scheme is
briefly recalled. In sect. 3 the scheme is made rigorous by giving explicit
bounds on the size of the deformation and of the noise at an arbitrary
truncation order r. In sect. 4 the exponential estimates are obtained, and
the main theorem is stated. Sect. 5 is devoted to the application to the
problems of stability and of freezing of the harmonic actions over expo-
nentially large times.
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2. THE FORMAL PERTURBATION SCHEME

Let me first recall how the problem of building formal integrals for the
Hamiltonian (1.1) is classically faced. One introduces the linear spaces Il
whose elements are the homogeneous polynomials of order s in the cano-
nical variables (x, y), and the linear operator Ly, : II; — Il defined by
Ly,” = { Ho," }. The Hamiltonian is then characterized by a sequence of
elements H, e I, ,, and the equation { H, ®® } = 0 for a formal integral

) 1
oY =1, + T, O, with I, = E(x,2 + y?) and @ eIl,,,, turns out to
be equivalent to the infinite recursive system of equations Ly, I, =0, and
2.1 Ly @0 =99, s>1,

Vol. 48, n° 4-1988.



428 A. GIORGILLI

where P eI1,, , is known, being given by
\P(ll) = {Ib H, }
s—1

2.2
2.2) \Ijgl)=2{@?)’HS-]_}+{I[’HS}, s>1.

j=1
The operator Ly, can be diagonalized via the usual linear canonical
transformation to complex variables &, y

. .
(2.3) x1=ﬁ(5z.+im), yFﬁ(éz—im), l<l<n.

Indeed, the unperturbed Hamiltonian H, takes in the new variables the
form (omitting a prime in the new Hamiltonian)

(2.4) . Ho(&, 1) = izwtfﬂh 5

=1

so, writing f e II in complex variables as

2.3 f&m= 2 fuln®

litk|=s

with |j + k| = X_;|j, + k;|, one has

(2.6) Lu,f = iE(k = J) ofplnt.

gk
This shows that eq. (2. 1) can be solved provided the known polynomial ¥
contains no monomial &n* such that (k — j)-w = 0. This is the consis-
tency problem referred to in sect. 1. If this is the case, then the solution of
eq. (2.1) is determined up to an arbitrary term @ satisfying Ly, ®P = 0.

The consistency problem is easily solved if one assumes that the harmo-
nic frequencies @ of the unperturbed Hamiltonian H, are nonresonant,
i.e. k- = 0 with ke Z" implies k = 0, and that the Hamiltonian H(x, y)
is even in the momenta (or reversible), i. e. one has H(x, — y) = H(x, y).
For self consistency, I give here a sketch lines of the rather simple proof,
which can be found in ref. [6].

The proof is based on the fact that the critical monomials in such case
all have the form &/, so that in real variables they are functions of I, . . ., I,
which in turn are even functions of the momenta. Indeed, write any poly-
nomial f eIl for any s, as a sum f = f, + f_, where f, and f_ are
even and odd respectively in the momenta, i.e. f+(x, — y) = f+(x, y) and
f-(x, — y) = — f-(x, y); such decomposition is clearly unique. Moreover,
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it is an easy matter to check that the Poisson bracket between functions
of the same parity gives an odd function, and that the Poisson bracket
between functions of different parity gives an even function. Using these
simple remarks, one proves by induction that if ®® has been determined
up to order s — 1 as an even function of the momenta (which is true for
s = 1), then ¥¥ is an odd function, so that it cannot contain critical mono-
mials, and so ® is necessarily an even function. The solution can be made
unique by simply choosing ®% = 0.

A proof for the general nonresonant case, when the assumption
H(x, — y) = H(x, y) is removed, could be given indirectly by making use
of the existence of the formal integrals, which in turn can be proven by
the normal form method. The resonant case unfortunately does not allow
so simple a treatment: the existence of formal integrals similar to the ones
introduced above can be indirectly proven via the normal form method,
but in the direct construction the arbitrary term ®{ in the solution must
be carefully determined in order to ensure the consistency at higher orders.
An attempt to make rigorous such a procedure led in fact to establishing
a close connection between the direct method and the normal form
method [12].

