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ABSTRACT. A systematic analysis of low-energy scattering for Schro-
dinger operators of the type H = - A + V in is given. The possi-
bility of zero-energy resonances and zero-energy bound states of H is
taken into account explicitly. No spherical symmetry of V is assumed. In
particular, a two-variable Laurent expansion around the zero-energy
threshold is provided for the transition operator. The first coefficients
are written down explicitly. Furthermore the leading behavior of the
scattering amplitude and scattering operator is determined. A generalized
scattering length is defined and related directly to the threshold behavior
of the scattering amplitude. Finally, a two-variable Laurent expansion
is derived for the trace of the difference between the full and free resolvents
around threshold. This result is used to prove Levinson’s theorem in all
cases.

RESUME . 2014 Nous donnons une analyse systematique de la diffusion a
basse energie pour l’opérateur de Schrodinger H = - A + dans L 2(1R2).
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176 D. BOLLE, F. GESZTESY AND C. DANNEELS

Nous tenons compte explicitement de la possibility d’existence d’une
resonance ou d’un etat lie d’energie nulle. Nous ne faisons pas d’hypothese
de symetrie spherique sur V. Nous donnons un developpement de Laurent
a deux variables autour du seuil d’energie zero pour l’opérateur de transi-
tion. Les premiers coefficients sont donnes explicitement. De plus les

comportements dominants de l’opérateur et de 1’amplitude de diffusion
sont determines. Nous definissons une longueur de diffusion generalisee
qui est reliee au comportement au seuil de 1’amplitude de diffusion. Nous
obtenons aussi un developpement de Laurent a deux variables pour la
trace de la difference entre la resolvante et la resolvante du probleme
libre. Ceci nous permet de prouver un theoreme de Levinson dans tous
les cas.

1. INTRODUCTION

Two-dimensional low-energy phenomena have attracted a lot of interest
recently. For example, the introduction of low-energy concepts like par-
tial-wave scattering length and effective range has given new insights in
the study of spin-polarized atomic hydrogen adsorbed on a surface. In
a lot of these phenomena the occurence of zero-energy resonances or
zero-energy bound states plays a significant role. It has been suggested
e. g. that such a state might be responsible for the fast surface recombination
rate for deuterium atoms below 1 K. For precise references and other
examples in this connection we refer to [2] ] [3] ] [7~] ] [77] ] [12 ].
The purpose of this paper is then to provide a systematic analysis of

low-energy scattering in two dimensions, taking into account explicitly
the possibility of zero-energy resonances and/or zero-energy bound states
of the Schrodinger Hamiltonian. Such an analysis has been carried out
for three dimensions in [5 ] [d] ] [7~] ] [27] ] [33] ] and for one dimensions
in [7~] ] [15 ]. (For an extensive list of references concerning one and three
dimensions, see [8] ] [14 ].) From these results it can be seen that the analysis
in one dimension is more involved than the one in three dimensions, due
to the well-known additional difficulty that the free resolvent has a singu-
larity of the square root type in the limit as the energy tends to zero. In
two dimensions the situation will be even more complex because of the
logarithmic nature of this singularity.

Different aspects of two-dimensional Schrodinger systems have received
already some attention in the past. In particular, ground state properties
as a function of the coupling constant have been discussed in [2~] ] [~0] ]

’[38] ] [~9] ] [45 ]. Bounds for the number of bound states have been
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177THRESHOLD SCATTERING IN TWO DIMENSIONS

obtained [34] ] [42 ]. Eigenfunction expansions of the Hamiltonian and
their use to study the wave operator and scattering matrix have been consi-
dered in [4] ] [43] ] [44 ]. The inverse scattering problem has been
treated [7d] ] [18 ].
Low-energy parametrizations for spherically symmetric scattering on

the basis of the scattering length have been derived in [3 ] [7~] ] [77] ] [22] ]
[2~] ] [35 ]. Such results have been employed to obtain a spherically symme-
tric Levinson theorem [22] ] [2~] ] [2~] ] [35 ]. Levinson’s theorem for non-
spherically symmetric scattering in the absence of zero-energy resonances
and zero-energy bound states has been proved first by Cheney [17 ]. A
related local spectral sum rule for the time delay operator has been proved
in [37 ]..

