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Non crossing walks and interfacial wetting

François DUNLOP and Jean RUIZ (*)
Centre de Physique Theorique (* *), Ecole Poly technique,

91128 Palaiseau, France

Ann. Henri Poincaré,

Vol. 48, n° 3, 1988, Physique theorique

ABSTRACT. 2014 We compute exactly the generating function of two non
crossing random walks on Z, with allowed steps + 1, - 1 or 0. The result
is applied to the study of interfacial wetting in 1 + 1 dimensional S. O. S.
models.

RESUME. 2014 Nous calculons exactement la fonction generatrice de deux
marches aleatoires sur ~, sans intersection et de pas + 1, - 1 ou 0. Le
resultat est ensuite applique a l’étude du mouillage interfacial de modeles
S. O. S. bidimensionnels.

1. INTRODUCTION

In two dimensions, an interface is a random line, which is almost straight
at low temperatures. If it doesn’t have overhangs, then it may be considered
as a one dimensional random walk indexed by « time » i E N. If
three or more phases coexist, then an interface between two of the phases
may be wet by bubbles of a third phase. This is described by two random
walks hi and hi with hi &#x3E;_ the first phase lies above hi, the second phase
lies below h~, the intruding phase is between hi and hi, and is present at i

only if hi &#x3E; hi. Suitable weights are given to the steps hi + 1 - hi and - hi ;
the two walks are non crossing (h~ &#x3E;_ h ~) and also have a contact interaction :

(*) Permanent address : Centre de Physique Theorique, CNRS Luminy, Case 907,
13288 Marseille Cedex 9, France.
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230 F. DUNLOP AND J. RUIZ

different weights are given for hi &#x3E; hi and for hi = hi. The physical and
mathematical question is then the following : assuming ho = ho and
hN = hN, what is the behaviour of the distance hi - h’i for 0  i  N
when N -~ oo ? In physical terms, the interface is said to be partially wet
by the third phase when ~ ~ 2014 ~ ~ remains bounded, and totally wet
when hi - h’i&#x3E;N ~ oo as i, N ~ oo.

This question and related ones have been answered to a large extent by
Fisher, Huse, Szpilka [7] ] [2 ], from whom we borrow the formulation of
the problem. The present paper improves upon one aspect of [7] ] [2 ],
where the two random walks hi and h’i have some unsatisfactory feature :
either hi+ 1 - hi = ± 1 and - hi = :t 1, which produces a tooth edge
interface (lock step), or hi + 1 - + ! I hi+ 1 - h~  1, which a long
range interaction between the two walks (random turns). Here we allow
hi + 1 - hi = 0, ± 1 and hi + 1 = 0, ± 1 (in Fisher’s language, one
might speak of two tired drunken walkers, who randomly walk and have
a rest every now and then), and we don’t impose « turns ».
The paper is organized as follows : in Section 2, we compute exactly the

generating function of two non crossing walks, using a modified reflection
principle. We also compute

for two walks such that ho = ho, hN = hN and hi &#x3E; hi for i = 1, ..., N - 1.
In Section 3, we incorporate the necklace representation [7] ] [3] ] [4] to
give the wetting transition line for a general S. O. S. model of interfacial
wetting. In Section 4, we discuss the two dimensional q-state Potts model,
at the self dual point, in the limit ~ -~ oo. We recover the known fact that
the disordered phase wets the interface between two ordered phases.
In section 5, we give the full wetting transition line for the S. O. S. chiral
Potts model.

~ Section 2 is rather technical, and may be skipped by the readers inte-
rested in the results for the S. O. S. models.

