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QED on a Lattice:
I. Infrared asymptotic freedom for bounded fields

J. DIMOCK

Department of Mathematics,
State University of New York at Buffalo, Buffalo, N. Y. 14214

Ann. Henri Poincaré,

Vol. 48, n° 4, 1988, Physique theorique

ABSTRACT. 2014 We study Euclidean quantum electrodynamics on a four
dimensional unit lattice. The fermions are integrated out giving an effective
photon interaction. For this interaction we give a formulation of the renor-
malization group which involves taking successive block field averages.
In an approximation in which the fields are bounded and for sufficiently
massive fermions we show that the flow of these transformations is toward
a free electromagnetic field, i. e. that the theory is asymptotically free in
the infrared.

RESUME. - Nous etudions l’électrodynamique quantique euclidienne
sur un reseau de dimension quatre. L’integration sur les fermions fournit
une interaction effective pour les photons que nous renormalisons en
prenant des moyennes successives sur des blocs de spins. Dans l’approxi-
mation des champs bornés et des fermions lourds, nous montrons que
1’iteration de cette transformation converge vers un champ electromagne-
tique libre en d’autres termes nous montrons que la theorie est asympto-
tiquement libre dans l’infra-rouge.

1. INTRODUCTION

We consider quantum electrodynamics (QED) on a four dimensional
Euclidean spacetime lattice with unit lattice spacing. The theory is formu-
lated in terms of integrals over fermion and photon fields at each point
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356 J. DIMOCK

in the lattice, and is well-defined as long as the lattice is finite. We are
interested in taking the limit as the lattice becomes infinite and in studying
the long distance behavior of the correlation functions in this limit. The
expectation is that this will have something to do with the long distance
behavior of the putative continuum theory on a Lorentzian spacetime,
i. e. the real world. Furthermore, the techniques we employ may be useful
in the eventual construction of this theory.

Because the photon field is massless, interactions are inherently long range
and standard techniques of constructive field theory such as the cluster
expansion are not sufficient. Instead we use Wilson’s renormalization

group approach in which the interaction for a large lattice is replaced by
an effective interaction on a somewhat smaller lattice by taking block
field averages. This procedure is iterated until one obtains an effective
theory on a lattice with as few sites as one wishes. The key issue for our
purposes is whether these effective interactions are tending toward a free
field interaction as the iterations increase, i. e. whether the theory is asymp-
totically free in the infrared. If it is true then one is in a position to solve
long distance problems for the original theory by relating them to pro-
perties of the free field theory.

In this paper we take the first steps toward carrying out this program.
The fermion variables are integrated out at the start yielding an effective
photon interaction (Chapter 2). For this interaction (or any in a large
class) we give a precise formulation of the process of taking block field
averages (Chapter 3). Finally asymptotic freedom is established in an

approximation in which the fields are bounded and assuming the fermions
are sufficiently massive (Chapter 4).
Our formulation of the renormalization group combines the earlier

work of Balaban [1 ]- [3 ], and Gawedzki-Kupiainen [9 ]- [12 ]. Balaban
gave a mathematically precise formulation of block field transformations
for gauge fields. By successively performing these transformations and
doing estimates he was able to obtain some deep stability results. On the
other hand, Gawedzki-Kupiainen working with scalar fields developed
techniques for tracking the exact flow of the block field transformations
and were thereby able to obtain quite extensive results. We find that these
two approaches combine rather nicely.
An important point in establishing the asymptotic freedom is in showing

that the terms in the interaction which are quadratic and quartic in the
photon field A are respectively marginal and irrelevant. A priori they could
be respectively relevant and marginal. However because of the gauge
invariance of the interaction one can show that these terms are really
functions of the field strength F = dA which accounts for the improved
performance. Introducing the field strength globally is a dangerous thing
to do because of the non-locality involved. The key to making the whole
thing work is to introduce the field strength only in terms which are already
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357QED ON A LATTICE: I. INFRARED ASYMPTOTIC FREEDOM FOR BOUNDED FIELDS

well-localized. (Coupling through F has proved useful elsewhere, for

example [8 ], [13 ].)
We remark that it is a particularly strong form of infrared asymptotic

freedom which holds for this problem : the effective interactions approach
the fixed point exponentially fast. This corresponds to the fact that the
model is superrenormalizable in the infrared. We also remark that our
method works in any space-time dimension and holds for a general class
of models of the form ~dA~2 + V(A) where V(A) is gauge invariant and
a sum of local terms.

In a subsequent paper we intend to remove the restriction to bounded
fields and establish asymptotic freedom for the full interaction. The bounded
field results should be a major ingredient in the solution of this problem.

2. THE MODEL

General references for lattice gauge theories are Seiler [13 ] and Balaban
and Jaffe [4 ]. We begin by defining the lattice. Let L be an odd positive
integer and let A = A(N) = for some (large) integer N. A is a
four dimensional toroidal lattice with unit lattice spacing and LN sites in
each direction. The oriented bonds in A are denoted A* : these are pairs
b =  x, x where eo, ... , e3 is the standard basis for Z4
and x E A. The oriented plaquettes are denoted A** : these are quadruples
of the form p = =  x, x + + ev, x + ev&#x3E; with   v.