Let us now give a short description of the results obtained in this paper.
Our treatment and notation parallels the one-dimensional discussion

in [7~] [7~]. Without loss of generality we assume (v, u) = i 0.

The case (v, u) = 0 can be discussed like in [7~]. [J2

Section 2 studies the occurrence and properties of zero-energy reso-
nances and zero-energy bound states of the Schrodinger Hamiltonian
H = 2014 A 4- V in L 2(1R)2). No spherical symmetry of V is assumed. This
leads to a classification of essentially four cases : case I, without zero-
energy resonances and zero-energy bound-states (= generic case), case IIa
in which an s-wave type resonance of multiplicity M = 1 occurs, case lIb
containing a p-wave type resonance with 1 S 2, case IIc, a mixture
of both, case III in which zero-energy bound states of multiplicity N 
appear and finally case IV, representing mixtures of the cases II and III.
This study is based upon the results of Klaus and Simon [30 ] which are
improved in the sense that they are valid here for the class of potentials
satisfying , 

- 

.

for some ~ &#x3E; 0. In the rest of this paper case IV is not treated explicitly
for two reasons. Firstly, the results contain nothing new in the sense that
they can be read off from the study of the other cases. (E. g. the contribu-
tions from zero-energy resonances and zero-energy bound states to Levin-
son’s theorem are simply additive). Secondly, the details are too complex
to be written down within a readable paper of reasonable length. However,
relevant remarks concerning this case are given at the appropriate places.

In Section 3 we describe in detail the low-energy behavior of the tran-
sition operator T(k), following [6 ] and [7J], assuming roughly exponential
fall-off for V at infinity. We get two-variable Laurent expansions (Taylor
expansions in case I) around zero-energy threshold. In case I we derive
recursion relations for the coefficients in this Taylor expansion for T(k).

Vol. 48, n° 2-1988.



178 D. BOLLE, F. GESZTESY AND C. DANNEELS

In the other cases II-III we discuss the first coefficients needed in the sequel.
Analogous results for the resolvent and the evolution group of general
elliptic differential operators have been obtained by Murata [31 ].
Based on these results, we present in Section 4 Taylor expansions for

the scattering amplitude and S-operator. We find that S(k) ~ 1 as k  0
in all cases 1-1 V, in contrast with one and three dimensions [6] ] [73] ] [7~]
[27] [33]. If V is spherically symmetric we recover the results of [22] ] [35 ].
Section 5 gives, in analogy with [5], an appropriate generalization of

the definition of scattering length to nonspherically symmetric interactions
(see [1 D ] [77] ] [22] ] in the case of spherical symmetry). This parameter
is directly related to the threshold behavior of the scattering amplitude
and explicit formulas are provided.

Finally, in section 6 we derive two-variable Laurent expansions for the
trace of the difference between the full and free resolvents around threshold.

It is interesting to note that in case IIa we get a singularity structure com-
parable to that of case I. We then apply contour integration techniques
to prove Levinson’s theorem, further assuming that E+ = E n (o, + (0)= E

being the exceptional set including the negative eigenvalues of H. We
find that in case IIa the zero-energy resonances contribute exactly like
(zero-energy) bound states. This is in sharp contrast with one (see [7~])
and three (see e. g. ’[8]) dimensions. We remark that the exponential fall-off
condition on V can be relaxed to and respectively

+ ~ - ~2 +a)V E L1(~2) in case IIa and, roughly,
( 1 + 1 ~ 18 L 1(1R2), ð &#x3E; 0, in the other cases. Under somewhat stronger
conditions, case I has been discussed before by Cheney [17 ]. These results
have recently been used to prove different representations for Krein’s
spectral shift function [9 ].
A brief outline of the results of this paper has appeared in [12 ].

2. ZERO-ENERGY PROPERTIES OF H

In this section we study zero-energy properties of the two-dimensional
Schrodinger operator H, taking into account explicitly the possibility of
zero-energy resonances and/or zero-energy bound states of H.
Assume V to be a real-valued measurable function, satisfying hypothesis

Annales de l’Institut Henri Poincaré - Physique theorique



179THRESHOLD SCATTERING IN TWO DIMENSIONS

The Hamiltonian H in L 2(1R) is then defined as the form sum

Introducing

the transition operator T(k) in L 2(1R2) is defined as

Here 6p( . ) denotes the point spectrum and Ro(k) is the resolvent of Ho

with integral kernel

(Hb1)(z) being the Hankel function of first kind and order zero [1 ]).
In order to exhibit the singularity of Ro(k) as k  0, we decomposer] ]

where M(k) E ~2(L2(f1~2)) (the set of Hilbert-Schmidt operators in L 2(1R2))
for all 0 and ’P(z) represents the digamma function [1]. In parti-
cular, the integral kernel of M(O) == Moo reads

Next we introduce

and hence we obtain for T(k)

Since the low-energy behavior of T(k) crucially depends on the zero-
energy behavior of H we first recall [15] ] [30 ].

