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Uncertainty relations and state spaces

Sylvia PULMANNOVÁ
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814 73 Bratislava, Czechostoyakia

Ann. Inst. Henri Poincare,
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ABSTRACT. 2014 We show that on a quantum logic L which has a sufficient
set of states S(L) with the property : for every two noncompatible elements
a, b of L there is a state s E S(L) such that s(a) = s(b) = 1, the uncertainty
relations cannot be satisfied for any pair of observables on L.

RESUME. Nous montrons que si une logique quantique L a un ensemble
d’états S(L) assez grand, c’est-a-dire si pour toute paire a, b d’elements
non compatibles de L il existe un etat s E S(L) tel que s(a) = s(b) = 1,
alors la relation d’incertitude ne peut être satisfaite pour aucune paire
d’observables de L.

1. INTRODUCTION

A quantum logic (a logic in short) is a partially ordered set L with the
first and last elements 0 and 1, respectively, and with the orthocomple-
mentation ’ : L ~ L such that

i) (T=~
V  ~,

V ~ = 1,
iv) for any sequence {ai} c L such that ai ~ a’j (i ~ j, i, j = 1, 2, ...)

the supremum exists in L,
i= 1

v) b then there is c ~ L such that c ~ a’ and b = a V c.
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326 S. PULMANNOVA

Two elements a, bEL are said to be orthogonal (written a 1 b) if
a  b’, and a, b E L are said to be compatible (written a ~ b) if there are
mutually orthogonal elements c in L such that a = a 1 V c,
&#x26; = &#x26;i V c. 
A state on L is a map s : L -~ [0, 1 ] such that s(1) - 1 and

00 

oo 
.

I for any sequence {ai} of mutually orthogonal
i= 1 i=1

elements of L. Let S(L) denote the set of all states on L, i. e. the state space
of L.
A set S c S(L) is said to be sufficient if for every a E L, ~ 5~ 0, there exists

5’ E S such that s(a) = 1, ordering b implies that there is s E S such
that &#x3E; s(b), strongly ordering b implies that there is s E S such
that s(a) = 1, s(b) ~ 1.
A strongly ordering set S is ordering and sufficient, but in general, an

ordering and sufficient set of states need not be strongly ordering (see
e. g. [1 ] for the proofs of these statements).
A state sES(L) such that for all aEL is called dispersion free

or a 0-1 state. Let So be a set of 0-1 states. The conditions So is ordering
and So is strongly ordering are equivalent. Indeed, let So be ordering
and let a ~ b. Then there is s E So such that &#x3E; s(b). But this means
that s( a) = 1 and s(b) = 0, i. e. So is strongly ordering.

Let B(R) denote the family of all Borel subsets of the real line R. An
observable on a logic L is a map x : B(R) ~ L such that

i ) x(R) = 1 , -

ii) = x(E)’ for any E E B(R), where Ec = R - E,

any sequence {Ei} of mutually disjoint

elements of B(R).
If x is an observable and s E S(L), the map sx : E H s(x(E)) is a proba-

bility measure on B(R). The expectation of x in the state s is defined by

if the integral on the right exists, and the variance of x in the state s is
defined by

if the integral on the right exists.
Two observables x, y on L are compatible if x(E) ~ y(F) for any

E,FeB(R). The spectrum of an observable x is the smallest closed
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327UNCERTAINTY RELATIONS AND STATE SPACES

subset C of R such that x(C) = 1. An observable x is bounded if is

compact.
We shall need the following lemma.

LEMMA 1. Let x be an observable on a logic L. Then t E if and only
if for any open set U c R such that t E U we have 0.

Proof Let t ft r(x). As R is a regular topological space, there are disjoint
open sets U, V such that t E U and (y(x) c V. This implies that x(U) = 0.
Now let there exist an open set U c R such that t E U and x(U) = 0. Then
UC is closed and x(U’) = 1. This implies that c UC, i. e. 

2. CLASSES OF LOGICS

Let L denote a quantum logic, S(L) the state space of Land So(L) the
set of all 0-1 states on L. In [6], the following classes of logics with sufficient
state spaces have been studied.

C 1 : a + b =&#x3E; there is se S(L) such that s(a) = 1 and 1,
C2 : a ~ ~ =~ to any given E &#x3E; 0 there is s E S(L) such that s(a) = 1

and s(b) &#x3E; 1 - e,
C3 : a + b =&#x3E; there is s E S(L) such that s(a) = s(b) = 1,
C4 : So(L) is sufficient and a + h =~&#x3E; there is s E So(L) such that
= s(b) = 1.