The photon field (gauge field) A is a function from A* to R which we
write as or [A* : The definition is extended to non-oriented

bonds by A( - b) == - A(b) where - b is the reverse of b. The corresponding
field strength is dA E (~‘’** and is defined for pEA ** by

The action for the free photon field is

The fermion field algebra is constructed as follows. Let W be a four
dimensional complex vector space (e. g. W = (:4) and let W be the dual
space. We form the vector space (W Q W)~ of all W 0 W valued functions
on A and then let ~~ be the Grassman algebra (exterior algebra) generated
by (W 0 

_ _

If { is a basis for W and { is the dual basis for W, then these
determine a basis { for (W 0 W)^ and hence a basis for ~.

Vol. 48, n° 4-1988.



358 J. DIMOCK

Note that expressions like are independent
of basis and commute with everything. Also let { ~, ,u = 0, ..., 3 be a
representation of the Clifford algebra 03B3 03B303BD + 03B303BD03B3  = on Wand define
for  ~ &#x3E; E A* the operator yxy on W by yxy = 1 for y = x:t eu.
Then we define the basis independent combination

where are the matrix elements of yxy in the particular basis.
The free fermion action is defined by

For x &#x3E; 0 small this describes a theory with massive fermions, the mass
becoming infinite as x -+ 0. We study the case x « 1. Integration on ~
is the linear functional (’ &#x3E; A defined by

for elements of maximal degree, and set equal to zero on elements of smaller
degree. This definition is independent of basis.
For the combined interaction we introduce the parallel translation

operator U(A)xy = exp (ieAxy) where the charge e is a fixed constant.
Then the total action for QED is

Correlation functions are defined by taking moments of exp ( - 
with respect to integration over A, ~ ~.

It is simplest to concentrate on the gauge degrees of freedom and inte-
grate out the fermions at the start. We have

where

We devote the remainder of this section to a study of Z(A), before consi-
dering integrals over A in the balance of the paper. The analogous object
for the pseudoscalar Yukawa model was studied in [7 ].

Annales de l’Institut Henri Poincaré - Physique theorique
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The function Z(A) can be evaluated as a determinant, but we will not
make any use of this representation. We do note the well-known fact that
Z(A) is real for A real. Furthermore Z(A) is gauge invariant. If X E (~n and

is defined by dx(  x, y ~ ) = x( y) - /M then _Z(A) = Z(A ~/).
This can be understood by observing that the dx induces ~x(x) -+ 

~a(x) -~ and this change makes no difference when we take
the expectation ( ’ &#x3E; A.
To estimate Z(A) we need a norm on ~n. Suppose that the base vector

space W has an inner product. Then this induces an inner product on W
in such a way that is an orthonormal basis for W, then the dual
basis } is orthonormal in W. Thus we get an inner product on (W 0 W)n
and hence an inner product on in such a way that orthonormal

generate an orthonormal basis. Let I be the associated
norm. and one of them is simple (i. e. a product of single vectors)
then ~ F n G II G II. However this inequality does not hold in
general (contrary to Ref. [13 ]). Integration can be regarded as taking the

inner product with /B and so by the Schwarz inequality
x,a

We actually want to write Z(A) = exp ( - V(A)) where V(A) is a sum of
localized pieces with good estimates. For this we use a cluster expansion
very much as in Seiler [13 ]. For the cluster expansion we assume N &#x3E; No
and divide A up into blocks A with length LN0 on a side and centered
on the points of (LN°Z)4. We always assume that L, No are sufficiently
large, the choice of No possibly depending on L. A paved set is a non-
empty union of blocks A and is denoted X, Y, etc. For any paved set X,
I X is the number of blocks A in X and 2(X) is the length (in an l1 metric)
of the shortest tree graph on thp centers of the blocks A in X.

THEOREM 2.1. Given M, C, G there is a x so and Im A(b) ~  C

where Vy(A) is real for A real, gauge invariant, depends only on A(b) for
b c Y and satisfies in this region :

Proof Define

Vol. 48, n° 4-1988.
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and for a pair of adjacent blocks B = {A, L1’ } :

where the sum is over nearest neighbor pairs ( ~ ~ ) intersecting d and 0’.
We then have :

Making a Mayer expansion gives

where the sum is over all collections of adjacent blocks { B~ }. Each { Bi }
determines a partition of A into connected paved and the inte-

gration (’ &#x3E; A factors over these sets. We have

where

and the sum is over all { contained in and connecting X. If X is a single
block A, then po(A) _ ~ exp ( - Note that each px(A) is gauge
invariant and depends only 
Now we estimate for any F E ~ and x sufficiently small

If F is absent we have x 1- E. Similarly :

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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Also for I X &#x3E; 2

Each { has at least as many terms as the number of lines in a nearest
neighbor tree graph joining the blocks in X, and the latter is bounded
below by L -N°2(X). Since 1 )  x 1- 2E  
we have ~ In addition there are fewer
than 24|X|~exp(24|X|) terms in the sum over {Bi} and IXI ~2L-N0Y(X).
Thus for R: sufficiently small:

Now define for X ! I &#x3E; 2

Our estimate on 03C10394 implies log03C10394|~k1-3~ and so 03A00394(...) ~
Combined with IXI 2L’~J~(X) we have 
From the theory of polymer gasses (see for examples [6 ], [12 ], [13 ])

we have

where for

and for

Here the sum is over ordered collections of subsets of A and a(X 1, ..., XJ
is the truncated correlation function for a hard core polymer gas.
As noted which is sufficient. Furthermore Vy can be

estimated by Q(l - I [6] ] where

But I and exp ( -  2 for

AcX

No sufficiently large (we assume M&#x3E;:1). Then Q  2x1- 3E and

Vol. 48, n° 4-1988.
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I Vy I I Y I. The same bound works if we first extract from pxi
a factor exp ( - 2MJ~(X,)) and use &#x3E;- 2(Y) ... , X") = 0
unless the Xi overlap) to obtain I Vy  I Y exp ( - 2M2(Y)) and
hence Vy !  exp ( - 

REMARK 2 . 2. 2014 We expand Vy in powers of A by Vy = V2,y + V4,Y+ 
where V2,y(A) = (1/2)d2/dt2 etc. then V2 = etc.).

~ 4’ ’ ’ 
Each term is gauge invariant. By the previous theorem and the Cauchy
bounds we conclude that for  C and x sufficiently small we have

We may also write :

where b’) = (1/2) [a2VY/aA(b)aA(b’) ](0) and

Then by the Cauchy bounds

REMARK 2. 3. and are localized gauge invariant polynomials
in A. It is important to be able to change such polynomials to polynomials
in dA of the same type. We now explain how this is done. (See also [4 ],
§111.3.)

Given let ryx be the shortest rectilinear contour from y to x
passing through the points Y=(Yo, Yb Y2, Y3)~ Yi. Y2~ x3)~ 
(yo. Xb x2, x3) and x = (xo, Xb x2, x3). (Since our lattice has an odd number
of points in each direction there is a unique such contour.)
Now given A E R^* and a reference point y ~ A we define X E R^ by

Annales de l’Institut Henri Poincaré - Physique theorique
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Then the gauge transformed field A’ = A - dx is given by

Note that Cy,b is a closed curve. Let (~y c A* be all bonds such that
Cy,b is topologically trivial. Most bonds are in For such bonds we have

either that Cy,b = 0 (if b is on the tree or else Cy,b consists of two
rectilinear lines one unit apart and the bonds joining them at the end. In
the latter case let Sy,b be the oriented surface between these lines so that
aSy,b = Cy,b; see figure 1. Then by the lattice version of Stoke’s theorem
we have

There are also unfortunately exceptional bonds b ~ U~ y for which Cy,b is

FiG. 1. - The contour Cy,b (with arrows) and the surface Sy,b (shaded) so aSy,b = Cy,b.
We have assumed both y and b are in the plane xo = 0.

Vol. 48, n° 4-1988.
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topologically non-trivial. For this to occur the length of Cy,b must at least
LN and so d(y, b) &#x3E; (LN - 1)/2. (d( y, b) = distance from y to b in l1 metric.)
Roughly speaking b must be maximally distant from y.

These considerations are used in the following theorem. Let us make
the convention that if X is a paved set then X* c A* is all bonds b = bJl(x)
such that x E X, and X** c A** is all plaquettes p = such that
x EX. Also (X x Y)* * = X* * x Y* *, etc.

THEOREM 2.4. 2014 Under the hypotheses of Theorem 2.1 we have

where I, J are invariant under lattice symmetries and satisfy :

and U2, U4 are polynomials of the indicated degree and satisfy for  C

Proof - We first establish such a representation for V2,Y(A). Now
V2,y(A) can be regarded as a gauge invariant function on all of even

though it only depends on A(b), b c Y. As such we may pick a reference
point y in the center of some block A c Y and replace A(b) by A’(b) as
above. For ordinary points b E we change to dA. This gives

where

Note that Iy, Ly may depend o on variables outside Y. If we now sum over Y

Anna/es de l’Institut Henri Poincaré - Physique theorique
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we have the claimed representation for V2 = V2,y with I 

L = Y Ly, and U2(A) = b2)A(b2).
Y

Turning now to the estimates we consider a term in the sum defining
p’). Since M is arbitrary the bound on ny(b, b’) gives a factor

exp ( - 8MJ~(Y)). But since we have 2(Y) ~ d(b, y) - Thus
we may extract factors like exp ( - 3Md(b, y)). In addition p E Sy,b implies
that d(b, y) &#x3E;- d(p, y). These considerations give:

I  ~( 1 )C 2 x 1 E exp ( - 2M(2(Y) + + ~(~y)))

where ~(1) depends on L, No.
Now suppose p E 0**, p’ E 0’** and choose Ay c Y so ye Ay. Then
y) ~ 2(ð. u Ay) + ?(1) and so ,

Using ~y exp ( - AQ)  ~(1) we get

This gives an estimate of the same form when we sum over (A x A’)**.
Since O(1)C-2k1-~ ~ k1-2~ for 03BA large, and since 8 is arbitrary we have
the estimate on I.