LEMMA 2.1. 2014 Let V satisfy (H .1). Assume that - 1 is an eigenvalue of
~oQMooQ and let

Then

Vol. 48, n° 2-1988.



180 D. BOLLE, F. GESZTESY AND C. DANNEELS

Consequently

This result represents a slightly improved version of Lemma 7 . 3 of [~0] ]
and has been proved in [7~]. Next we state

LEMMA 2 . 2. - Let V satisfy (H .1). Assume that 03BB0QM00Q03C6 = -03C6
for some 03C6 E L2(R2) and define the function 03C8 by 

-

Then

particular,

Proof. 2014 From [25 ], p. 527

and

one infers

implying

Annales de Henri Poincaré - Physique " theorique "



181THRESHOLD SCATTERING IN TWO DIMENSIONS

From

and from

we infer using assumptions (2.1) in the same way as one
proves M(k) E ~2(L2((~2)) for 0 [45 ]. This proves i). Assertion ii)
simply follows from Lemma 2.1 v) after multiplying eq. (2 .11 ) with 
In order to prove iii) we decompose

where

Then 03C8 may be rewritten as

where

From

Vol. 48, n° 2-1988.



182 D. BOLLE, F. GESZTESY AND C. DANNEELS

we conclude that ~ E L 2(1R2) since

Next, using (v, ~) = 0, we estimate for G &#x3E; 0, ~ I 2 2

Similarly, we get

Hence iii) holds. II
In view of Lemma 2.1-2.2, we can distinguish the following cases in

the zero-energy behavior of H. Assuming that V satisfies (H .1) we have:

CASE I. 2014 (2014 1) is not an eigenvalue of AoQMooQ

if M = 2 then c21 ~, £~2) are linearly independent,

CASE IV. 2014 (- 1) is an eigenvalue of ~,oQMooQ of multiplicity M + N,

Annales de l’Institut Henri Poincare - Physique ° theorique "



183THRESHOLD SCATTERING IN TWO DIMENSIONS

or

then £2 , £2 are linearly independent,
Here the coefficients c~, c2~~ are defined by

- 1 B.9’2014/ B-?"-uu"rj/?_z B~’"/ BB~/*’?’r~/ ~~.~~~

where j takes on the values described above.
’ 

REMARK 2. 3. a) Case I means the absence of zero-energy resonances
and zero-energy bound states of H and hence represents the generic case.
Cases IIa)-c) describe the various possibilities of zero-energy resonances
of H. If V is spherically symmetric then case IIa) and case IIb) correspond

. 

to zero-energy resonances in the s-wave and p-wave respectively [22] ] [35 ].
Case III denotes the zero-energy bound state case. In particular, if V is
spherically symmetric this case only happens to occur in d- and higher
waves. Finally, cases IVa)-c) describe possible admixtures of cases II-III.
In all cases II-IV we have (v, ~~) = 0. By Lemmas 2.1 and 2 . 2 the above list of
cases is complete. As explained in the introduction we restrict our detailed
treatment to cases I-III and present some relevant remarks concerning
case IV in the following.

b) These case distinctions in two dimensions first appeared in Klaus
and Simon [30 ]. Zero-energy resonance wave functions are also discussed
in [~7] ] [32 ]. Sufficient conditions for in Lemma 2. 2 i) can
be read off from [7] ] [32 ].

3. LOW-ENERGY EXPANSIONS OF T(k)

Now we derive the low-energy expansions of T(k) for the different
cases I-III presented in Section 2. We give recursion relations for the Taylor
coefficients of T(k) in case I. We closely follow the treatment in [6] ] [15 ].
We start with 

,

LEMMA 3.1.2014 Assume (H 1) and let E e CB {0 } be small enough. Then
the norm convergent expansion 00

holds. Here Po denotes the projection onto the eigenspace of ~,oQMooQ
to the eigenvalue - 1, i. e.,

Vol. 48, n° 2-1988.
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(the range of j depends on the cases I-III and is specified in Section 2) where

The operator To denotes the corresponding reduced resolvent, viz.