Thus, let’s proceed by only considering the nonresonant case.

3. THE RIGOROUS PERTURBATION SCHEME

In this section the formal scheme discussed in sect. 2 is made rigorous
by estimating the sizes of the deformation and of the noise, as illustrated
in the introduction. To this end, the recursive formal scheme is translated
into a sequence of recursive bounds on each term of the formal integrals,
and finally all the contributions are added up to produce the final sizes
of the functions. Here, the procedure is briefly illustrated, and the result
is summarized below in proposition 3.1. The proofs are deferred to the
appendix, so that the reader not interested in technical details can skip
them by only reading the present section. It seems however to be appro-
priate to point out at least how simpler appears to be the treatment given
here with respect to the more common one involving recursive canonical
transformations.

The sizes of the various polynomials entering the perturbation scheme
are estimated by introducing the following norm on the linear spaces II;:
‘having fixed R = (Ry, ..., R,)eR%, i.e. real positive numbers Ry, ..., R,
the norm of a polynomial fell,, f = ;;fx’y* is defined as

3.1) Sl = Zlfjkle-H‘-
ik

Vol. 48, n° 4-1988.



430 A. GIORGILLI

Use will also be made of the quantity
(3.2 A = (mjn R)~ .

The small denominators arising from the solution of (2.1) according
to the formal scheme of sect. 2 are assumed to be bounded from below by

a nonincreasing sequence { o },»; of positive real numbers satisfying the
diophantine-like condition

3.3) lk-w|>a for keZ' O<|k|<s+2.

A few technical lemmas allow to control how the norms are propagated
through the recursive solution of (2.1), and, for the truncated integrals
o) =1, + X;_ @, explicit bounds on the norms || @ |x are produced.

For what concerns the noise 2" = { H, ®*" } referred to in the intro-
duction, one finds the explicit expression

(3.4) R = Z QY

with Q¥ e I, , defined by
6.9 Q0= ) (W) + (LK), s>,
=1

and the norms || Q{” ||r are explicitly estimated.
Finally, one considers the neighbourhood of the origin

(3.6) Agr ={(x, ) eR":(x} + y})'* <oR,1<I<n},

where ¢ is a positive real number. Then, the size of a given polynomial
f €Il can be estimated in Ag by | f(x,y)| < || f llre®. This allows to
estimate the deformation and the noise for the truncated integrals ®""(x, y)
in the domain A,z by the following

PROPOSITION 3.1. — Consider the Hamiltonian system H(x, y) = X5 oHs,
where Hy = X0, %(x,2 + y?) and H,e I, ,, and assume that for a given

R e R",. there exist real constants h > 0 and E > 0 such that || H,||gr < h*'E
for s > 1; assume moreover that the harmonic frequencies w satisfy the
nonresonance condition |k-w| > og for ke Z" and 0 < | k| < s + 2, where
{ &s }s»1 is a nonincreasing sequence of positive real numbers. Then for any
integer r > 0 there exist n truncated integrals ®"" =1, + Zi_ ®Y,

1 .
1<l<n with ], = E(X,z + y?), such that ®*" = {H,®""} is a power

Annales de I Institut Henri Poincaré - Physique théorique
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series starting with terms of degree at least r + 3. Moreover, for (x,y)€ Ag
defined by (3.6) and for ¢ < 1/h one has the bounds

24E
3.7 (@) — L)(x, )| < a—e3 - (ol —o0"
1
(3.9) |OU(x, y)| < C"3(1 — ho)™2,
where
g1 = 1 1
.8 r+0)!1T T
.= (12A%E + - h %} ,
(3.9) 7 < 9 “1>[ T >l

"r+ 2)!
| § VA ’

>1.

8
C, = 8E<12A2E + §h¢x1>

The proof is deferred to the appendix.