2. TWO TIRED VICIOUS WALKERS

The positions of the two walkers are described respectively by hi E Z
and h E ~, at time i E The walkers start at ho, ho and die on the first
time when they meet :
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231NON CROSSING WALKS AND INTERFACIAL WETTING

At each tick of the clock, each (tired) walker may move by one step on
either side or (more likely) may also remain where he is :

Our main technical result is the following Theorem :

THEOREM 1. 2014 Let

where the sum is over the configurations hi E Z, hi E Z, such that

and

Let

Then G b( z) is analytic in

singular at z = , and ’

with

W hen K = K’, we obtain

Proof. 2014 Every couple hD may be represented by a point in ~2 ; a
configuration is an N-step walk on 7~2 starting from (0,0),
then moving below the diagonal, and ending on the diagonal in (hN, hN).
Each step is either one side of a unit square or a diagonal of a unit square
or also may be a stand-still (no move:(hi+ 1, hi+ 1) = h~)). The walk may
cross itself but is not allowed to touch the diagonal other than in the end-
points (see fig. 1).

Vol. 48, n° 3-1988.



232 F. DUNLOP AND J. RUIZ

We shall now introduce a modified reflection principle applicable to
this diagonal boundary. Let Q(x, y) be defined as in the Theorem except
that (2.2) is replaced by

Let be defined similarly without the diagonal boundary (2. 3),
and Q~(0,0) similarly with (2. 3) replaced by

Of course Q(x, y) and Q~(0,0) are known explicitly and will be the basic
ingredients in the solution for We include the possibility that
N = 0 (or 1) with

whereas for x &#x3E; 0 and y &#x3E; 0

Annales de l’Institut Henri Poincaré - Physique theorique



233NON CROSSING WALKS AND INTERFACIAL WETTING

We then have, first for 1 and y &#x3E; 1

Indeed the left hand side includes « all » walks. In the right hand side,
y) is associated to the walks which remain strictly below the diagonal.

The first sum is associated to the walks which stop on the diagonal before
possibly going into the other side; the second sum is associated to the
walks which jump over the diagonal when they cross it for the first time
(such a jump is e. g. ( 1, 0) ~ (0, - 1 ). Similarly, for x &#x3E; 1,

Finally,

where the factor 2 indicates that the path may first go either above or below
the diagonal.
We now introduce the generating functions

and the unknown

Vol. 48, n° 3-1988.
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The convolution equations for 0’ y) then become linear equations ior
For x ~ 1 and y &#x3E;_ 1,

Fortunately, this infinite set of linear equations indexed by x, y ls

partly decoupled. The pairs of equations with y 
= 1 and y = 0 may be

solved (we simplify the notation by omitting the argument z in Cx(z) and
v 

~ ~._ , ..

which yields, still 1:

with

All the other G;,(z; x, y) are then readily obtained; we are interested in

G,(z;0,0) = {Co - 1,0)} (2.13)

At this point, we note that is analytic in I z I  Zb and diverges at

Z = z,, with = Co(z) - and bounded; of course Ci(z)
is analytic up to and above z;,. It follows that

and

Let us now in tr o duce . the variables s = e - K ’ t ’ Then

Annales de l’Institut Henri Poincare - Physique 
" theorique "



235NON CROSSING WALKS AND INTERFACIAL WETTING

which is the desired formula (2.4), from which (2.5) follows easily. This
completes the proof of Theorem 1.
Theorem 1 will be used in the next sections to study interfacial wetting.

, 
Here we first give some further calculations, where for simplicity we now
take K’ = K.

THEOREM 2. Suppose that

Then

Proof

Admitting that aN/bN converges as N -~ oo, we can obtain the limit from
the ratio of the corresponding generating functions. We use the following
easy lemma:

LEMMA 1. Let a(Z) = 03A3aNzN, b(Z) _ 03A3bNZN with aN, bN &#x3E; o and aN/bN ~ y
as N ~ 00. Suppose that a(z) and b(z) are analytic for I z I  zo, diverge
at z = zo, and a(z)/b(z) ~ yo when z ~ zo. Then y = yo.
We apply lemma 1 with

In order to compute . lim a(z)/b(z), we have to estimate Gb(z ; 0, x) for x ~ oo.
Vol. 48, n° 3-1988.