For the proof of this lemma one can follow the proof of Lemma 3.1 in [6 ]
or step by step.
Next we strengthen our assumptions on V and replace hypothesis (H .1)

by

Taking into account the properties of the Hankel function as

z -&#x3E; 0 [7] ] we infer from eq. (2 . 7).

LEMMA 3 . 2. 2014 Assume (H . 2). Then

where

and = 1, 2 are analytic with respect to k2
in &#x3E; - a. Moreover the expansion

is valid in The coefficients Mm have integral kernels

Annales de Henri Poincaré - Physique theorique



185THRESHOLD SCATTERING IN TWO DIMENSIONS

Next, using these results we determine the low-energy behavior of T(k)
in cases I-III.

THEOREM 3 . 3. 2014 Assume (H . 2). Then T(k) has the norm convergent
Laurent expansion

where

and

Proof of case 1. Recalling eq. (3.8) and employing

we get, starting from eq. (2.4)

Here the index of the order symbol 012(’) indicates that 012(’) is ana-
lytic in similarly O 1 ( ’ ) will indicate analyticity in 
In addition the symbols 012t(.), ~ 1 E( ’ ) indicate analyticity with respect
to an additional parameter E (to be specified later on in cases II - III). Using

set of bounded operators in L 2(1R2)) and hence

Vol. 48, n° 2-1988.



186 D. BOLLE, F. GESZTESY AND C. DANNEELS

we finally infer

Proof of case IIa). 2014 Repeating the calculation up to eq. (3 . 21 ) taking
into account higher-order terms gives

where will be specified later on. Eq. (3.1) and

then yield after a lengthy calculation

(in obvious notation Og(’) indicates analyticity in s). Next we note that

if the inverse of the matrix (~~, (1 + exists.
Now we specialize to case IIa). Choosing G = 1/ln k, then eqs. (3.24),

de Henri Poincaré - Physique théorique



187THRESHOLD SCATTERING IN TWO DIMENSIONS

and eq. (3.25), which reads here

finally prove the theorem in this case. II

Proof of case IIb). Choosing 8 = k2ln k and observing PoMooP = 0,
eq. (3.24) yields

Since (~bM01P1) = - 7r~’~ ~ 0 if M = 1 and

if M = 2 the use of eq. (3.25) to calculate the inverse in (3.28) completes
the proof. II

Proof of case Ilc) = 0. - Choosing ~ = k2lnk in eq. (3.24)
leads to

We know that

Using eq. (3.25) we then get ,

Vol. 48, n° 2-1988.



188 D. BOLLE, F. GESZTESY AND C. DANNEELS

Consequently

and we get

Proof of case IIc) 5~ 0. 2014 Again we choose G = k2ln k in eq. (3 . 24)
and without loss of generality we assume M = 2. Then

has the inverse

where 03(,) indicates analyticity in k2 (ln k)2. Insertion of eq. (3 . 36) into
eq. (3.29) employing eq. (3.25) then completes the proof. II

Proof of case III. Choosing 8 = k2 and observing

in eq. (3.24), yields

Next eq. (3.25) implies

Annales de Henri Poincare - Physique - theorique -



189THRESHOLD SCATTERING IN TWO DIMENSIONS

where the inverse matrix (~, ~,oM 11 ~)~I 1 exists since (~, is a positive
definite matrix. This can be seen as follows. From [20 ], p. 364 we learn that

if the fm satisfy the following condition

Thus the I. h. s. of (3 . 39) is strictly positive under these conditions on f
Inserting eq. (3 . 38) into eq. (3 . 37) (taking the inverse [ ] -1 outside of

{ ... } -1 on the left, i. e. [ ]-1 { ... } -1 etc.) completes case III. II

REMARK 3 . 4. 2014 ~) One can prove that k - 2 is the leading singularity
of T(k) as k  0 in cases IVa)-c), i. e., t _ 1 _ 1 ~ 0 and T(~)~0(~).

b) It is interesting to note that in case IIa, the zero-energy resonance
causes only a (weak) logarithmic singularity in T(k) as k  0.