4. EXPONENTIAL ESTIMATES

The aim of this section is to remove the arbitrary truncation order r
from the perturbative theory, thus obtaining results which depend on the
smallness of the domain A,z where the behaviour of the system is considered.
To this end, one has to assume a more explicit expression for the sequence
{ & };»1. According to the usual perturbation scheme, assume a dio-
phantine bound as in (1.3), namely put

4.1 s =Ps+2)7% s=>1

with suitable real constants y > 0 and 7 > 0. By introducing then the
constant

29\
.2) Q*=%<3A2E+ i )

3r+2

one can write (3.8) as

4.3 |d¢"(x, y)| < 2° "Eg? <£>r[(r + 211 — ho)"2.

*

Look now for a value r,, such that the estimate above is close to a minimum.
By minimizing (g/¢4) [(r + 2)1T*! one is led to take as r,,, the integer

atisfyi
satisfying . )

=T W FT
4.4) (Q—*> —l<rg+2< <Q—> i
(% 0

The perturbative theory is then useful only if ., > 1,1 €. if ¢ < 37¢ Vg,

Vol. 48, n°® 4-1988.



432 A. GIORGILLI

Such choice of the truncation order allows to prove the main result of
the present note.

THEOREM 4.1. — Consider the canonical system with Hamiltonian
w
H(x, y) = X, oH,, where H, = XJ_, 71 (x? + y?) and Hye 11, ,, and assume

that for a given R e R there exist real constants h > 0 and E > 0 such
that |H, |l < B~ 'E for s > 1; assume moreover that the harmonic fre-
quencies  satisfy the nonresonance condition |k-w|>v|k|™* for keZ",
with real constants y > 0 and © > 0.

Then for any o < 37"+ Vo, with o, given by (4.2), there exist n approxi-
mate integrals ®V(x, y) such that for (x,y)€ Ay, defined by (3.6), one has

T

83
@.5) [(@Y - I)x )| <-5—0¢°
! Az@* 1

2\t+1 1 t+1
(4.6) |d)(l)(x, y) | <3 -24<£_> Egi<£> expl:_ (1_- + 1)<&> :l.
2 Q* Q

Proof. — Consider first (4.6). The condition ¢ <3~ ¢*Yp, with the

3
explicit value of g, gives ¢ < o so that in (4.3) one gets (1 — hg)~2 < 3;

then (4.6) is found by substituting r, for r, and using the known inequality
s! < s 276~ In order to get (4.5), first check that

(1 - (arop.Q)r )(1 - Gropt) < 4 M

This is trivial for r = 1; for r > 2 it is somehow tricky: using (3.9), (4.1),
(4.2) and (4.4) compute (here r stands for r,,,)
1

1 T
r+2)0NN I [+ DT e+ 2 T
(oo (T 2 g
Ox 6 r+2 6(r + 2)
For © > 0 and integer r > 1 this is clearly a nonincreasing function of t,

so that one has [1— (501 —0,0)"" <(1 —y¥i)l —¢,)"%, with
1

e+t
T r+2

; this in turn is a decreasing function of r, and one easily

v,

3 3
computes yy, = 2 Vs <1l,yy<1landy, < 1 for r > 5, so that the state-

ment is directly checked for r < 4, while for r > 5 one gets

1=y —y)'<d-y)!<4.

. . .. 12E 1 .
Substitute now o; = 37%, and use the inequality ——— < % which
Y O«

follows from the definition (4.2) of g,, and (4.5) is found. Q.E.D.