236 F. DUNLOP AND J. RUIZ

Let us begin with the generating functions of two independent walkers :

with t = z/zb. For t ~ 1, the large n’s will dominate the sum and the

integrals will be concentrated near 0=0, where we have

so that

and one can verify that

For x = 0, we have

We now compute

from which we get

Annales de Henri Poincaré - Physique ’ theorique 
’



237NON CROSSING WALKS AND INTERFACIAL WETTING

We shall also need

which gives

Finally we need

which gives

00

We can now obtain 03A3x2[Gb(z;0,x)]2 with

JC~l

Vol. 48, n° 3-1988.
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Using (2.17) (2.18) (2.19) (2.20), we find

We shall now insert

and obtain

The sum in ... } happens to be equal to 1 1 + 1 + 2e - K)1/2)6 so that
we get 

q 4 + ~ ) )

We now come to the estimates of the derivatives in z 
a G 

G z; 0 0 with

and

Annales de l’lnstitut Henri Poincaré - Physique " theorique "



239NON CROSSING WALKS AND INTERFACIAL WETTING

The only significant terms in the derivatives when z T zb will come from

differentiating 1 C0. Indeedn

Let us write

with

We then find

with the values of e1, d1, d2, zb as above, we obtain

The ratio of (2 . 22) by (2 . 24) gives the desired result :

This result can be compared to the case of two independent random
walks with ho = ~ hN = hN and allowed crossing, where

Vol. 48, n° 3-1988.
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a measure of the repulsion between the two non crossing walks. The same
comparison can be made without the return condition hN = hN and the
result is amazingly different, if we then look at the mean square of hN - ~

and the same argument as for Theorem 2 leads (after some calculation) to

which can be verified to be identical to the analogous result for independent
walks...

3. AN S. O. S. MODEL OF INTERFACIAL WETTING

We consider two interfaces at heights respectively

and

with

and restricted variations :

The model should describe the possible coexistence of three phases at
low temperature : a phase A above hi, a phase B below and possibly
a phase C in between.

Annales de Henri Poincaré - Physique theorique



241NON CROSSING WALKS AND INTERFACIAL WETTING

The Boltzmann factor is :

The couplings K, K’, K" are associated respectively to the AC, CB and
AB interfaces, and K/" is associated to the meeting of the three interfaces
at a point (see figure 2).

We are interested primarily in the phase diagram of this model, in terms
of the existence or non existence of a macroscopic phase C which would
wet the AB interface. The order parameter will be

Vol. 48, n° 3-1988.
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Our general result is the following theorem :

THEOREM 3. - Let

if m  1, then the phase C wets the AB interface and ~ACB = 0
if m &#x3E; 1, then ~ACB &#x3E; 0.

Proof. 2014 The model can be considered as a necklace of beads of C in
the AB interface [1, 3 ]. The free energy is given by

where ZN is the sum of the Boltzmann factor (3.3) over the configuration
space

with the constraints (3.1) and (3.2). The end point ~ = hN is now free,
but we shall prove that this does not affect the theorem. We then consider

the generating function _

The necklace representation gives

with

where QÑ is the sum of the Boltzmann factor (3 . 3) over the configurations
satisfying (3.1), (3.2), (3.5) and

and

Annales de l’Institut Henri Poincaré - Physique theorique



243NON CROSSING WALKS AND INTERFACIAL WETTING

where v2QN equals the sum of the Boltzmann factor (3 . 3) over the configu-
rations satisfying (3.1), (3.2), (3.5) and

The function

is analytic in I Z  za = (e-K~~ + 2e-2K~~)-1 and diverges at z = za. The
function Gb(z) is analytic in

and is singular but finite at z = zb as we proved in Theorem 1. The closest
singularity of G(z) will be either zb or the solution z = Zab of

The free energy of the model will therefore be f = log Min {zb, zab} and
the AB interface will be

The above general discussion is adapted from [1 ]. Using (3 . 8) for Ga(zb)
and Theorem 1 for we find that (3.10) and (3.11) correspond respec-
tively to m  1 and m &#x3E; 1 in Theorem 3. It remains to prove that fixing
hN = hN = 0 does not affect the transition line, and to check the assertion
about ~ABC.