Finally we indicate how to derive recursion relations for the coefficients
tmn in analogy to the treatment in [7~]. For simplicity we confine ourselves
to the generic case I.

Defining

we have from the definition of T(k)

Using

we arrive at

Taking into account QP = PToQ = 0, ToP = P and

Vol. 48, n° 2-1988.



190 D. BOLLE, F. GESZTESY AND C. DANNEELS

one obtains

Next we expand

Inserting eqs. (3.46)-(3.49) into eq. (3.45) finally yields the recursion rela-
tions in case I

Annales de l’Institut Henri Poincare - Physique " theorique "



191THRESHOLD SCATTERING IN TWO DIMENSIONS

Explicitly we have in

CASE I.

We also list the first coefficients in the other cases, which are useful in the
sequel

CASE IIa).

CASE IIb).

CASE IIc). = 0.

CASE IM). c2°~ ~ 0.

Vol. 48, n° 2-1988.



192 D. BOLLE, F. GESZTESY AND C. DANNEELS

CASE III.

4. EXPANSIONS OF ON-SHELL SCATTERING QUANTITIES
AROUND THRESHOLD

Given the explicit threshold behavior of T(k) near k = 0, we discuss
in this Section the low-energy expansions of the on-shell scattering ampli-
tude f(k, ÇQ, co’) and of the scattering operator S(k) in cases I-III.
We first recall the corresponding definitions of f(k, co’) and S(k) in

terms of T(k) [21 ]. For simplicity we assume hypothesis (H . 2) throughout
this section.
The on-shell scattering amplitude is given by

where (’,’) is the scalar product in L 2(1R2) and E+ defiotes the exceptional set

Hypothesis (H . 2) implies that E + is a finite, discrete set (implying the
absence of the singular continuous spectrum of H). The on-shell
scattering operator in L2(S 1 ) is then defined by

Next we study Expanding T(k) and in eq. (4.1) yields
the Laurent expansion

Annales de Henri Poincaré - Physique " theorique "



193THRESHOLD SCATTERING IN TWO DIMENSIONS

(r, s depending on cases I-III). We investigate in more detail the different
cases separately.

THEOREM 4.1. - Assume (H . 2). Then is analytic in
near (0,0) with the following Taylor expansions :

CASE I.

CASE IIa).

CASE IIb).

CASE IIc).

CASE III.

Thus

Vol. 48, n"2-1988.
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Proof of case I. 2014 From eq. (3.51) we see that

Using the recursion relations (3.50) for tmo we get

Here we used the abbreviations

Since

we obtain eq. (4. 5). II

Proof of case 77a). 2014 Tedious but straightforward calculations show

Moreover, ~,oQMooQ~o = - Øo implies

and hence

since c i°~ ~ 0. Thus one infers

Thus

Collecting all relevant terms in eq. (4 .1 ) then yields eq. (4 . 6). II

Proof case llb). 2014 In addition to eqs. (3.57) and (3.58) one can show
that

Insertion of these " results into eq. (4.1) yields eq. (4.7). II

Annales de l’Institut Henri Poincaré - Physique " theorique "
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Proof of case In addition to eqs. (3 . 59)-(3 . 66), straightforward
but rather lengthy calculations yield

Collecting all terms in eq. (4 .1 ) then proves eq. (4 . 8). II

Proof of case III. 2014 In addition to eqs. (3 . 67) and (3 . 68) one can show
that

which leads to eq. (4.9). II

REMARK 4 . 2 a). 2014 One can prove in cases IVa)-c) that

b) Taking into account eq. (4.16), one infers that all orders up to O(k2ln k)
in eq. (4.6) are zero if = 0 and hence in case IIa)

Given Theorem 4.1 it is now easy to read off the low-energy behavior
of S(k) from eq. (4.3).

THEOREM 4 . 3. 2014 Assume (H . 2). Then S(k) is analytic in 
near (0,0) with the following (norm convergent) Taylor expansions :

CASE I.

where

CASE IIa).

Vol. 48, n° 2-1988.
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where

CASE IIb).

where

CASE III.

