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Trigonometric perturbation
of the Gaussian generalized fields.

Small coupling results

R. GIELERAK (*)
Research Center Bielefeld-Bochum-Stochastics,
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D-4800 Bielefeld 1

Ann. Henri Poincaré,
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RESUME. - Nous etudions les equations fonctionnelles DLR corres-
pondant aux perturbations trigonometriques de couplage faible des mesures
Markoviennes Gaussiennes.
Sous des hypotheses techniques, nous demontrons que la propriete de

Markov est preservee.

ABSTRACT. 2014 We study functional DLR-equations corresponding to
the trigonometric perturbations of the Gaussian, markovian measures in
the weak coupling regime. We prove that under certain mild assumptions
of the technical nature the global Markov property is preserved for such
perturbations.

1. INTRODUCTION

The global Markov property with respect to the hyperplanes of the
generalized random field indexed by the conventional nuclear spaces
like the space D(Rd) or S(Rd) is one of the basic axiom of the Nelson axio-
matic framework [7 ].
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206 R. GIELERAK

After an euclideanisation of the constructive field theory mathematical
technologies, the progress for the superrenormalizable interactions has been
very fast and fruitfull in the decade of 70. (Almost) all superrenormalizable
interactions have been controlled rigorously. For a background see [2] ] [3 ],
... for the construction of the three-dimensional Yang-Mills theories
see [4] and references therein. However, already on the level of the sim-
plest models the Nelson axioms have never been veryfield explicitly.
There exists some eqzotic two-dimensional models like : cos 03B103C62, exp 03B103C62
where the most difficult Nelson axiom concerning the global Markov
property, has recently been veryfied [5] ] [6] ] [7] ] [8 ]. The difficulties in its
veryfication for the weakly coupled models seem to be technical but
not conceptual. This was the reason that several papers appeared [9] ] [70] ]
examining global Markov property for the lattice fields. These methods
are based on a certain technics heavily depending on the ferromagneticity
of the corresponding local specifications. However, it seems to be diffi-
cult to observe such a ferromagnetism for the continual local specifications.
Our paper proposes a new possible strategy to attack the problem for at
least : ~p4 : 2,3 like models without refering to ferromagnetism. It is well
known that starting from the cos 03B103C62-like theory, we can obtain 03C642 theory
by a suitable limiting procedure [11] ] [12 ]. Our idea is based on this obser-
vation. We start with cos 03B103C6 interactions for some Pauli-Villard regulari-
zation of the free field.

For such a class of theories we verify in a very economical way and
quickly the Markov property. This is done in the present paper. The next
two steps (in preparation) first translate the result for ~p2 theory with the
Pauli-Villars regularisation fixed and then remove it.
The second novel aspect of our paper is its possible application to the

classical statistical mechanics. It is well known that the grand canonical
ensemble of the gas of classical particles interacting via a two-body potential
of the positive type can be described by functional integrals of the type
analysed here [13 ]. From the result proven here there follows the existence
of the transfer matrix for such a class of systems.

This is an addendum to the earlier results of [7~] ] [7~] ] [76] ] [17 ].

2. PRELIMINARY DEFINITIONS AND RESULTS

a) Markov property

Let P : Rd  R1 be a nonnegative polynomial and let A(P) be a real
differential operator with the constant coefficients the symbol of which
is given by P i. e. A(P) f = denotes the Furier

Annales de l’ Institut Henri Poincaré - Physique theorique



207TRIGONOMETRIC PERTURBATION OF THE GAUSSIAN GENERALIZED FIELDS

transformation (resp. inverse). We assume that is not too strongly
singular at the origin. i. e. we will assume that

With A(P) given, we define a map by the formula:

which is nonnegatively defined and then we define on the space S(Rd)
an inner product by

The metric completion of the .)A} is defined by H(P).
It is obvious that the space H(P) can be identifield with a certain subset
of the space of tempered distributions by

From our assumptions on P(k) it follows that the space Co (Rd ) is dense
in H(P). For any open region A c Rd we define as a subspace (closed)
of those ~p E H(P) which have support in A. It is easy to check that then
the space C~(A) is again dense in the space For closed A we define :

