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Note on a construction of unbounded measures

on a nonseparable Hilbert space quantum logic

Anatolij DVURECENSKIJ

Institute of Measurement and Measuring
Techniques, CEPR, Slovak Academy of Science, Dubravska cesta,

842 19 Bratislava, Czechoslovakia

Ann. Henri Poincaré,

Vol. 48, n° 4, 1988, Physique theorique

ABSTRACT. 2014 We present classifications and examples of measures with
possible infinite values defined on a quantum logic of all closed subspaces
of an infinite-dimensional Hilbert space. Moreover, it is shown that any
singular bilinear form generates no Gleason measure. The necessary and
sufficient conditions in order that a positive symmetric bilinear form
generates a Gleason measure are given. For a separable Hilbert space these
results are due to Lugovaja [1 ], [2 ].

RESUME.2014 Nous presentons une classification et des exemples de
mesures avec valeurs possibles infinies qui sont definies sur une logique
quantique d’un Hilbert espace de dimension infinie. On montre qu’une
forme sesquilinéaire singuliere ne genere aucune mesure de Gleason.
On presente les conditions necessaires et suffisantes pour qu’une forme
positive symetrique sesquilineaire genere une mesure de Gleason. Pour
Fespacede Hilbert separable ces conditions sont dues a Lugovaja [1 ], [2 ].

1. INTRODUCTION

Let L(H) be a quantum logic of all closed subspaces of a (not necessarily
separable) Hilbert space H over the field C of real or complex numbers.
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298 A. DVUREENSKIJ

A measure on L(H) is a map m : L(H) -~ [0, oo] ] such that i) m(o) = 0;
00

ii) m( 0 Mn) = 03A3 m(Mn) whenever Mn 1 Mm for n ~ m. (Here by (B Mt
"=1 2Lj tET

n=l

we denote the join of mutually orthogonal subspaces { Mt : t E T}.)
The theorem of Gleason [3] says that any finite measure m on a sepa-

rable Hilbert space, dim 2, is in one-to-one correspondence with
positive Hermitian operators T on H of finite trace via

m(M) = tr (TM), ME L(H), (1.1)
(we identify a subspace M with its orthoprojector PM). The Gleason for-
mula (1.1) has been extended to a nonseparable Hilbert space by Eilers
and Horst [4 ].
For measures with m(H) = oo we need the following notions. By Tr (H)

we mean the class of all bounded operators T in H such that, for every

orthonormal basis { a E I } of H, the series xa) converges and
aeI ~is independent of the basis used; the expression tr T :_ (T,) is

called the trace of T. ~
A bilinear form is a function t : D(t) x D(t) -~ C, where D(t) is a sub-

manifold (not necessarily dense or closed in H), called the domain of t,
such that t is linear in both arguments, and = y), x, y E D(t),
(X, /~ E C. If t(x, y) = for all x, y E D(t), then t is said to be symmetric;
if for a symmetric bilinear form t we have x) ~ 0 for all x E D(t), then t
is said to be positive.

Let P E L(H). By t o p we mean a bilinear form with domain

P) _ ~ x E H : Px E D(f)} such that t ~ P(x, y) = t(Px, P y), x, y E D(t o P).
If t o P is induced by an operator T E Tr(H), that is, f o j;) = (Tx, y)
for any x, y E H, then we say and we put 
For any nonzero x E H, by Px we denote the one-dimensional subspace

of H spanned over x.
Let n be a cardinal. We say that a measure m is n-finite if there is a set I

whose cardinal is n and a set of mutually orthogonal elements { Ma : a E I}
of L(H) such that 0 Ma = Hand  oo for any a E I. If, in parti-
cular, n = denotes the cardinal of all integers), we say that m
is 03C3-finite.