REMARK 4.4. 2014 ~) Since = 0 if = 0, 1 + O(k2) in
case IIa) if = 0.

b) Expressions (4 . 5)-(4 . 9) for f(k, cv, c~’) and the corresponding ones for
S(k) above, considerably simplify if V is spherically symmetric (cf. [22] [35] ]
for details). E. g. = 0, 0 only for the p-wave (i. e. angular
momentum l = 1 ).

c) We emphasize that S(k) ~ 1 in all cases involved (actually this can
also be proven in cases IVa)-c)). This is in sharp contrast to one and three
dimensions where S(k) converges to - 1 0 in certain cases [6 ] [7~] ]
[15] ] [27] ] [33 ].

5. LOW-ENERGY PARAMETERS

Following the three-dimensional treatment in [5] ] we generalize the
concept of scattering length for nonspherically symmetric potentials to
two dimensions. Furthermore, we relate it to the threshold behavior of
the scattering amplitude.
We start with the following definition whose motivation (in the three-

dimensional context) can be found in Sect. III of [5 ].

DEFINITION 5.1. - Assume (H . 2) and (without loss of generality)

l’Institut Henri Poincaré - Physique théorique



197THRESHOLD SCATTERING IN TWO DIMENSIONS

(0, ko) n S+ = 0 for some ko &#x3E; 0. In cases I, IIb) and III we define the
scattering length a by

In case IIa), c), the scattering length does not exist (i. e., a -1 = 0).

REMARK 5 . 2. 2014 ~) If V is spherically symmetric then a reduces precisely
to the ordinary two-dimensional scattering length discussed extensively -
in [10] [77] ] [22 ], (cf. also [3 ]). 

’

b) In exactly the same way one can define the effective range parameter
for nonspherically symmetric potentials (cf. [5 ] for the analog in three
dimensions).

c) Hypothesis (H. 2) in Definition 5.1 can be considerably relaxed. In
fact, the exponential falloff of V at infinity, in (H . 2), can
be replaced by (1 + I ~ I )nv E L 1(1R2) for suitable depending on the
cases I-III involved.

d) Definition 5.1 also works in case IVb) whereas a does not exist in
cases IVa, c) (i. e. a -1 - 0).
Given the threshold expansion of f(k, in Section 4 it is now easy

to calculate a :

THEOREM 5 . 3. 2014 Assume (H . 2). Then

in cases I, IIb) and III.

Proof 2014 We only need to insert eqs. (4. 5), (4. 7) and (4.9) into eq. (5.1).
, 

-

REMARK 5 . 4. 2014 ~) Eq. (5 . 2) implies that the scattering length a in cases I,
IIb) and III never vanishes.

b) Eq. (5.2) (and hence Remark 5.4a)) stays valid also in case IVb).

6. TRACE RELATIONS, LEVINSON’S THEOREM

Finally, we investigate the threshold behavior of the trace of the diffe-
rence between the full and free resolvent. We then use this behavior to
derive Levinson’s theorem in cases I-III.

In addition to hypothesis (H . 2) we need hypothesis

Vol. 48, n° 2-1988.
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Then one knows that [9] ] [77] ]

For Im k &#x3E; 0 we also recall that

where denotes the full resolvent

This implies

where we have used

Inserting the Laurent (resp. Taylor) expansions for 
(in Hilbert-Schmidt norm) and T(k) into eq. (6.7) one obtains

THEOREM 6.1. 2014 Assume (H . 2) and (H . 3). Then Tr [R(k) - has
the following Laurent expansion in (1/ln k, k2 In k) around (0,0)

where

and

Explicitly we get

Annales de l’Institut Henri Poincare - Physique theorique



199THRESHOLD SCATTERING IN TWO DIMENSIONS

Proof of case 1. 2014 After multiplying the Laurent (resp. Taylor) expan-
sions of uRo(k)v, T(k), uRo(k)v, a tedious calculation isolating the most
dominating terms in eq. (6.7) leads to

By eq. (3.52) one gets

completing the proof. -

Proof of case 7/a). 2014 Isolating again the most singular terms in eq. (6 . 7)
yields after lengthy calculations

The fact that

then completes the proof. II

Proof ’ of case 77b). 2014 The leading singularities in eq. (6 . 7) now read

Rather involved calculations finally lead to

Proof of case 7/c). 2014 Now the dominant terms in eq. (6 . 7) are given by

Vol. 48, n° 2-1988.
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Again tedious calculations yield

Proof of case III. 2014 Here the most singular terms in eq. (6. 7) turn out
to be