HA(P) = n open HA’(P).
A’~A,A’

It follows easily that the bilinear from g) = ( f, g)A defines a positive
definite and continuous form on the space S(Rd). From the Minlos theorem
it follows that there exists a unique Gaussian centered measure ~ on
{S’(R~),B(S’(R~))} whose Fourier transform is given by :

Let us denote by the metric completion (in the L~norm) of the linear
hull of the random elements of the form where f E S(Rd). From the
density ofS(Rd) in the space H(P) and from the fact that the map / -~ 
is isometric from H(P) :::&#x3E; S(Rd)  it easily follows that H(P) is
isometric with For f E H(P) we denote the corresponding elements
in again as Let A be an arbitrary nonempty subset of Rd.
Then we define E(A) (resp. E(A)) the minimal (completed) (7-algebras
generated by the family of random variables {~(/), f E S(Rd) supp f c A }
(resp. { f E H~(P)}). It is clear that E(A) c t(A). For A c Rd being
open, it follows from the density in that E(A) = 

Vol. 48, n° 3-1988.



208 R. GIELERAK

For A c Rd closed let ~ From the above remark we
obtain (for A closed) £&#x3E; 0

The following general result from the theory of Gaussian generalized random
field is well known [7~] ] [7P] ] [7~]:

LEMMA 2.1.

1. Let A be open in Rd and let 03A0c be an orthogonal projector in the
space H(P) onto the subspace Then, the conditional expectation
value with respect to the measure 0v and the 6-algebra is given by

where S~~ is the covariance given by the kernel:

Moreover formula (2 . 7) makes sense for ~-almost every 11 E 
2. The decomposition

where ( 1 - denotes symbolically the Gaussian centered random
field with covariance equal to SAc and is the Gaussian field with
the covariance equal to V - SAc is the orthogonal stochastic decom-
position with respect to the 03C3-algebra ff(AC).

LEMMA 2.2. - For the covariance V as above and for A bounded and
open, the corresponding process is measurable.

Lemme 2.2 expresses the notation of the higher-order markovia-
nity introduced by McKean jr [27] ] and Pitt [22] ] and then studied
by many peoples [79] ] [20] ] [23 ]. In the case when the operator A is of
the second order it can be shown that ~ (aA) _ ~(aA) for sufficiently
regular aA and then we have the standard markovianity of 
Whenever for any bounded open region A c Rd and for any two random

functions G, F localized strictly in A (respectively in AC) we have an equality

we shall say that ~ is locally Markov. When the equality (2.10) holds
for unbounded A, we shall also say that ,u~ is globally Markov.

In the following we choose A(P) to be of the form

Annales de Henri Poincare - Physique ’ theorique "



209TRIGONOMETRIC PERTURBATION OF THE GAUSSIAN GENERALIZED FIELDS

With such a choice of A, there exists a constructive description of the
projectors 03A0c in the space H(P) at least for A sufficiently regular from the
point of view of the theory of general hyperelliptic boundary Dirichlet
problems.

For g E Co (Rd ) it can easily be proved that is given by the solu-
tion of the following Dirichlet problem :

where denotes the k-th normal derivative at boundary point from the
interior. (2.12)

In the paper [2~] ] the description of the projectors for A with

piecewise Coo smooth boundary and certain conical properties imposed
on ðA has been given as a weak-solution of the problem (2 .11 ) in the space

More precisely, extending ideas of the basic work of Wiener [25]
in the paper [2~] it has been proved that for ,u~ - a every E the
weak solution of the problem (2.12) exists if A fulfills the condi-
tions as above. From the ellipticity it follows that then is a real ana-
lytic function inside A for ~ - a . every E as a (weak) solution of
hyperelliptic homogeneous equation.

It is an immediate consequence of the above remarks that the Gaussian
Markov fields corresponding to the hyperelliptic operators as above have
local Markov property. The question about the global Markov property
is more delicate and has been resolved at least for hyperplanes by Mol-
chan [20] see also [19 ].

b ) Gibbsian perturbation.