Clearly, C1 ::&#x3E; C2 ::&#x3E; C3 ::&#x3E; C4 and by [6 ], all the inclusions are proper.
It is easy to see that C1 contains exactly logics with strongly ordering state
spaces. Indeed, let S(L) be strongly ordering. Since a + b implies a ~ b,
there is s E S(L) such that s(a) = 1, 1, i. e. L E C1. On the other hand,
let L E C1 and b. We have only to check the case when a b.
In this case a V c, b = b 1 V c, where c 1 are mutually ortho-
gonal. The condition a ~ b implies that a1 ~ 0. Since S(L) is sufficient,
there is s E S(L) such that = 1. This implies that s(a) = 1 and s(b) = 0,
hence S(L) is strongly ordering.

Let H be a Hilbert space. Let L(H) denote the quantum logic of all closed
subspaces of H (or equivalently, of all projections on H). The logic L(H)
is called a Hilbert space logic. For M E L(H), let PM denote the corres-
ponding projection. For any f E H, ~ ~ = 1, the M -~ ( pMf,f X
where ~ ... ~ is the inner product in H, defines a state on L(H), which is
called a vector state. According to Gleason theorem, if dim H &#x3E;_ 3 and H is

separable, every state on L(H) is a cr-convex combination of vector states.
Let M, N E L(H) and let M ~ N. Then there exists a unit vector f E M,
such that N, therefore = 1, s f(N) ~ 1. Hence L(H) belongs to C 1
Let for any unit vector f E H, [/ ] denote the one-dimensional subspace

Vol. 48, n° 4-1988.



328 S. PULMANNOVA

generated by f As the only state on L(H) which maps [/ ] to 1 is 
There has been shown in [7], that the logics of the class C2 have the fol-
lowing interesting property : for any two bounded observables x, y, the
condition s(x) = s( y) in every state implies that x = y. In other
words, the logics in C2 satisfy the condition U ( = Uniqueness, see [2 ],
p. 55). The Hilbert space logics also satisfy the property U. In general,
it is not known if the logics in C 1 satisfy this condition.
A special family of logics is formed by 03C3-classes. A 6-class is a family

of subsets of a nonempty set X which contains X and is closed under the
formations of set-theoretical complements and countable unions of pair-
wise disjoint elements. A cr-class ordered by inclusion and orthocomple-
mented by set-theoretical complementation is a quantum logic. By [2 ],
p. 69, a o-class can be characterized as a logic posessing an ordering set
of 0-1 states. It is easy to see that the class C4 consists exactly of all 6-classes.
Indeed, let L be a 6-class. Since the set of all 0-1 states on L is ordering,
it is also strongly ordering. Let a, bEL be such that a + b, then surely
~ ~ b’, and therefore there is s E So(L) such that s(a) = 1, s(b’) = 0, i. e.

s(b) = 1. Hence On the other hand, if then using similar
arguments to that used by proving that a logic L E C 1 has a strongly ordering
state space, we show that L is a 6-class.

Let H be a two-dimensional Hilbert space. Then every set of non-zero

mutually orthogonal elements in L(H) is of the form {~, ~ }, ~ E L(H).
It is easy to see that L(H) is a 6-class. Indeed, let

and ~) = { 5 E So s(a) = 1}. It is easy to check that the mappings in So
are states on L(H), So is ordering and the E L(H) }
of subsets of So forms a 7-class. To give a more explicite representation,
let H = R2 and let X = [0,7r) x [0,7r). Put

It is easy to check [0,7c)} is a 6-class 

iff 03B2 = IX + 03C0,2 03C4(03B1)c = 03C4( a + - )). Every one-dimensional subspace in R2
can be characterized by an angle 0:, a E [0,7r). Denote by [oc] the one-dimen-
sional subspace corresponding to oc. The map h : L(H) ~ 0, h(o) _ 0,
h(H) = X, h( [a ]) = r(x), defines an isomorphism between L(H) and 0.
Let be the probability measure on ð. concentrated in the point (/3, y) E X.
The set So = { ~,y)! (~3, y) represents the set of all 0-1 states on L(H).
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3. UNCERTAINTY RELATIONS

Let x be an observable on a logic L. We put

For any two observables x, y on L, one of the following alternative possi-
bilities occurs :

If (B) occurs, we say that the uncertainty relation holds for x and y
(see [3 ], [1 ]).

For t E R, 03B4 &#x3E; 0, put U(t, 03B4)={r~R| |t -r |  03B4}. If x is an observable
and t E 7(x), then x(U(t, ~) ~ 0 by Lemma 1.

Let x and y be observables. The following two possibilities can occur :

THEOREM 1. Let L be a logic with a sufficient state space. If for the
observables x and y on L the condition (a) holds, then the uncertainty
relation does not hold. In other words, (a) ==&#x3E; (A).