Let ZN~ denote the sum of the Boltzmann factor (3.3) over the confi-
gurations (3.5) with the constraints (3.1), (3.2) and hN = hN = k. We shall
first show that

Clearly

On the other hand :

where Z2N+ 1 is the sum over the configurations with

Therefore :

Vol. 48, n° 3-1988.



244 F. DUNLOP AND J. RUIZ

where the inequality in (3 .14) follows the Schwartz inequality. Then (3 .12)
follows from (3.13) and (3.14).
Whenever the free energy f(K, K/, K", K"/) is differentiable with respect

to K" we have

Thus if m(K, K/, K", K"’) = v2Ga(zb)Gb(zb)  1, then f equals log zb

which i s independant o f K". Therefore ~f ~K" and also xABC equal zero sinceI "’i "’1- 1 I ~ 1. oK"

If m(K, K/, K", K"’) &#x3E; 1, since Ga(z) and Gb(z) are positive increasing
functions of z (z ~ 0), there exists Zab, 0  zab  zb, for which

and f = log zab. Denoting zab the derivative of zab with respect to K"
and Gh(z) the derivative of G z, we get from (3.15)

provided that + 2e-2K~~ + 0, # + 00.
We now use that, Gb(zab) and zab are strictly positive; on the other hand

since Gb(z) and are analytic in z  zb, then  + 00.

Therefore af - z°b and thus also are strictly ositive for m &#x3E; 1.
Analogously we obtain that the averaged number of bubbles

is zero for m  1, and strictly positive for m &#x3E; 1.

4. A WETTING PROBLEM IN THE POTTS MODEL

The 2-dimensional q-state Potts model is defined as follows : at each
lattice site i~Z2 there is a variable 6i = 0,1, ... q - 1; the hamiltonian
in a finite box A c 7~2 is

Annales de Henri Poincaré - Physique theorique
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The two sums are over nearest neighbour pairs, in the second sum Jj
is fixed outside A and represents boundary conditions (b. c.). In particular
we shall consider :

the ordered b. c. obtained by fixing outside A, ex = 0, 1, ... q -1,
the free b. c. ( f ) where the second sum in (4 .1 ) is omitted,
the mixed (a, x’) b. c. defined for a rectangular box by fixing ~ = oc

on the top half and j = x’ on the bottom half.

The Gibbs measures in A are

Whenever q &#x3E; 4 the model exhibits a first order phase transition in the
temperature : the magnetization and the derivative of the free energy

with respect to 03B2 are discontinuous at the self dual point 03B2t = log + 1 ) ( [5 ]
[6] [7]).
The phase diagram for q large enough is as follows [8 ] :

For 03B2 &#x3E; 03B2t there are q phases (translation invariant Gibbs states) obtained
as thermodynamic limits of finite volume Gibbs states with ordered b. c.

For 03B2  /3t there is one state (disordered phase) obtained as thermo-
dynamic limit of finite volume Gibbs states with free b. c.

At 03B2t there are exactly q + 1 phases, the q ordered ones and the disordered
1

one. In higher dimensions the phase diagram is the same, with log q.
-. 

The mixed (x,x’) b. c. produce an interface and the question is whether
this interface is wetted or not by the disordered (free) phase at /3t.
The 3-dimensional case where the interface is rigid (for q large enough)

has been discussed by Bricmont and Lebowitz [9 ], for q large; their argu-
ment does not apply in dimension 2 because the interface fluctuates.
However wetting is also expected as well as by Monte-Carlo simula-
tions [10 ]. We shall consider here the 2-dimensional case.