Let m be a cardinal. A function m : L(H) -~ [0, 00] J with m(o) = 0 is
said to be i ) m-additive if

whenever card A ~ 
aEA

ii) totally additive, if ( 1. 2) holds for any index set A. Hence, a measure
is a 03C3-additive function. ,

l’Institut Henri Poincaré - Physique theorique



299MEASURES ON A NONSEPARABLE HILBERT SPACE QUANTUM LOGIC

Lugovaja and Sherstnev [5 ] proved that for any 03C3-finite measure m
- on L(H), with m(H) = oo, of a separable Hilbert space H, there exists a
unique positive symmetric bilinear form t defined on a dense domain such
that

This result has been extended by the author [6] to any cr-flnite measure
on L(H) of a Hilbert space H whose dimension is a non-measurable car-
dinal ~ 2. We recall, according to Ulam [7], that the cardinal I is non-
measurable if there is no non-trivial finite measure v on the power set 2A
of a set A, whose cardinal is I, such that v( ~ a ~ ) = 0 for any a E A. For
example, all finite cardinals and are nonmeasurable cardinals. So c

(c is the cardinal of all reals) is (under the continuum hypothesis or under
a more weaker form, see [7]).

2. THE LUGOVAJA-SHERSTNEV PROPERTY

Let m be a measure on L(H). We say that m has i ) the Lugovaja-Sherstnev
property (L-S property in short) if there is a two-dimensional subspace
Q E L(H) with m(Q)  00; ii) the density property if

is dense in H ; iii) the L-S density property if i) and ii) holds.

LEMMA 2 .1. - ( [8 ]) Let oo &#x3E; dimH ~ 3 and let m be a measure

on L(H) with m(H) = oo. If there are P and Q such that dim Q1 - 1 = dim P,
m(Q) + m(P)  oo, then P c Q.

LEMMA 2.2. - If m has the Lugovaja-Sherstnev property, then D(m)
is a linear submanifold of H.

Proof. 2014 It is clear that 0 E D(m), and if x E D(m), then ax E D(m) for
any 0: E C.
Now let x, y E D(m), and let x and y be linearly independent vectors.

Choose a two-dimensional Q c D(m). We assert that m(Q u PJ  oo ;

if not, then, due to Lemma 2.1, Px c Q. Applying once more Lemma 2.1
to m(Q u Px u Py), we obtain Q u Px u Py c D(m). Q. E. D.

It is evident that any 03C3-finite or n-finite measure has the L-S property.
The converse is not true, in general, as we show in Section 3. If m has the L-S
density on L(H), 2  dim H  oo, then m is finite.

REMARK 2. 3. - Let m be a measure on L(H) with a not dense domain

Vol. 48, n° 4-1988.
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D(m). Put mo := m ~ L(D(m)), where D(m) is the closure of D(m) in H. If
we put

then m = ml, and D(mo) is dense in J5(m).. 
,

Therefore, without loss of generality we limit ourselves only to measures
with the density property.
We now introduce some definitions.
An element M E L(H) is a support of a measure m if m(P) = 0 iff M 1 P.

[0,~] is a frame func-
tion if i ) f (ax) = /(x) for any x E S(H) and any scalar = 1 ;
ii) there is a constant W (may be + oo, too), called the weight of f, such that,
for any orthonormal basis { xa : a E A} of H, f(xa) = W. A frame func-

aeA

tion f has a finiteness property if  oo, for some orthonormal

iEI

systems of vectors {xi : i E I} c H, implies f | S(G) is a frame function
with a finite weight, where G = A frame function f is regular if
there is a positive symmetric bilinear form t with 

 oo } u {0} such that f(x) = x) for any x E S(H) n D(t).
An example of a regular frame function without the iiniteness property
is given in Example 5.2.

Similarly as in [6 ], we may show that if f is a frame function on a Hil-
bert space H of dimension 7~ 2 such that there are two orthonormal vec-
tors x and y with f(x) + f(y)  oo, then f is regular.

THEOREM 2.4. 2014 (Generalized Maeda’s Theorem) Let L(H) be a quan-
tum logic of a real or complex Hilbert space H of dimension 7~ 2. Let m
be a measure with the L-S density property. The following assertions are
equivalent.

i ) There exists a unique positive symmetric bilinear form t with a dense
domain such that ( 1. 3) holds.

ii) m has a support. ,

iii) m is totally additive.
iv) For any M E L(H), f ~ S(M) is a frame function with a weight m(M),

where f(x) = m(Px), x E S(H).

Proof. The equivalence of i)-iii) may be proved using Lemma 2 . 2
and repeating the proof of Theorem 5 in [6 ]. The equivalence of iii) and iv)
is easily verifiable. Q. E. D.