Proceeding similarly we have the bound

However Ly is non-zero only if there exists a bond b in Y n 1"’00/ Since

b, yeY and d(~y) ~ LN/2 + ?(1) we must have 2(Y) ~ LN/2 + ~(1).
This leads to the bound 
and hence 1 U 2(A)  (~( 1)x 1- E ~ I A 13 exp ( - 4MLN). Since, I A = 
the bound I U 2(A)  x 1- 2E ~ A 1- 1 follows. 

’

Now I, U2 may not be invariant under lattice symmetries, but since V2
is invariant we may average over all lattice symmetries and get invariant
objects which have bounds of the same form.

This completes the analysis of V2, and V4 is treated similarly.

Remarks. 2014 We rewrite the second order term in a tensor notation by
defining = and 
where = x(x + - zM. With a similar definition for I we have

(with summation convention and   v, P  6)

Vol. 48, n° 4-1988.
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Define a constant ko satisfying by

The sum must be independent of x and have the indicated form because
of the invariance under lattice symmetries. We replace by 

in Vz(A) we get k0/2~ dA ~2 and then choose Z o so Z o + k o =1 to get1 2 dA 2.
There is of course a correction - term left over. 2

Our results to this point can be summarized by saying that the effective

photon action has the form S ( ) A = -II 2 1 dA 112 + V(A) where now V = V’ + U’

In the renormalization group analysis to which we now turn we will see
that all the terms in V’ are irrelevant. This is not strictly true for U’ which
comes from the global loops. But this term is so small that it does not

matter if it grows or not. This term would be completely absent if we had
chosen a lattice with a trivial topology. We have not done this because
it would mean giving up translation invariance.

3. RENORMALIZATION GROUP TRANSFORMATIONS

We consider the measure exp ( - S(A))dA on [A* : ] where dA is

Lebesgue measure. The study of this measure is reduced to the study of
a sequence of more tractable measures following the analysis of Balaban [1 ].
The analysis is based on an averaging operator Q defined as follows.

Let An = A(N - n) be the unit toroidal lattice with L 4(N-n) sites ; we have
Ao = A. Then Q = Q(L) is defined from [A~ : tR] to [A~+ 1 : [R] by:

Here for b E A~+i, x E ~4, Lb + x is a contour in An and for any such con-

tour y we define A(y) = A(b). We also consider Qk = = Q(Lk).
bey

Annales de l’Institut Henri Poincaré - Physique théorique



367QED ON A LATTICE: I. INFRARED ASYMPTOTIC FREEDOM FOR BOUNDED FIELDS

We also need some gauge fixing procedure to have convergent integrals.
For y ~ LAn+1 c An let B(y) be the block

These blocks partition An. Now for x E B( y) let iyx be the symmetrized recti-
linear path iyx = where 7r is a permutation of (3, 2, 1, 0) and in ryx
the coordinates are changed in the order ~c. The symmetrization (as in [3 ])
is necessary to preserve lattice symmetries. Then define

Our symmetrized axial gauge fixing consists in setting A(iyx) = 0 by inserting

where ~" denotes all the ~yx in An.
The renormalization group transformation consists in defining effective

actions Sn on [A~ : )R] by So = S and by

One can show that these integrals are well-defined. For large n, Sn will
carry information about the expectations of large scale observables.
With this definition Sn is gauge invariant. To see this for given

~, E [An + 1 : [R] ] define ~,’ E IR] ] so ~,’(Lx) _ ~,(x) is constant on

L-blocks. Then d03BB = = where Qo is a block averaging
operator on scalars. The result now follows by a change of variables and
~(A~ + d~’) _ ~~, (A’).

In the following it will be convenient to modify (3.3) somewhat to
isolate the constant terms and allow for a field strength renormalization.
Thus we replace (3.3) by

where [A=0] denotes the numeration with A=O so that for all n.

The constants 03BEn are to be chosen for later convenience. The idea is that
if one can control (3.4) with some reasonable choice of ~n, then one can
control (3.3). 

i _ A 1 dA 1 AOTAFirst consider (3.4) with ’n = 1 and 

Vol. 48, n° 4-1988.
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where Do = ~ ~ = (d)*. We assert that (A, for some ope-
rator ð"6 on [A~ :~]. Indeed, suppose it is true for n. Define

by putting = A’ where A’ is the minimizer of (A’,A~A’) on the
manifold QA’ = A, = 0. Then making the change of variables
A’ -+ A’ + H(n+1)A in (3 . 4) we find with

= H~" + 1 ~*On H(n + 1 y If we define Hn: [A~ : R] -~ [A*, R] ] by

then

One can also characterize HnA as the minimizer for ~ dA’ !p subject to
the constraints QnA’ = A ; A~ = 0, = 0, ..., = 0.