In a strict analogy with the Euclidean field theory we shall introduce
a concept of Gibbsian perturbation of the given Gaussian measure /~
as above. Let A be bounded open region in Rd. A multiplicative functional
of the Gaussian field 0v is a random variable Xn which is positive, ,uV-inte-
grable and for every open A 1 c A, Xn can be expressed as the product of
two positive integrable random variables where X~
is X(AJ measurable. In this paper we choose

~-bounded, real measure with compact support on R 1,

where a, z E R 1 and we assume V(O)  oo (see however remarks in section 5).

Vol. 48, n° 3-1988.



210 R. GIELERAK

which corresponds to the assumption that n &#x3E; d/2. With the help of X~
we than define a new measure

which is called trigonometric perturbation of the measure ~ in the finite
volume. Of particular interest is the thermodynamic limit A T Rd of the
measure The simple Kirkwood-Salsburg [2~] ] analysis gives.

LEMMA 2 . 3. - For I z  exp - 1

where

the unique thermodynamic limit lim as a weak limit exists.

The measure is translational invariant and is concentrated on the
continuous functions. Moreover, the measure is ergodic with respect
to the translations.

Proof 2014 See [26 ] [27] ] where existence of is proved. Algebraic
formalism of [2~] ] then gives the cluster property of 1100(z). The support
properties are the trace of the famous Kolmogorov criterion.
Our main interest concerns the Markov properties of the measure

Owing to the discussion from the earlier paper we have :

PROPOSITION 2 . 4. - For I z  1 the measure
is locally Markov.

The question about the global Markov property is much more delicate.
Owing to the detailed discussion of [15] ] we have to check that certain
D - L - R equations have unique solutions. To explain the last we introduce
several definitions.

DEFINITION 2.1. - Any probabilistic Borel measure ,u on the space
will be called V-regular iff there exists a positive constant ceR+

such that

The class of V-regular measures is denoted by R(V).

DEFINITION 2 . 2. - Any probabilistic Borel measure ~ on will
be called the Gibbs measure corresponding to the trigonometric pertur-

Annales de l’Institut Henri Poincaré - Physique theorique



211TRIGONOMETRIC PERTURBATION OF THE GAUSSIAN GENERALIZED FIELDS

bation (2 .14) of the Gaussian measure ,u~ iff for any bounded open region A
the conditional expectation values with respect to the 03C3-algebras F(c)
and the measure ,u fulfill:

and the measure ,u is locally equivalent to ,u~.
The set of all Gibbs measures corresponding to the trigonometric per-

turbations is denoted by ~(z) and its intersection with the set R(V) is denoted
by  r(z) and we call elements of ~r(z) V-regular Gibbs measures.

Remarks. A more detailed definition of the set ~(z) can be found in
the paper (15). Some result concerning the structure of the set ~r(z) have
been obtained in (42) using certain correlation inequalities as a basic tool.

From the results of [7~] it follows easily.

LEMMA 2 . 5. - For any I z  o~V(O) 2014 1 the measure

belongs to the ~r(z).
Let us and let Ro = 0}.
According to the discussion of Albeverio and Hoegh-Krohn [5 ] the

proof of the global Markov property for 1100(z) amounts to the proof that
for -almost every all ~ E there exists a unique solution of the cor-
responding DLR (see eq. 5.1) to the conditioned interactions coming from
the explicit form of M, V-regular solution. Our verifi-
cation of the global Markov property follows this strategy. Firstly, in sec-
tion 3 we prove that the measure is the unique V-regular solution of the
DLR-equation (2.20). In section 4 we extended the technique used in sec-
tion 3, to cover the more general situation and check the global Markov
property is some cases.

c) Some technical assumptions and results.

Let the open bounded region A c Rd fulfills all the assumptions neces-
sary to the existence and uniqueness of the stochastic boundary problem
(2.12). Then, for 11~-almost every E the solution of (2.12) is given
by There exists a sequence of functions (bo( . , . ), ... , bn _ 1( . , - ))
each aA x Rd measurable and such that for ~ sufficiently smooth (say
r~ E Co (Rd )) we can write :

Vol. 48, n° 3-1988.
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where du is the surface measure on 3A. From this it follows :

.f )

For an operator A chosen by (2.11) the covariance V(x) is real analytic
with fast exponential decrease as x -&#x3E; oo. The same decrease property
holds for its derivatives.