Annales de l’Institut Henri Poincaré - Physique theorique
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If m satisfies the assertion i ) of Theorem 2 . 4, m is called a Gleason

measure. It is evident that then m has the L-S density property. It will
be shown below that the converse is not true, in general.

3. CLASSIFICATIONS AND EXAMPLES OF MEASURES

Let H be an infinite-dimensional Hilbert space and let n be a cardinal.

by we denote the set of all n-finite measures (with the L-S density
property). In particular, ifn= we write By J/ (H), and

J/(H) we- denote the sets of all finite measures, Gleason measures and
measures with the L-S density property.

If n and m are two infinite cardinals with m, then

The aim of the present section is to give examples of Hilbert spaces and
measures when some of the inclusions in (3.1) are proper.

EXAMPLE 3.1. - If dim H = %0, then 

Proof. The assertion will be proved if we show that any dense sub-
manifold D in H contains at least one orthonormal basis of H. Indeed,
let {en }~n= 1 be an orthonormal basis of H. For any n, there is xn E D such

00

that !! en - xn ~ ~ 2  1/2", so that  1. Now we claim to

n=l

show that {xn }~n= 1 generates H. Define a linear transformation A, say,
from H into the submanifold D via

If f = where J is a finite subset of integers, then

jeJ

Hence, the linear transformation 1- A may be extended uniquely to
a bounded linear operator defined on whole H (we denote it also as 1- A).
According to Halmos [9, p. 52], A is invertible. Therefore, the closed
linear submanifold generated by ~ x,; }~= ~ 1 coincides with H. If not, then

Vol. 48, n° 4-1988.
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. there is f ~ 0, f (~ 1). Moreover, there existsgE H such that Ag = f and

which implies a contradiction.
Now it suffices to apply the Gram-Schmidt orthogonalization process

to {xn }~n= 1, and Theorem 2 . 4 gives the desired result. Q. E. D.

PROPOSITION 3.2. - Let dim H = m, where m is an infinite cardinal
with mfo &#x3E; m. Let ~f be any Hamel basis of H. Then card H = card ~f 

Proof Let B be any orthonormal basis in H and let X = {A c B :
card A = J~o }. Let P2 be the set of all sequences of square-summable
numbers from C. Assuming the axion of choice, we may well order the set B.
For any f E H we denote by A~.=={~eB:(~)~0}, /={(~):
b E E P2. Due to [11, p. 291 ], card X = The set H may be splitted

. onto two disjoint subsets Ho and HH where Ho == { f e H : ( f, b) ~ 0 for
finitely many b E B }, H 00 = { f E H : ( f b) ~ 0 for infinitely many b E B }.
Hence, card H = ëa:rd-H. 

_

Define a mapping ~ : H ~ into X x P2 via ~( f ) = f ). It is easy
to verify that (~ is an one-to-one map from H ~ onto X x P2 . Therefore,
card ~f = card X x P2 = Q. E. D.

PROPOSITION 3 . 3. - Let m be an infinite cardinal such that m~° &#x3E; m.
Then in any Hilbert space of dimension n = mfo there is a linear subma-
nifold dense in H containing no basis of H.

Proof The present proof follows the idea of Gudder’s construction
forn = c [77].

Let E and F be two Hilbert spaces over the same field C of dimension m
and n, respectively. Define the direct sum of E and 
e E E, f E F }. Here an inner product is defined by

It is easy to show that dim H = n.
Choose an orthonormal basis { ~ : ~ E To } in E which is a part of a

Hamel basis { et : t E T }. According to our assumption and Proposition 3.1,
card T = n. Choose an orthonormal basis {ft:t~T-T0} in F (for sim-
plicity we may put T - To as the index set of all ~’s) and define a linear
mapping : E -~ F via Bet = 0, if t E To, and et = ~ if t E T - To . Then the
graph of B, that is the set G = {( e, E E }, is a dense submanifold
in H = E 0153 F. Indeed, since ( ~,0)eG for each t E To, it follows that