Annales de I’ Institut Henri Poincaré - Physique théorique



RESULTS FOR THE INTEGRALS OF A HAMILTONIAN SYSTEM 433

5. STABILITY OF THE EQUILIBRIUM
AND FREEZING OF THE HARMONIC ACTIONS

Let me now come to the problem of the stability of the equilibrium. To
simplify the discussion, suppose for a moment that @1, ..., ®™ are exact
integrals: this, by the way, can be true for particular systems. According
to the usual stability theory, given a domain A, look for a domain A,
such that an orbit starting from a point (xo, yo) € A,r is confined to Ax
for all times. To this end, use can be made of the fact that (x, y)e A if an-
only if Ij(x,y) < I mex for 1 <[ <n, with [, = 0*R?/2. The change
in time of I)(t) can be estimated by

5.1 ILO-LO)| < |LB)—2%0)| + [29)—2OO0)| + | 2°(0)- L)1,

and, since ® is supposed to be an exact integral, one can use the estimate
(4.5) of the deformation in Ay, and get

16.3° 32-3%
.2 L) - L) < - 0% = .
(5 ) | l() l( )I = AZQ* Q AZRIZQ* Il,max
, ) 32-3%
One has then I)(t) < I, ., provided I,(0) < | 1 — R0, I mexforl <i<mn,
104

and this gives the condition ¢ < EQ*Z—%; If this is the case, then the orbit is

confined to the domain A for all times. Notice that the condition above
on g is consistent with the weaker one ¢ < 3~ ¢+, required by theo-
rem. 4.1.

A stronger result, namely the freezing of the harmonic actions, is obtained
if the parameters R4, . . ., R, entering the definition of the norm are chosen

- . 32.3F
to fit the initial data by putting [,(0) = <1 - WQ—>I,MX, and a lower
104
bound to Ij(f) is imposed in order to bound the harmonic actions away
. 3’0

from zero. Still using the estimate (5.2), and requiring I,(0)> ——5=5—1I; max
A*Rig,

for 1 <1 < n, one gets the bound I, < Ii(t) < I max, With
643"
Ilmin =|{1- —_2—"2_@ Ilmaxa
’ A*Rjo,)

*
3

is satisfied. The projection

for all times, provided the condition ¢ < 65

of the orbit on the x,, y, plane is then confined to an annulus. Notice that
the actual change of the actions takes a short time, because the time deri-
vative I, is of order @3.

Vol. 48, n° 4-1988.



434 A. GIORGILLI

Unfortunately, the nice picture above does not apply in general, due
to the fact that the truncated integrals ®), ..., ®™ are not exactly cons-
tant. However, according to theorem 4.1, their time derivatives ®® can
be made very small, so that the picture above, with a small relaxation of
the limits, turns out to be valid at least over very large times. Indeed, allow
the change | ®“(r) — ®?(0) | due to the noise to be of the same order of

e 33

g with some positive u, by determining the

the deformation, say u A

3. One has then the

16- 3
slability time in such a way that |®P|T < u
following A% *

PROPOSITION. 5. 1. — Consider the Hamiltonian system of theorem 4.1,
with the same convergence and nonresonance hypotheses. Let u be any posi-
tive real number, and define the constants

2yh\ 7!
3A%E +
Q* 4 < 3 2> .

U 6 T+1 ( 0 >5/2 [ <Q*>m]
=——|— —] e + 1) —=
9A’Ep, <e2 O P @+ 1) Q
1

(5.3)
Il,max = 5 Qlez
L = [ 1= 23 4l 1<l<
l,min — A2R12Q* /,t 1,max» sl=sn.
Then:

1) for any ¢ < [32-3%(1 + w)] ‘¢4 and any initial data satisfying
32-3%
II(O) < I: A2R2 (1 + ”):III max
one has Ij(t) < I ., for |t] < T;
ii) for any ¢ < [64-3Y(1 + w)]™ ‘0, and any initial data satisfying

32.3%
[0O)=[1-—S——( 1
l( ) [ AZRIZQ*( + iu):l l,max

one has Ij min < Iit) < Ijmax Sfor |t] < T.

.7

. . 16-3
Proof. — The condition |®?|T < Mz
Q

¢® and the estimate (4.6)

. *
for @ immediately give T. Next, still using (5.1), one gets

T

3(1+u)3

16 -
1L - LO)| <+ (1 + Wl max »

to be used instead of (5.2). The statement then follows by the same compu-
tations as above. Q.E.D.
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APPENDIX

TECHNICAL LEMMAS AND PROOF OF PROPOSITION 3.1

This rather technical appendix is devoted to the proof of proposition 3.1. The proof
depends on several technical lemmas. First, the definition of the norm is used in order to
estimate the transformation (2.3) to complex variables and the Poisson brackets.