Therefore, assuming E R(V) and that A is such that KAc is continuous
in Int A we can define and all x E Int A as
a L; random element with the covariance bounded as :

DEFINITION 2.3. - A open region A c Rd is called V-regular iff the
solution of (2.12) can be given by formula (2.20), and moreover,
their exists a function F : (0, 00) ~ [0, CfJ) which is continuous and mono-
tonously decreasing to zero as r i oo with an asymptotics at least like 
for some ~ &#x3E; 0 and such that

Let A c Rd be V-regular. Elementary calculation gives then

By the above remarks, local absolute continuity of  E Gr(z) and 0v the
above formula can be written for 

DEFINITION 2 . 4. - A covariance V is regular iff there exists V-regular
open bounded region A such that all its homothetic images A~ are again
V-regular.
We remark that in most of the interesting cases the regularity of the

covariances corresponding to the operators A can be checked explicitly
on spheres which gives also the exponential decay of the function F.

Annales de l’lnstitut Hertri Poincaré - Physique theorique



213TRIGONOMETRIC PERTURBATION OF THE GAUSSIAN GENERALIZED FIELDS

Let us define also the 6-algebra of events at infinity as

LEMMA 2 . 6. - A measure is a pure Gibbs measure iff the

algebra ff 00 is 0 - 1 6-algebra for it.

LEMMA 2 . 7. - A measure is the unique Gibbs measure iff

any integrable random element and any

countably generated filter of bounded subset of R~ : {A } tending to Rd
we have. 

’ 

The above results are well known [5 ] [7~]. They provide as with the cons-
tructive tactic for veryfying the global Markov property for Let { A }
be a countably generated filter of bounded subsets of Rd tending to Rd.
Assume that V is regular and let Y be a V-regular set. From the reverse
martingale theorem it follows that it is enough to control the limit of
the l.h.s. in formula (2.27) by controlling it on the monotonic sequence
(Yn)n for which formulas (2.25) can be used.

DEFINITION 2 . 5. 2014 Any such sequence (Y")" will be called V-admissible
sequence.

LEMMA 2.8. - Let 
Let V be regular and let (An) and (YJ be two V-admissible sequences

and such that oo.

Then there exists a function f : S 1 (Rd) ~ [0, oo ] which is finite ,u-a.e.
and such that for any unit cube ð. c Yn the following estimate is valid .

valid for any 03B2 such that :

COROLLARY 2 . 9. - Let and let A be V-regular set for the

regular covariance V. Then, for any unit cube 1B c Rd we have :

for E S’(Rd ). , .
For the simple proof of Lemma 2 . 8 see our accompanying paper [42].

Vol. 48, n° 3-1988.
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3 . UNIQUENESS FOR SMALL I z I

Throughout this section we assume that V is regular. In this section we
prove one of our main results of this paper. We prove that the measure
1100(z) constructed in the previous section is pure Gibbs measure for small

 0153;V(O) - 1. As follows from the discussion in sec-
tion 2. We have to investigate the 1100(z) content of the « 6-algebra at infi-
nity ». To prove triviality of this algebra relative to the measure 1100(z)
it is sufficient to prove that :

Simple calculations give the following formulas by the conditioned expec-
tation valus (for A V-regular)

where the conditioned correlation functions PÄ are defined by the following
formulas :

and the measure I1Â by:

Formulas (3.2, 3.3) are valid for 1100(z) almost every 

Poincaré - Physique théorique
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LEMMA 3.1. - Let (An)n be V-regular sequence.
For we have

wherenever The whole essential volume dependence in for-
mula (3.2) comes from that of PÄ. Therefore, we concentrate on them.
Making out the shift transformation

we obtain the following identities between the conditioned correlation
functions :

which are nothing more then the familiar Kirkwood-Salsburg identities.
In the following we concentrate on the analysis of the identities (3.7).
Let Be; be a Banach space which consists of all sequences of the functions
{~(x, a)n }~= 1 = 4&#x3E; where x)n are complex measurable functions
defined on (Rd (8) so that the norm

is finite. The positive real number ç is fixed and will be chosen later. In
the space Be; we define the operators by the following formulas :

Vol. 48, n° 3-1988.
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Let us define also the following operator :

and the vector a : ~ = 
With these definitions we can rewrite the identities (3 . 7) as :

A crucial step in the proof of the uniqueness is done by the following result.