( e, 0 ) E G for each e E E, where G is the closure of G in H. This implies
that ( ~ B~ ) - ( e, 0 ) = ( 0, E G for each e E E. Since the range

l’Institut Henri Poincaré - Physique theorique
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of B is dense in F, we conclude that  e, / ) =  e, 0 ) +  0, f ~ E G for

_ 

all e E E, f E F, so that G=H.
Now we establish that G contains no basis of H. Since et, 0 ) 1-  es, 0 ),

t ~ s, t, s E To we assert that {; et, 0 ~ : t E a maximal orthonormal

system in G. This follows from a simple observation that if ( e, 1 ~ et, 0 )
for any t E To, then e 1- et. Hence e = 0 and Be = 0. Since all maximal
orthonormal systems in any fixed linear submanifold has the same cardi-

nality, we conclude that G contains no basis of H. Q.E.D.
We remark that the following alephs %co+co, (n &#x3E; 1), 

are (nonmeasurable) cardinals m fulfilling Proposition 3.1. Moreo-
ver, any m with %1 ~ m  c also fulfils it; but we note that in this case the
author does not know whether any linear dense submanifold contains

some orthonormal basis of H, when dim H = m.

Additionally, if m has a countable cofinality, that is, it may be expressed
as the sum of countably many cardinals less that m, then m~° &#x3E; m. There

are arbitrarily large cardinals m such that m~° &#x3E; m. Indeed, for each ordi-
nal 0:, has a countable cofinality.
We recall that there are also arbitrarily large cardinals m such that

In fact. Let be an exponent cardinal, that is = 2~.

If oc is a limit ordinal, then, due to [ 10, p. 300]~+i ~ Hence,
= (2~)~ = 2~~ = 2~ = a.+i. Therefore,

If we put m = we conclude the assertion.

EXAMPLE 3 . 4. - If dim H = where m is an infinite cardinal with
m, then

for any cardinal n.

Proof According to Proposition 3.3, we may choose a linear sub-
manifold G dense in H containing no basis of H. We define a map f :
S(H) ~ [0, 00 via

We assert that f is a frame function with the finiteness property and
with a weight W = 00. It determines a measure m (see Lemma 5.1) via

m(M) = where {xi} is an orthonormal basis in M. It is clear

1

that f is regular; it is determined by a positive symmetric bilinear form

t( . , . ) _ ( . , . ) I G. Since m(M)  oo, iff dim M  oo, we conclude that

m E for any tt. Q.E.D.

Vol. 48, n° 4-1988.
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EXAMPLE 3. 5. - If dim H ~ m &#x3E; then

Proof Let P E L(H) and dim P = m. Let t be a symmetric bilinear
form defined via y) _ (Px, Py), x, y E H. Then t determines some
measure m by (1. 3) (see also the first part of Theorem 5 . 3). Due to Theo-
rem 2 . 4, m has a carrier which is equal to P, and m E If, in addition,

then, by Theorem 6 [6 ], which is a
contradiction. Q. E. D.

Let n be a cardinal. Denote by the set of all n-additive measures
on L(H) with the L - S density property. By and 
we denote the classes of all finitely additive, 03C3-additive and totally additive
measures on L(H). If %0 ~ n  m, then

The equality follows from Theorem 2.4. There are

simple examples which show that all inclusions may be proper.

4. SINGULAR BILINEAR FORMS

A positive symmetric bilinear form t is said to be closed if t(xn - xm,
0 -~ imply x E D(t) and

t(xn - x, jc) -~ 0. Given two positive symmetric bilinear forms t 1
and t2 we write t1  t2 if and only if D(t2) and x)  t2(x, x)
for all x E D(t2). The closure t of t is the minimal closed extension of t

(if it exists). According to Simon [12 ], for any positive symmetric bilinear
form t, there is a unique pair of positive symmetric bilinear forms tr and ts
with

such that tr is the largest (in the above ordering) closable positive symme-
tric bilinear form less than t and ts = t - tr. tr and ts are called the regular
and singular part of t. If t = = ts), then t is said to be regular (singular).
We recall that D(t) must not be dense in H.

It is a straightforward verification that t with a dense domain D(t) in H
is singular iff, for any 0 ~ g E H, there is f E D(t) with

We remark that in any infinite-dimensional Hilbert space H there is a

singular bilinear form, even with a domain equal to H. Indeed, t ~ T0}
be an orthonormal basis in H which is a part of a Hamel basis { et : t E T }.