In the general case we make the change of variable A’ ~ 
and find that

where Vo = V and

Since Sn(A) and (A, are gauge invariant we have that V"(A) is gauge
invariant. Similarly, Vn(A) is invariant under lattice symmetries.
We next parametrize the subspace QA = 0, Aff = 0 in [An : For

y E let ~y c An be all bonds contained in B( y) (~y ~ B( y)*) and let
~,, c A~ be the edge bonds connecting B( y) to some other block. Then
[An : [R ] is a direct sum over y of [~y : tR E9 [iCy: We specify coordinates
on [~y : [R] by giving a basis for this space as follows. The set of characte-
ristic functions of the denoted are independent and span a subspace
[~y] c [~y : Let be the orthogonal subspace and let Xy = 
be an orthonormal basis for this space such that the translation of 
by is A basis for [~y : [R] is then ~ y u ~y. For IR] ] we
let ~y be the edge bonds with the central bond excluded and use standard
coordinates on ry : The central bond coordinates are replaced by QA.
Thus with J = = = ~yEy we may define a non-singular
operator

by

where ° = Integrals over QA = 0, A~ = 0 then may be

Annales de Henri Poincare - Physique ’ theorique ’
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expressed as integrals over ~ 0 ~ E9 [~ : (~] 0 [~ : [R]j3 { 0 } which we
identify with [E : ~] ] where E = X v ~ also written E". Let C be T-1
restricted to this subspace. Then C is a strictly local operator satisfying
QCA = 0 and = 0.
Then (3 . 7) becomes , _ ,

Let rn = Then rn is a positive operator and we have after the
change of variable A -&#x3E; 

where ~ is the Gaussian measure on [~ : [R] ] with mean zero and unit
covariance.
The potentials Vn(A) actually depend on A only through A = HnA. In

fact suppose we define Vn on [A* : [R] ] by Vo = V and

where Mn = and 03B4n is any function which vanishes on Ran (HJ.
Then V,,(A) = will be chosen later for convenience.
The final modification is to scale down to lattices L - n A with lattice

spacing L - ". This is useful for estimates. Accordingly we introduce the
scaling operator O"L mapping [L -n-1A* [R] ] -+ [L’"A* : [R] ] defined by

Similarly we use = Let d be the exterior derivative defined on

Then = If we define

then we have

Vol. 48, n° 4-1988.
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Now define ~n = Hn mapping [A~ : [R] to [L - nA* : ~]. We then
. 

define 1/’"n on [L - "A* : ~ by 1/’"0 = V and

where = Mn = and where Then
we have ~’n(~) = and so

Thus to study the flow of Vn (and hence Sn) it suffices to study the flow of
1/n as defined by (3.11). We have the freedom to choose 03BEn and to choose
~~Y~’n be any function which vanishes on Ran 
At this point we make some remarks on notation. Define

by 12n = Then it is !2n which Balaban calls Qn (after his rescaling).
Our can be characterized by saying that ~ _ is the minimizer
for II dj~ 112 subject to = A, (0-1~)~ = = 0, etc. and
thus it is our which is Balaban’s Hn.
For future reference we note that ~n can be written

where ° I = L ’  o where " o  contour y,

So far we have worked exclusively in an axial gauge. However, we could
have changed to another gauge such as the Feynmann gauge. This would
have given rise to new minimizers ~, which however are related to the
axial minimizers by a gauge transformation ~n = + d(’) [5 ]. Since
fn is gauge invariant we can make the replacement Xn -+ X’n in (3 .11 ),
(3 .12). Hereafter we assume this has been done, but keep the same notation.
The point is that one has better estimates for the Feynman gauge mini-
mizers.
The estimates we need are the following :

LEMMA 3.1. There is a constant {3 (depending on L) such that for all n :

Annales de Henri Physique theorique
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c) Similar bounds for ~ = 

Proof 2014 To prove a) we use a result of Balaban and Jaffe [4] which
says that if T is a positive operator on l2 of some lattice with T &#x3E; m and

I ~ exp ( - /3d(x, x’)), then there exist constants K, j8’ depending
only such that (T) -1 (x, x’) ~  Kexp(- /3’d(x, x’)).
Now r" = is an operator on which satisfies the hypothesis

of this theorem with constants independent of n [1 ]. The same is true
of (m + ~.) -1 (I-’n + ~,) for any ~, &#x3E;- 0 with constants independent of ~,, n.
It follows that for some /3 &#x3E; 0 and (1, (1’ E fn

The result now follows from the representation

Part b) is also a result of Balaban [1], and c) follows from a), b) and the
fact that C is strictly local.

4. BOUNDED FIELD APPROXIMATION

We now consider a modification of the recursion for 1/n in which the
fluctuation fields are bounded. This provides a relatively simple frame-
work for introducing techniques which will be useful in the general proof.
Our treatment follows that of Gawedski-Kupiainen [10 ], [11 ], [12 ]. 

_

The basic modification is to replace the unit Gaussian measure 
by = where x"(A) is the characteristic function of

! A(o~) ~  (no + Here v is a fixed integer and no will be chosen large.
Thus for dE [L -n-1A* :~] we have instead of (3.11)

with 1/0 = V from the end of section 2.
We study this recursion relation with restrictions on the magnitude and
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smoothness of ~, which however weaken as n increases. We define for
some constant C

and require for .c/ E [L - "n* : ~ ] :

Here where

with   v and ~ = L -no It will also be useful to allow A to be complex.
For a paved set Y let be all complex-valued functions ~ on bonds
in Y satisfying (4 . 2). is denoted 
For the following theorem we suppose that the constants L, No, C, no

are sufficiently large and chosen in the indicated order. Thus No ~ No(L),
C ~ C(No, L), No, L). We also let a be some fixed fraction of 03B2
from Lemma 3.1.
We further define :

In the following expressions like ~(~) mean bounded by a constant times
(5~ where the constant can depend on L, No.