PROPOSITION 3 .1. - be arbitrary V-admissible sequence of
bounded regions in Rd. Then for 1100(z) almost every E any compact
3 c Ram we have :

for

We start the proof of this proposition by a series of simple remarks.
Let TI denote the permutation operator (see [28 ], then because of the
symmetry of 03C1n we can rewrite equations (3.11) with c incread of

In the following we choose those permutations n"(AJ for which
we have :

LEMMA 3.2.

uniformly in ~ and A.

2. For I z  exp - 1 the following estimate

is uniformly valid 0 in ~ and 0 A.

’ 

Annales de Henri Poincare - Physique theorique
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Proof - Let us take ~ E rBç and observe:

Tp prove the second part we use the equality (3.11) and we estimate

from which the estimate follows.
The space is the dual space of the space *BBe; consisting of sequences

of functions fi = { }n=i,2,... with measurable components equipped
in the norm :

From Lemma 3.2 (2) it follows that for every 
the vectors {03C1~n }An form the *-weakly precompact set in the space B03BE.
From the Banach Alaglou theorem it follows that there exists a convergent
(in the *-weak topology) subsequence (n’) c (n) for any V-admissible

sequence (AJ.

LEMMA 3.4. - For almost every E S’(Rd) and any V-admissible
sequence { we have :

Proo, f. 2014 This follows immediately from Lemma 2 . 8 by taking into
account the assumed decay of KAc and the local L2-convergence of 
to zero.

LEMMA 3 . 5. - For 1100(z) almost every E S’(Rd) and any V-admissible
sequence { we have

Proof 2014 The limits in i ) and ii) are taken in the *-weak topology of the
space i.e. (3.18) and (3.19) are equivalent to the statements that :

Vol.48, n° 3-1988.
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and

It is well known that the strong convergence of the duals (resp.
in the dual pair (*lBç, to the corresponding *000 (resp. 

yield the assumed convergence in (3.20) and (3.21). The dual operators
and can easily be calculated (see [30 J) for the similar cal-

culation with the results

where the operator * k is defined by

(with an obvious notation) and the operators Vj are defined in ( [30 ],
formula (3.4) and (3.5). On the basis of these formulas and the assumed
fast convergence of S~~ to V it is not difficult to finish the proof of the
convergence in (3 . 20) and (3 . 21 ). From Lemmas 3 . 4 and 3 . 5 we extract
now the proof of the following corollary.

COROLLARY 3 . 6. - Let I z  C(V) -1 exp - 1 and let (An)
be an arbitrary V-admissible sequence of bounded regions in Rd. Then for
1100(z) almost every E S’(Rd) we have:

Proof. 2014 From the Philips theorem [31 it follows that we have equalities
for the resolvent : .

Annales de Henri Poincare - Physique , theorique .
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and the corresponding convergence of them. Taking into account Lemma
3 . 2 ( 1 ), Lemma 3 . 5 i ), Lemma (3 . 4) and the fact that in any dual pair

from the convergence fin f~ and n~ it follows
that ~") -+ as n --~ oo, we easily conclude that for any
f E and I z  exp - 1 we have the equality :

Finally, we scetch a proof of Proposition 3.1. 
’

Let I z  C(V)-1 exp - 1 and (A") be an arbitrary V-admis-
sible sequence of bounded regions in Rd. Both p~n and Poo fulfill the well
known Mayer-Montroll identities which in the case of p~n can be obtained
by successively integrating all the exponentials in formula (3.3) with the
result :

Now the comparison with the corresponding Mayer-Montroll equations
and the assumed fast convergence SAc ~ V yields the assured results by
standard considerations (see [FO] ] [32 ]). Hawing proven Proposition 3.1
and taking into account formula (3.2) (or using the fact that the moments

determine in a unique way the measure we can conclude the

following :

THEOREM 3.1.2014 Assume that I z 1 exp - 1. Then

the measure is the unique Gibbs measure in the set ~r(z) corresponding
to the interaction (2.13).