Annales de l’Institut Henri Poincaré - Physique theorique
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Fix an element et : t E T - To } and define an unbounded linear
operator S : H -~ H via

where Ao is an arbitrary finite subset of T containing to. Then t (with
D(t) = H) defined by

is a positive symmetric singular bilinear form. Hence, in particular, t deter-
mines no Gleason measure.

Lugovaja [7] ] proved that on a separable Hilbert space any singular
bilinear form with a dense domain determines no 03C3-finite Gleason measure
via ( 1. 3).

In this section we extend this result to a nonseparable Hilbert space.
Although the proof of this assertion is similar to that of Lugovaja, here
it depends on Theorem 2.4, and we present it here.

First of all we show the following lemma whose proof is identical to
that of Lugovaja [1 ].

LEMMA 4.1. - Let t be a singular bilinear form with a domain dense
in H. Let P E L(H) be a subspace such that

i ) P c D(f); .

ii) there is a constant c &#x3E; 0 with t(f, /) ~ c for any f E S(P). Then t D,
where D = P1 n D(t), is a singular form with a domain dense in the Hil-
bert space P1.

The main result of the present sections :

THEOREM 4. 2. - Let t be a singular bilinear form with a domain dense
in H. Then a mapping m : L(H) -~ [0,00] ] defined by ( 1. 3) is not a measure
on the quantum logic L(H) of the infinite-dimensional Hilbert space H.

Proof. Suppose that m given by (1. 3) is a measure. Since t is unbounded,
there exists x E S(H) n D(t) such that t(x, x) &#x3E; 1. The singularity of t implies,
by (4 . 2), that there exists such that 

Then

According to Lemma 4.1, tl := ~ where D(ti) = P i n D(t), is

singular. Due to the Zorn lemma and above, there exists a non-empty

Vol. 48, n° 4-1988.
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system of orthonormal vectors, { ~ ~ ~ A } c D(t), such that, for any
finite B, ~ ~ B c A, we have

We assert that ~-= ~ (x, ea)ea. Suppose the converse :
aeA ’

The condition ii) implies

Put P = 0 Since, due to the assumption, m is a Gleason measure,
Theorem 2 . 4 entails that m is totally additive. By (4.5) we have m(P)’ 1
and P c D(t). Due to Lemma D(t) is singular. Hence,
there is e E n D(t) such that e)  ! (e, y) 12. 

’

For any finite subset B c A we have

Therefore, for a the conditions i)-iii) are
fulfilled, which contradict the maximality of { ea : a E A }. Consequently,
x = ~ (x, and x E P c D(t). But on the other hand,

which is a contradiction. The theorem is proved. Q. E. D.

5. BILINEAR FORMS GENERATING MEASURES

In this section we give the necessary and sufficient condition for a posi-
tive symmetric bilinear form with a dense domain to generate a Gleason

1’Institut Henri Poincaré - Physique theorique
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measure via ( 1. 3). This assertion is a generalization of that for a separable
Hilbert space, due to Lugovaja [2 ]. Her result is given in [2] without proof.

First of all we present two assertions on frame functions. The proof of
the first one is straightforward and therefore it is omitted.

LEMMA 5.1. - Let m be a totally additive measure with not necessarily
the density property of an arbitrary Hilbert space H. Then f defined by

is a frame function with the finiteness property.
Conversely, let f be a frame function with the finiteness property.

Then a mapping m defined via

where { is an orthonormal basis in M, is a totally additive measure on
L(H).

EXAMPLE 5.2. - Let m be an infinite cardinal such that &#x3E; m.

Then in any Hilbert space H of dimension n = m~° there is a regular
frame function without the finiteness property and with the set { x E S(H) :
f(x)  ~} dense in H.

Proof Let us assume that H is of the form H = E 3 F, where E and F
are from the proof of Proposition 3. 3. Let B : E ~ F be the linear trans-
formation and let B be the graph of B from Proposition 3 . 3. Define a posi-
tive symmetric bilinear form t with D(t) = G via f( ( e, B~, ( ~ Se ~ ~ 2,
where S is the unbounded operator from (4. 3). Then a mapping f :
S(H) ~ [0, oo ] defined through

is a regular frame function. Q. E. D.