The surface tension between two ordered phases is microscopically
defined bv :

where A is a rectangular box: A = {(fB i2) E Z~/0 ~ ~ ~ N, I i21  M }.
By contour estimates based on the duality transformation [7] ] one can

show that the surface tension between two ordered phases is strictly posi-
tive can be expanded in terms of contours as follows
(sceref. f71):

Vol. 48, n° 3-1988.
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The contours are lines in the dual lattice

with endpoints - 2, 1 " " ) and {N+-,2014-~y~is the number of bonds of
y. Each bond of y is dual of a bond ij with (1 = x, (1 {# a and each bond of / is
dual of a bond ij with 6i = a’, The configurations in the region U
above y have ordered ocb.c., the configuration in the region D below /
have ordered a’ b. c. while in the region I between y and / the spins on
the boundary take all values exept a or for q large this corresponds
to free b. c. up to the corrective tem g(y, /) which is expected to behave
like and for which one can easily proof a lower bound 
and an upper bound 1.

By duality transformation on Z~(~), (4. 3) gives ( [7]):

where

Annales de l’Institut Henri Poincaré - Physique " theorique .
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ant the term

has a lower bound and an upper bound 1 (the lattice sites
of I* are the centers of the squares whose corners are sites of I).
whenever q is large enough the overhangs are unprobable and thus

a necklace S. O. S. of interfacial wetting should be a good approximation,
and thus also the model considered in the preceding section : if we restrict
in (3.4) the summation over R. S. O. S. contours we obtain the model of
section 2 with : 

.

Since we are interested in q very large one sees from theorem 3 that we
are in the wetting case since

The above discussion strongly suggests that this is also the case for the

original model.

5. THE WETTING TRANSITION
IN THE S. O. S. CHIRAL POTTS MODEL

Consider the 3-state chiral Potts model on 7~2, with the Boltzmann factor

where the spin variables ni take value 0, 1 or 2, and the chiral field 0 is
chosen parallel to one axis of the lattice. The mirror symmetry with respect
to an axis perpendicular to å is broken, whence the name « chiral » (espe-
cially in the 3-dimensional analog of the model). We are interested in the

case 0 ::s; I  ~ and large, where three translation invariant states
are associated respectively to

To investigate interfaces and non translation invariant states, let us first

Vol. 48, n° 3-1988.
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look at the weight of a piece of contour separating nearest neighbour
spins ni ~ nj. For definiteness, we choose A in the positive vertical direction.
Then the elementary Boltzmann factor for a piece of contour of lenght
one will be

Of course

and more important for our purposes

and

We now choose boundary conditions ni = 0 on the lower boundary and
ni = 2 on the upper boundary. At low enough temperature, a reasonable
approximation is the S. O. S. limit where overhangs of interfaces and
bubbles in the bulk phases are excluded. More precisely, the allowed
configurations here will be such that ni is non decreasing in the direction
of the chiral field. The question then is whether the 0-2 interface is wet,
or not, by an intruding layer of the 1-phase. This question has been addressed
by Huse Szpilka and Fisher [2 ], who solve the model for A along the
diagonal, and also give a low temperature expansion for A vertical (or in
fact horizontal).
Here we extend the result of [2] by considering an arbitrary temperature,

still in the S. O. S. model. We do not have the unphysical condition in [2] ]
whereby the 0-1 and 1-2 interfaces were not allowed to have simultaneous
excitations. For this reason, our results, taken at low temperature, differ
slightly from [2 ].
The model is essentially the same as in section 2, but the parameters are

different and the Boltzmann factor (3.3) should be replaced by

Annales de l’Institut Henri Poincaré - Physique ’ theorique "
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This leads to and zb different from Gb and zb of section 3, with

and

and

We then have the following result:

THEOREM 4. Let ZN(u,w,K) be the sum of the Boltzmann factor (5 . 2)
over the configuration space

and

Then /3~o,2(u, w, K) is singular on the « wetting transition line» (see f ’zg. 4 ) :

If u, w, K are given by (5 .1 ), then

and, oo, the transition line obeys

Proof According to section 3, the wetting transition is given by

which gives (5.3), from which (5.4) follows easily.

Vol. 48, n° 3-1988.
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FIG. 4. - Phase diagram of the S. O. S. chiral clock model, where the 0-2 interface
may be wet by (a: layer of 

the 1 phase. The symmetries in this case are A -+ A + 3 and

0394 + 1 2 ~ - (0394+1 2).
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