Remark. 2014 We note that using the method of comparing the corres-
ponding Lioville-Neumann expansions, it is possible to extend Theorem 3 .1
to the following sharpened form :

THEOREM 3 .1’. - Let (An) and (Yn) be two V-admissible sequences of
the bounded regions in A such that lim dist (Yn, A~) = oo and for every

Vol. 48, n° 3-1988.
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n : Yn c An. Then for z !  C(V)-1 exp - 1 and for 1100(z) almost
every E we have

4. FROM THE LOCAL
TO THE GLOBAL MARKOV PROPERTY

Let V be a markovian covariance with V(O)  oo. In this section we prove
that the unique Gibbs regular measure 1100(z) has the global Markov pro-
perty assuming that ,u~°, has this property and I z  exp - -1.

In the following we restrict ourselves to verifying the global Markov
property in the hyperplanes. Due to the euclidean invariance it is enough
to consider the case Eo = ~ x E Rd , xl - 0 }-
However, our techniques applies to the more general hypersurfaces as

well.

According to the general strategy originated by Albeverio and Hoegh-
Krohn in order to verify the global Markov property for the measure
1100(z) we have to prove the uniqueness of the (regular) solution of DLR
equations corresponding to the measure and the interactions

for every E S’(Rd). See the basic paper [5] and papers [6] [7]
[8] ] [7J] for some application to the quantum field theory.
Let (An) be V-admissible sequence of bounded regions in Rd and let

us denote An - An n Rd where Rd± = {x E Rd|x1&#x3E; ((,)0 } and we assume I
that aAn n Eo are of dimensions d - 2. Furthermore, let us introduce

aAn = aAn - Xo. From the DLR equations and the local Markov property
we obtain the following expressions for the conditioned expectation values
with respect to the cr-algebra ff(o u 

Annales de l’Institzst Henri Poincaré - Physique theorique
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valid for any An - Eo measurable and integrable F and 1100(z)B almost
every ri. The objects are defined in terms of the corresponding pro-
jections 03A003A30~~n in the space H(P). In particular for = exp 
with supp f c An - ~o we obtain 

.

According to the outlined before A-HK general strategy we have to prove
that

for almost every E S’(Rd). Comparing with (4.2) we conclude that
to prove (4 . 3) we have to show :

and

B) Defining the following conditioned correlation functions :

where

we have to show that tend in the limit ~ = 00 to the following moments:

where

Here (Yn) is an arbitrary V-admissible sequence and is defined as

Vol. 48, n° 3-1988.
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The standard Kirkwood-Salburg analysis gives the existence of the limits

almost every 
Some arguments from the theory of martingales give the existence

of and the equality (4 . 8) for Izl  a*V(o) - 1. Now
we impose a certain technical regularity condition on the Markovian cova-
riance V under which we shall be able to verify A) and B).

DEFINITION 4.1. - Let be the sequence of spheres of the form :
where we assume that oo as n  00

and let A be any unit cube contained in Eo.
We will say that a given covariance V is strongly regular iff V is regular

and fulfill:

SM1) for 

uniformly on compacts in Rd - Eo.
The class of the strongly regular covariance we shall denote by SM.

For V E SM the verification of A) is trivial. In a strict analogy with the
analysis of section 3 we shall verify point B) of our strategy by a comparison
of the corresponding Kirkwood-Salsburg equations. The correlation func-
tion p~ fulfill the following Kirkwood-Salsburg identities :

at least for small z (uniformly in ~), where the operator is defined

(in the corresponding space !Be;) by the following formulas :

Annales de Henri Poincaré - Physique " theorique "
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The corresponding Kirkwood-Salsburg identities for the conditioned
correlation functions are

where the operator is defined by formulas like (4.12) and
(4.13) but with and instead of S03A30 and 
LEMMA 4.1. - Let V~SM.