THEOREM 4.1. Let ?c be sufficiently small. Then there exists a choice
for 03BEn with |03BEn - 1!  03B43n and 03B4Nn vanishing on Ran Xn so that 1/’n has the
form 1/’n = 1/’~ + ~n where 1/’~ is analytic on fn with Taylor expansion
1/’~ = ~,2 + ~n,4 + ~n,&#x3E;6 and where the various pieces have the form :

c) Nn,~6 =03A3YNn,~6,Y where Nn,~6,Y depends only on A in Y, is analytic
on Hn(Y), and satisfies there | Nn,~ 6,Y(A) I S 03B45n exp ( - a2(Y)).
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d) ~ satisfies for j~ E j~ real :

In addition each piece is gauge invariant.

Remarks. The form of the small factors like has no fundamental

significance and has been chosen for convenience. Now we write

"f/’n,2 = "f/’n,2,Y where ~n,2,Y is an expression of the form a) but with
Y

the sum over ,u, v, p, 6 and x, y restricted so that the smallest paved set
containing and is Y. Similarly we have = 

where ~n,4,y 1S a localization of the expression in b).

Note. These localizations are distinct from those of Lemma 2.1 for

n = 0. Then one can show using the estimates of the theorem that for

We have arranged the bounds here so that the terms of higher order in j~
are smaller, but so that the product of any two j/"’s is smaller still.
The estimates (4 . 4) and Eyexp ( - cx2(Y)) ~ 2 yield for 

! 1  ~(~~). An even stronger estimate holds for ~n(~)
so we have

Since I L -nA I, the number of blocks in L -nA, is proportional to the volume
this says that the energy density (for bounded fields) goes to zero expo-
nentially fast as n  oo. This is the infrared asymptotic freedom.

Proof 2014 It suffices to show that the results for n imply the results for
n + 1. The case n = 0 follows from the results of § 2 if x is sufficiently small.

Instead of studying ~’" + 1 directly, we first modify (4 .1 ) by setting ~+1 == 1,
~’~"+ 1 = 0, dropping the normalization, and replacing 1/n by 1/~. These
omissions will be corrected later. Thus we define ~’ (actually exp ( - ~)) by

We analyze W for A E 1 which is larger than the 1 we need
at the end. For such j~ we have that + ~{{nA) is in fn so
that the integrand is in the region where we have bounds. To see this
note that by Lemma 3.1 we have for (no+ n)v that Is (~(1)(no+ ~)B
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Thus we have for C satisfying (9(1) S C/4 and no sufficiently large

Similarly we establish the needed bounds on + etc.

STEP 1. The first step is to break exp ( - ~’) into localized pieces. The
decompositions "Yn,2 = etc. give rise to a decomposition
- where N’n,Y depends on A only in Y. Correspondingly we
make a Mayer expansion for exp ( - N’n). With A1 = 03C3LA + MnA we
have

Here the sum is over all collections of paved subsets {Y03B1} of L’"A.
Given { let { be the finest partition ofL’"A into unions of blocks

Lð so that each Y~ is in some Uk. Then each Uk is connected with respect to the
For each distinct pair { Uk, Uk. ~ we introduce a variable 1

and Let xk be the characteristic function of Uk or

Yu == ~y~Uk03A3y and let

Then while decouples the Uk’s. Now define

Then we have

Here the sum is over all collections of pairs { k, k’ ~ denoted rand 
with { ~ ~ } E r. The bracket [ ... ] is evaluated at = 0.
Each r divides the partition {Uk} into connected components. If we

take the union of the Uk’s in each connected component we get a partition
of L’"A of the form {LXi} where is a partition of L-(n+1)A into
paved sets. We classify the terms in our sum by the { they determine.
Since = 0, Msn does not connect {LXi} so for Ya ci LXi we have that

depends on A only in LXi. Then the integrals factor into contri-
butions from each LXi denoted pxr We have
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where

Here the sum is over collections of subsets { of LX. The { Y~ ~ deter-
mine a partition { of LX as above and the sum over r is over all collec-
tions of pairs { ~ ~ } so LX is connected.
Note that depends on A only in X. Also the gauge invariance

of /?x follows from the gauge invariance of ~,v.