LEMMA A.1. — The norm of the transformed polynomial f'(¢,n) of f(x,y)e Il under
the canonical transformation (2.3) is bounded by

(A.1) I 1k <2720 f k-

Conversely, the norm of the transformed polynomial g(x, y) of g'(£, n) € Il under the inverse
of the canonical transformation (2.3) is bounded by

(A.2) lglk <2721 & |Ir-
Proof. — Take f = Xj1x=sfpx'y", and perform the substitution

Li+k|
= Zi""Z 2 ful& + in)€ — in)

Jik

St QS (e

Jk I=1 s=0

so that f’eIl,, and the definition of the norm gives

||f'||nsz2_|; W""”HZ( )Z( )

Jk 1=15=0

itk _
=Zz | S RIH
j.k

Js
= 23/2 Zl,fjkle+ka
-k

and (A.1) follows. The statement about the inverse transformation is proven by essentially
the same computation. Q.E.D.

LeEMMA A .2. — For given polynomials f € Il and f’ € Il the norm of the Poisson bracket
{ f, [} is bounded by

-~ A e < A2 IS Dl e
with A given by (3.2).
Proof. — Compute "
, - , ]k’ _]rk
{ff}= Z f]_kfj,k,x;nyuk ZL‘Z
X
k'K =
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and use the definition of the norm to get
, - , ki + jik
(LS} < Z | Sl | fa | RIHT vk Z’—RT”—’
1

Jk.j' .k =1
< SS,A2<ZIf}kIRj+k)<Z|f:i{k'le’+k'>!
Jk Jk

so that (A.3) immediately follows. Here, the definition (3.2) of A and the trivial inequality
Zr_ Uikt + jik) < sZf=1(ji + ki) = ss’ have been used. In complex variables & 75 the
computation is obviously the same. Q.E.D.

LEMMA A.3. — For a function f €I, the norm of the Poisson bracket { 1, f } in real or
complex variables is bounded by

(A.4) H{L f 3l <sllflk-
1
Proof. — Recalling that in real variables it is I, = 5():,2 + y?), compute
Xy )
{Lf}= Z (k.—‘ — i —’)f,-kxly*,
N X
ik

so that

H{L. 7}k < Z(kx +)| fix| R < SZIfjklR“k,
ik ik
and (A.4) follows. In complex variables it is I, = i&,, and one computes
{ I, f } =i Z (k, — jl)fjkfjﬂk s
ik

so that (A.4) immediately follows. Q.E.D.

Use now the fact that { «, },,, is a nonincreasing sequence of positive real numbers
satisfying (3.3). ~Then, by solving eq. (2.1) as illustrated in sect. 2, without adding any
arbitrary term ®{, one has the following

LEMMA A .4. — The norm of the unique solution ® of eq. (2.1) is bounded in complex
variables by

1
(A.5) 92l < — [ ¥ e
Proof. — Recalling the explicit expression (2.6) of the operator Ly, in complex variables,
write ¥9 = ;,c;&m* with known coefficients ¢y, and @Y = X;,d;&n* with unknown

coefficients dj to be determined. Then one immediately finds dj = — i , o that

; 1 .
| @9k = Zldjk R/ < - Z len | RITE,
ik * K

and (A.5) follows. Q.E.D.
‘The lemmas above allow to control how the norms are propagated through the proce-

Jjk
k—-j)o
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dure of building the formal integrals ®® by recursively solving the system (2.1). Use now
the convergence hypothesis on the Hamiltonian, namely the hypothesis that there exist
real constants h > 0 and E > 0 such that || H;|lx < #* 'E for s > 1. Then one has the
following

LEMMA A.5. — The norms of the polynomials ¥ and ®® generated by recursively solving
the system (2.1) are bounded for s > 1 by

A,
(A.6) 1P < Ay (00 <=,
as
where A, = 24E
A7 8 sTl(s + 1)!
A7) A, = 12E<12A2E + —ha1> (—s_—),
9 f=1a1

Proof. — First, transform the Hamiltonian to complex variables, so that the convergence
hypothesis above, by lemma A .1, becomes

(A.8) I Hlle < p*~'6, B =2'%h, &=2°E.