THEOREM 5.3. - A positive symmetric bilinear form t with a dense
domain determines via ( 1. 3) a Gleason measure on L(H) of an arbitrary
infinite-dimensional Hilbert space H iff, for any P E L(H),

where (~ o P)~. is the regular part of the closure ~.

Proof - Suppose that (5 . 3) hold. Let ~(f) = { P ~ L(H) : m(P)  oo },
where m is defined by (1.3). A straightforward calculation shows that
i ) and ~(0) =0; ii) if N c M E ~l(t), then and

Vol. 48, n° 4-1988.
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m(N) ~ m(M) ; iii) if M1, M2 E M 1 .1 M2, then M 1 0 M2 E and
m(M1 0 M2) = m(M1) + m(M2).

00

Now let M = EÐ Mn. We claim that
n= 1

It is evident that the series in (5.4) is less that m(M). If at least one
00

M~ ~ ~~(t), then (5 . 4) is true. Suppose only Then

n=1

clear that M, Mi c 
i ~ 1. For the closure (tM)r there is a unique positive symmetric ope-
rator T such that D(T1~2) = D((F~M),) and (t ~ M)r(x, x) _ 

where D(T 1 ~2) is the domain of an operator T 1 ~2.
We claim to show that if x E S(M), then It is evident that

00 .

x = xn, where xn = 1. Denote yn = xl + ... + x.

n= 1

Then, for any n  m,

m

where Tn is a trace operator corresponding to t ~ EÐ Mi. Then
i=n+ 1

here without loss of generality we assume that xi ~ 0 for any i 1 and

(xn + 1 + ... + xn+1 + ... + xm~2. Therefore T1/2yn ~ z and,
the closedness of T 1 ~2 implies x E D(T 1 ~2) and T 1 ~2y" -.~ T 1 ~2x. In other
words M c D(T1~2). Therefore D(T1~2) = Hand T is a Hermitian operator.
Now we show T E Tr(H). Choose an orthonormal 

in Mn, for 1, and let { xi0: i E be an orthonormal basis in M.1.
Then

Hence, (t 0 M)r E Tr (H), consequently, toM E Tr(H) and ~ (5 . 4) holds.

Annales de Henri Poincaré - Physique ’ théorique "
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Conversely, suppose that m is a Gleason measure on L(H). Then, due
to Theorem 2 . 4, there is a unique t such that ( 1. 3) holds. We claim to
establish that (5.3) is true.

Suppose the converse. Then there is M E L(H) such that m(M) = 00
and (t ~ M)r E Tr(H). So that there is a unique positive Hermitian operator T
such that = D(T) = H and ~-) = (Tx, x) for each x E H.
The domain is an essential region for T, that is, for any xEH,

there c M) such that x and t  M(xn - xm, 0.
Therefore D(t ~ M) is dense in H. Moreover, M reduces T.

Define a function f : S(M) -~ [0, oo ) ] via

We show that f is a frame function with infinite weight and the finiteness
property in a Hilbert space M. Choose an orthonormal basis {xi : i E I}
in M. Then either = oo for at least one i E I, or  oo for any
i E I. The later case implies, due to the total additivity of m,

which gives

Now let f ( y j)  o~o for some orthonormal of

j~J J B’N c M. Then m(N) = tr(TN) + f ( y j)  oo, and N c D(t). Hence,

N c D(t  M), therefore, for any basis {zj, j~ J } of N we have

Lemma 5.1 implies that mM defined by = ¿ where 

i

is an orthonormal basis in P c M, is a totally additive measure on L(M).
It is simply to verificate that  00 iff and in
this case = M)s 0 P.
On the other hand (~ 0 I M is, due to Lemma 4.1, a singular bilinear

Vol. 48, n° 4-1988.
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form. Repeating the proof of Theorem 4.2 (mM is totally additive), we
conclude that (t ~ M determines no measure on L(M) via (1.3).

Consequently, our assumption that (5. 3) does not hold, is false, and the
proof of the Theorem is finished. Q. E. D.
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