1) For almost every we have the convergence

in the *-weak topology.
2) For 1100(z) almost every we have the convergence :

The proof follows exactly the arguments used in the proof of the cor-
responding proof of section 3 using additionally the regularity assumption
made on V and will be not written here. Applying further the arguments
of the section 3 we derive the equality

valid at least for

and 1100(z) almost every yy.
Thus we have essentially the following theorem :

THEOREM 4.1. - Let V E SM and ,uv have the global Markov property
with respect to the hyperplane Xo. Then, for I z I sufficiently small the
measure 1100(z) has the global Markov property with respect to the hyper-
plane Eo .

Finally, let us say a few words about the regularity condition imposed
in Definition 4.1. Let A(V) be an elliptic operator corresponding to the
Markovian covariance V. Then, the function is a solution
of the equation :

for (Eo u aB(n)) such that for jceEo we have

up to i = n - 1 or d(V) and for x E aB(n) we have

Vol. 48, n° 3-1988.
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According to the general theory and assuming moreover that the operator A
is such that for Eo u Eo there exists potentials { x) }~=o,...,n-1.
{~~~y~)},=o...~-i giving n~) by the formulas

valid for x  o .
From the preceding j remarks we obtain

valid for and 11~-almost every The above for-

mulas seem to be basic for the constructive description of the set SM
of covariances observing additionally the bound : (which follows from
the V-regularity 
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The last estimate should play a basic role in the verification of the condi-
tions imposed in Def. 4.2 on the covariance V. The detailed description
of the set of Markovian covariances fulfilling those conditions will published
elsewhere.

5. ADDITIONAL REMARKS AND COMMENTS

1. It is well known that the notion of the Markovianity depends heavely
on an indexing space chosen. For example, if we take the space 
as index space then the Markov property should be defined in different
fashion. This notion enlarges the class of admissible covariances [33 ].
In particular for the case d = 1 the covariances with spectral functions
equal to entire functions of the infraexponential type are in this class.
Generalized random fields indexed by other function spaces have also
been discussed in relation with the theory of hyperdistributions [34 ].
Our point of view corresponds to the indexation by space of measures
(in our cases they are the classical Sobolev spaces) in the full analogy with
[5] ] [l9 ] [24 ]. For recent developments in the theory of the Gaussian
measures corresponding to the strongly elliptic differential operators of
second order, see [36] ] [38] and for a review of such questions see [39 ].

2. In the paper [40 there has been developed a theory of generalized
Ornstein-Uhlenbeck processes corresponding to the markovian covariances
of the type used in this paper and taking values in the space S’(Rd). It

would be of certain interest to develop the theory of differential stochastic
equations for such processes in the spirit of [41 ].

3. We would like to stress that up to the present authors knowledge
there does not exist any satisfactory version of the general Dobrushin-like
theory to treat the functional DLR equations. We hope to discuss this
problem elsewhere.

4. In the case when V(O) = oo we can introduce U - V regularization
of the perturbation in the following way. Let be positive and
with support contained in the ball BE = ~ ~ x ~  e }. Then, we can consider
the perturbation of the Gaussian measure 0v of the form :

where

Assuming that V is the Markovian covariance we note the following for-
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mulas for the conditional exceptation values with respect to the measure /~ :

where

and

Now let us consider the stochastic decomposition of the free field with I

respect to cr-algebra ~ ((Eo ~ For this let us define the following I

functionals of the field p

and let

Then, the formula
~ + 

gives the stochastic orthogonal decomposition with respect to the ~-algebra

Assuming certain local decay properties of the kernels K associated to
the decompositions written above one is able to prove the following Mar-
kov property of the unique (for small sufficientlyz) thermodynamic limit
,u ~ (d~p) of the measure.

Annales de l’Institut Henri Poincaré - Physique theorique



227TRIGONOMETRIC PERTURBATION OF THE GAUSSIAN GENERALIZED FIELDS

THEOREM 5.1. - Let the kernels have certain local decay pro-
perties. Assume that I z I is sufficiently small. Then, the measure 
has the following s-Markov property.

Let and let F, G are two strictly localized

(respectively in and functionals of the field ,u~ . Then, we have

where the equality (4.13) holds everywhere.
In particular taking the U - V regularization (by this we violate the

rotational invariance) to be local in time, we can also prove that the global
Markov property holds also with E = 0 and with respect to Eo- Hence
there follows the existence of the transfer matrix in the xo-direction for
the corresponding gases.
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