STEP 2. The major contribution to (4.10) comes from /?x for 1,
i. e. X = d for some block d. In this case r = 0 and doing the sum over

we have

where

To estimate log po we define

and then

where (’,’ &#x3E; T is the truncated expectation.
and I A  (no we have that j~~ (restricted to

LA) is in and so  (9(£5;). It follows that the truncated
term in (4.13) is (9(£5~). The last term is 1 /4(n° +  
as well (assuming v &#x3E; 1).
The first term ( f # (~o) ~ o is but if we isolate the low order terms

in j~/ we can do better. The constant term is  f # (e-Hn( .)) &#x3E;0 and is (9(£5;).
For the quadratic term put ~ = + and we have
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The first term we keep and identify as

For the second term we note that ( ~,4,v(~) &#x3E;0 is analytic in the

disc 1,1  1 and bounded by ~(5~). It follows by the Cauchy bounds that
this term is C~2(" ). Similarly the third term is ~2~)’ (Here the subscript n in
C~"( ~ ) denotes the order in j~.) The quartic term is 1/4! d4/d~,4  ~ (~) 
The leading term comes from ~n,4,Y and is

The other contribution is 1/4! d4/d~,4 ~n,~6,Y(~)&#x3E;oL=o and is

Y~L0394

~4~~n ). Finally the terms of sixth order and higher are given by

In summary if we define 1//1 = 1//tA + 1//:,A + ~~6,A we have

STEP 3. - Next we estimate pX for &#x3E; 2. We introduce another

parameter r &#x3E;_ 1 for comparison purposes. We will choose r sufficiently
large depending on L, No, but then allow C, no to depend on r. Thus the
order of choice is L, No, r, C, no.

In the definition of ~ we allow s to be complex and satisfy :

Then we have

Here we assume the relevant variables lie in a single Uk so that xk is not

differentiated. With the same restriction we have for and

( A ~ _ (no + n)v that ~S = + satisfies the bounds (4. 2) (this
follows as in (4. 7) for C sufficiently large) and so restriction of ~S to each
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Y~ is in Thus etc. are analytic for s in the polydisc (4.19)
and satisfy the bounds (4.4) there. We also have

(provided no is sufficiently large).
With these estimates in mind we have

Here the first bracketed expression comes from using the Cauchy bounds
to estimate the derivatives 8/8sr.
To estimate pX we use the bound 2(Y) &#x3E;_ + ~(1) where Y

is the union of all LA blocks intersecting Y and ~ is small and independent
of L [9 ], [10 ]. Then

The last step follows by taking L sufficiently large and noting that r connects
the partition {L-1Uk} of X. (We also use that d(L -1 Uk, differs
from a distance to block centers by ~(1).) Thus we may extract a factor

from (4 . 21 ) at a cost which we absorb

into and a cost exp (~(1)! {Y~}!) which we absorb into U~(~n).
a

The sum over graphs r connecting the Uk’s is estimated by a sum over
all graphs r on the Uk’s and gives for r large
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The sum over {Y03B2} is estimated by

Here we use the fact that { = 0 only contributes for X ! = 1 to extract
the factor U~(8,3,~. Combining these we have for I X I 2 2

We can get sharper bounds by considering separately the terms with
! f Y~ } ~ I = 1. Terms with ! { I 2 2 are estimated exactly as above but
now we may extract a factor (~(b"~. For the terms with a single Ys we expand
exp (- IT) - 1 = - ~ + (~(’~2) and estimate the (~(’~2) as above to get
another term. We are left with

We distinguish between r = 0 which occurs when Y = LX and r 5~ 0.
If h ~ ~ we again estimate as above taking a factor from the 
Treating the contributions from ~,2,Y.~n,4,Y and ~,&#x3E;6,v separately we
obtain a term of the form :

Terms with r = 0 may be analyzed as the X = 0 terms in Step 2. Now
we use

and obtain

where is a sum of the following
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Combining all the above and using b"  we have

STEP 4. Now we take the logarithm of the expansion (4.10) for
exp ( - ~’) to define ~Y~’ and obtain a local expansion for it. As in Theo-
rem 2.1 we have ~" = where ~’o = - log po and for 2

where px = 
Using our bound (4 . 25) on px and log  (9(5;) we obtain as before

! G~n ) exp ( - and hence  (9(5;) exp ( - If

we only consider terms with n ~ 2 in (4.30) this can be improved to
The n = 1 term is just py which is py plus

(9( 5~) exp (- Thus using our expression (4 . 29) for pY we have
(still for 

This is established for I Y I ~ 2, but the same result holds for Y = ~ by
(4.18). Note that depends on A only in Y, and is gauge invariant.

STEP 5. 2014 We now work on the quadratic term and rearrange it into

the desired form. We have = + where

on Summing over Y gives ’~2 = ’~’2 + ~2. It is straight-
forward to make the identification

We need a similar expression for 5~2.
It will be sufficient to obtain the representation assuming A = Hn+1A

for a unit lattice field A; in the general case we will enforce it by using the
freedom to pick ~~n + 1. Accordingly we define for A E [A: + 1 : C] ]

Note that 5W2,v(A) is only approximately localized in Y. We adopt in
this section the convention that unit lattice variables are capitalized :
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then n+ 1A restricted to Y is in and we have

Now let 03B403A0Y be the kernel of so

By analyticity in the region (4 . 34) and the Cauchy bounds :

We need the fact that (SW2,y is gauge invariant. This follows from the
gauge invariance of b~2,y and the fact that = d ~, for some 

Because of the gauge invariance we may change from A to dA in 
as in Theorem 2.4. Making this change and then summing over Y gives
for ~W2 = 

where 51 = and

To estimate ° this we use the bound 0 on 03B403A0Y and 0 d(B, Y) + Y(Y)~d(B,y)+
and 0 d(B, y) &#x3E;_ d(P, y) to obtain as in the proof of Theorem 2.4 that for