Proof Let (a) hold for the observables x and y. We show that the
following holds :

(110 exists by (a)). Suppose that the opposite holds, i. e.

Since by (a) ~) H y(U(v, ~), it is ~)) 1 y(U(v, ~)). We have
c: u { U(v, ~(v)) ~ v E 6( y) ~. By the second countability of the topology

of R, there is a countable set { such that

Vol. 48, n° 4-1988.
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Then x(U(u, ~))  for all i = 1, 2, ... implies that

which contradicts the supposition that u E 6(x). Let us choose 
and 03B4 &#x3E; 0. Then there is v E Q( y) such that for any ~  110 = 5))
we have x(U(u, 5)) A r~)) ~ 0. By the sufficiency of S(L) there is

S E S(L) such that

Hence r (t -  452, and similarly vars (y)  4~.
U(u,8)

By choosing 11  min 
2014 , 

we obtain that for any given  &#x3E; 0

there exists a state S E S(L) such that vars (x) . vars (y)  E.

Remark. 2014 Condition (a) can be weakened to (a’), where

(a’) (~(u, 5) : ~ E 6(x), b &#x3E; 0) (b’v E 6( y)) (~~10 &#x3E; 0) (V~y, 0  ~1  
(x(U(M~)) ~ y(U(v~ ~1)))
and (a’) ==&#x3E; (A).

THEOREM 2. Let L be a logic which is a lattice. If for the observables x
and y the condition (a) holds, then x and yare compatible.

Proof Let U be any open subset of R. We have y(U) = y(U n 
and U n c= u { U( r~(v)) ~ v E n U} c U, where r~(v) &#x3E; 0. By the
second countability of R, there is a countable subfamily {U(vi, ~(vi)}
such that

and

By the property (~), to any M E 7(x) and 5 &#x3E; 0, and to any open set U there
00

are ~) &#x3E; 0 such that y(U) = V and

i= 1

for i = 1, 2, ..., which implies that jc(U(M,5)) -~ y(U). Now let V be an
open subset of R. Then there are ui E and ~i &#x3E; 0, i = 1, 2, ... such

Annales de l’Institut Henri Poincaré - Physique theorique
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00

that x(V) = - y(U)
i= 1

for any open subsets U, V of R, and, this implies that x ~--~ y.

THEOREM 3. Let L E C3. Then the uncertainty relation (B) does not
hold for any pair of observables on L.

Proof - Let x, y be observables on L. By Theorem 1, (a) ~ (A). Suppose
that (b) holds for x and y. Then there are u E y(x), ~ &#x3E; 0, v E such that
to any ~0 &#x3E; 0 there is ~  ~0 such that 03B4)) + yy)). As L
belongs to C3, there is a state s E S(L) such that 5))) = s(y(U( v, r~))) = 1.
Choosing ~ sufficiently small we obtain vars (x) . vars ( y)  E for any given
s &#x3E; 0.

Let H2 - L(R) be the set of all square-integrable complex valued func-
tions defined on R with respect to the Lebesgue measure. Let q and p
be the « position » and « momentum » observables corresponding to the

self-adjoint operators P, Q, where = rf(r), (Py)(r) = - 

for r E R. It can be shown that varsf (q) . varsf (/?) &#x3E;: 4 for all E D(Q) n D(P),
where D(A) denotes the domain of the operator A (see e. g. [8 ], p. 77,
393-394 for the proof). For any self-adjoint operator A its domain

where EA is the spectral measure (which can be identified with the observable
corresponding to A by the spectral theorem). Owing to Gleason theorem,
every state on L(H) is a 6-convex combination of vector states. From this
we may conclude that the observables p and q satisfy the uncertainty
relation in the sense of our definition.
The above example shows that there are couples of observables on the

logics of the class C1 which satisfy the uncertainty relations. It remains
an open question if there exist couples of observables on the logics of the
class C2 satisfying the uncertainty relations.

In [3 ], the notion of complementarity has been introduced as follows.
Let x, y be observables on a logic L. We say that x, y are complementary
if x(E) /B y(F) = 0 for every bounded subsets E, F of R such that 1

and y(F) ~ 1. It is a well-known fact that the observables q, p in the above

example are complementary (see e. g. [4 ], [5 ]). Now let us consider the
logic L(H) of the two-dimensional Hilbert space H. It is easy to see that
any two noncompatible observables on L(H) are complementary. This

Vol. 48, n° 4-1988.
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example shows that complementarity is not excluded on the logics of the
class C3 or even C4. However, it would be interesting to find less trivial
examples of unbounded complementary observables on the logics of the
class C3.
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