Look now for a sequence { B, },», of positive real numbers such that || @ ||z < B,. By
lemma A.3 one clearly has || ¥{ ||x < 38, so that one can take B; = 3&/«,, and, assuming
that B; has been determined for 1 < j < s, by lemmas A.2 and A.3 one has

s—1
(A.9) | ¥P|r < Z(i + 2)(s —j + 2A2FTITIB;E + (s + 216,
j=1
so that one can recursively define

AZ

s—1
¢ ; &
(4.10) B, = ZU + 25 =+ DB+ s+ DT
'S j:l s

o

For s > 3, write the r. h. s. o>fr(A.9) as
s—2

3(s + DAEB,_y + A26B ) (j+2s —j + DFI7B, + (s + 218
=1

J

4

< [3(s + DA + 5ﬂocs_l]Bs_,
4

< (S + 1)<3A2$ + §ﬂal>B5_1;

4
the first inequality is obtained by keeping the first term and using s — j + 2 < g(s —-j+1

for s >2and 0 <j < s — 2 in order to compare the terms in the sum with B;_, as given
by (A.10); the second one by simply using the fact that { «, },. , is a nonincreasing sequence.
The same inequality is easily checked to be valid also for s = 2. Then, recalling that
| ¥ ||k < 36 and By = 3&/ay, one gets, for s > 1,

3 4 Vol + 1)

PO |l < —£<3A2é” + ~ Pa > i

15" e 2 95 ! iy
and

s=1(s + 1)!

. .
1=1%

3 4
B, < —6(31\28 + —ﬁal>
2 9
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Such inequalities have been obtained in complex variables, and the change back to real
variables is taken into account by substituting the values of § and & given by (A.8) and
by multiplying by a factor 2>*!. This immediately gives (A.6) and (A.7). Q.E.D.

Consider now the explicit expression (3.4) of the noise 2" for the truncated integrals.
The norms of the polynomials Q{ are then estimated by the following

LEMMA A.6. — The norms of the polynomials QP defined by (3.5) are bounded by
2
(A.11) Q¥ lr < g(s —ETTTIALL,, s>

with A, defined by (A.7).
Proof. — By (3.5) one immediately sees that || Q¥ ||z < D,, with

Dy= ) G+ 26 —j+ 2k 7| 0P RE + (s + 2h*'E.
j=1

Since Q}; = W%, as given by (2.2), D,,, can be estimated by lemma A.5, giving

s—j+2 2
D, ;1 <A, .. Using now the inequality l < =(s—r) for r>1 and 0<j<r<s-2,
one has r—j+3 3

2 -
D, < E(S =7 TID,y,

and this immediately gives (A.11). Q.E.D.
Finally, the estimates obtained in lemmas A.5 and A.6 are used in order to achieve the

Proof of proposition 3. 1. — By the definition of the norm and of the domain Ak one has
1@~ 1w ] < ) 00 2.
s=1

Using now (A.6) and (A.7) one gets, for 1 <s <r,
24E
[Pl < —ai7",
31
with o, defined by (3.9), so that one has

24E
[(@% — I)x, y) | < - Q? Z(o,e)s“,
1
s=1

and (3.7) immediately follows. Recalling now that ®®» = A"D, by (3.4), (3.5) and
lemma A.6 one has

6195, )| < Z QO et

s>r

2
< §Ar+lg’+3 Z(S - r)(hQ)s_r-1 s

with A, defined by (A.7), so that (3.8) follows.  Q.E.D.
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