Similarly we obtain for say I A I  1

One can argue that ~W2 is invariant under lattice symmetries so that

averaging over lattice symmetries give symmetric 03B4I, 03B4U2 satisfying bounds
of the same form.
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Now we return to 5l~- Since = id we have for j~ == 
that ~~’2(~) = Also then for 

where

and Xp is the characteristic function the set of plaquettes contained in P.
Note that :

Thus we have

where

and ~~2(~) _ ~U2(~+i~). Since h is strictly localized 5j~ satisfies the
same bound (4 . 40) as ~1. Also if  2Cn + 1 then !~~!  2Cn + 1 and
so the bound (4.41) holds for ~~2(~).
Using the symmetry of 51 and (4 . 44) we may define a constant kn+1 by

This enables us to extract the relevant part of ~2. Combining (4.32),
(4 . 4 5), and (4 . 47) we have
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where

We complete this stage of the analysis with some estimates. Changing
variables and using the estimate on Jn gives

Here 03B4,03B4’ are blocks like 0394, 0’. The last step requires some explanation.
If 0394 = 0’ then the bracketed expression is bounded by 2 and for L suffi-
ciently large the L -1/2 gives the small factor needed to get the last line. For
A 5~ 0’ then there are fewer than L3 terms in the sum over 5, ~’ with
J~ u ’) = ~’). Otherwise ~f(~ u 5~) &#x3E; ~’ + From
this we get that the bracketed expression is bounded by

which is sufficient to get the last line.
We also have by the estimate from (4.40) for 5~ and for r sufficiently

large

Combining these estimates gives

We also easily establish from (4.40), (4.47) for r large

STEP 6. The analysis of the quartic part of ~’ is quite similar to the
analysis of the quadratic part. We have ~Y~’4 = ’~l~’4 + ~’~4 where

and ’ where ° a 
= with (S~’4,y ~  (9(r-tð~)exp ( - 8(xJ~(Y)).
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Now we treat (S~’4,y as we treated ~~’2,Y : change to unit lattice variables A,
make the transformation from A to dA as in Theorem 2 . 4 and then change
back to This yields

where for p1 E 0 i *, ... , p4 E 04 * :

and where for  2Cn+ 1

Combining these gives

As in the estimate on can establish

STEP 7. - We next estimate higher order terms We have
= + ~6,Y where is given by (4 . 28) (even for

Y=A)and where ~~6,v(~)! 
To get a sharp estimate on ~’~ 6,y note that for and

I ~  2 we have that ~° restricted to Y is in and so

By the Cauchy bounds we have for ~, ~  1 that

We also use instead of (4.27) the estimate for I X &#x3E; 2

This follows (after some work) from the fact that there are less than or
equal to L3 choice of Y in this sum with Y(Y) = and for the others

&#x3E;_ + For X! = 1 the same sum is bounded by L4 + 1.
Thus we have for and I Y &#x3E; 1
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Since ~~ 6 ~y is of order six or larger, if we cut down to we

gain a factor of (8/L)6. This is enough to dominate the L4 + 1 and give
a small factor and so for L sufficiently large

This same bound holds for 5~e,Y for r sufficiently large and so we
have for 

STEP 8. The analysis of ~’ is complete and we now look at what it
says about ~+1. First define

This differs from exp ( - ~Y~’n+ 1(~)) only by the 1/’~ under the integral
instead of 1/", i. e. ~ is missing. Then we have

If A = HnA we have by (4.48), (4.58)

Accordingly we may define for general j~

This vanishes for as required.
We define ° ~n+ 1 so 1 i.e. ~,=(1+~,)-’.

We also 0 make " the following j definitions :

and
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Then we have ~+1 = ~+1 1 + ~~n + 1 where ~+1 has the form required
by the theorem, i. e.

The bounds of the theorem are also satisfied. By (4.53), ~+1 2014 1 ~  5~+1.
The estimates on Jn+1, Gn+1 then follow from (4 . 52) and (4 . 59). If A ~ Kn+1 1
then and so the bound on ~+1 ~6v(~) follows from
(4 . 62). 

, ~ . 

" ’

Now define by ~+1 = ~n + ~ + ~+1. Then we have the required
’~n + ~ = ~.+1 + ~n + 1 if we define = + ~.+1. We must
estimate ~+1 for 1 and real.
The assumed bound on U’n says that for A E %n we have

which implies for ~/ real

By (4 .1 ), (4 . 63) it follows that for 

and hence !~~!=!~~-~~2~!AJ-’. Since 
this gives I ~n + 1 I ~ 1 /2 ~+1! I An+ 1 1-1. We also have by (4 . 41 ) for ~~1C2
and (4 . 57) for ~~4 that for ~~n + 1 (~ ) ~ I  ~(r 2 ~n ) ~ An + 1 ~ 1-1.
For r sufficiently large this is bounded by 1/2 5;+ 1 1 An+ 1 1- 1. Combining
these two bounds we have the required ~n + 1 (~ ) I ~ 5~+i! 
We have now established all the bounds for ~+1. The gauge invariance

of the various pieces is evident and so we are done.
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