Once more quite involved calculations finally give

REMARK 6.2. 2014 One can also show that

From (6.12) and (6.34) we see that zero-energy resonances of type a)
never contribute to in cases IIa), c) IVa), c) whereas zero-energy
resonances of type b) contribute to in cases II&#x26;), IVb), in the same
way as zero-energy bound states do. I. e., in contrast to one and three

dimensions, there are no factors of 1/2 in A-i-~ in two dimensions. This
fact remains valid in d &#x3E;_ 4 dimensions, since for d = 4 the zero-energy
resonance contributes like a zero-energy bound state and for d &#x3E; 5 there
exist no zero-energy resonances of H at all [2~] ] [29] ] [30 ] [31 ].

Finally we apply the contour integration method to derive Levinson’s
theorem in cases I-III.
We define

Annales de Henri Poincaré - Physique ’ theorique ’
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where

now also includes negative eigenvalues ofH. Next we introduce the contour
r where

where I - indexes the negative eigenvalues x~  0 of H (i. e. the elements of
£- = £ n ( - oo, 0)) and R &#x3E; 0 is chosen large enough such that the open

encloses all circles of radius E around all points
in E-. Then

by Cauchy’s theorem. Analyzing the different contributions to the integral
over yields

THEOREM 6 . 3 (Levinson’s theorem). 2014 Assume (H. 2), (H. 3) and S- = 0.
Then

where N- denotes the number of (strictly) negative bound states of H
counting multiplicity. Here the integral on the 1. h. s. of eq. (6. 39) is inter-

preted as an inproper Riemann integral i. e. lim ... ).
Proof Clearly the part of the integral (6 . 38) along contri-

butes a factor Taking into account expansion (6 . 9), the integral
(6 . 38) over part of the contour, namely ys u leads to
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Here we used complex conjugation as

Furthermore, we note that by expansion (6.9)

Thus the Riemann integral on the r. h. s. of eq. (6.40) is well defined near
zero. Finally we discuss the high-energy contour CR,E. Clearly

The remaining integral, viz.

has been studied explicitly in Lemma 3 . 3 of [9] (cf. also [36 ]). We remark
that for eq. (6 . 44) to be true, V must only satisfy (1 + I ~ I)V E L 1(1R2),
V E ~ 4/3(1R2). Since by the estimates (6 . 3) and (6 . 4), Tr + io) - Ro(k + io) ]
is continuous in k &#x3E; 0 [9 ], adding up all contributions yields eq. (6 . 39).

REMARK 6 . 4. 2014 a) From (6 . 29) and the value (recall (6.12)
and (6 . 34)) we see that a zero-energy resonance of the s-wave type (case IIa)
does not contribute to Levinson’s theorem, while zero-energy resonances
of the p-wave type (case IIb) contribute exactly like (zero-energy) bound
states. This result has been announced already in [12 ]. It is in sharp contrast
with what one finds in one ([7~]) and three (e. g. [8 ]) dimensions.

b) In the special case of a spherically symmetric interaction V, Levinson’s
theorem in two-dimensions has been discussed in [22] ] [2~] ] [2~] ] [35 ].

c) In the general, nonspherically symmetric case, Levinson’s theorem
in two-dimensions has been derived by Cheney [77] in case I (cf. also [37 ]).

d) the I. h. s. of Levinson’s theorem (6. 39) can be related directly to the
on-shell scattering matrix S(k) in via [77] ]

(actually ref. [77] ] requires in addition, but presumably this
extra condition can be dropped).

e) Higher-order Levinson’s theorems could be derived along exactly
the same lines after replacing F(k2) in (6.35) by

(see e. g. [8] ] in the three-dimensional context).
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f ) Clearly our assumptions on the exponential falloff of V at infinity
in Theorem 6.3 are not necessary. As long as one guarantees the absence
of positive embedded eigenvalues of H (i. e. £- = 0) [79] and the absence
of the singular continuous spectrum of H, o~(H) =0, [4] ] [40 ] [41 ],
asymptotic expansions in Theorem 6.1, instead of Laurent expansions,
lead to the conditions and to (1 in case I

respectively (1 + I ~ 12 +ð)V E L 1(1R2) in case IIa). (This follows directly from
eqs. (3 . 21 ), (6 . 3) and (6 . 4) respectively from Section 2 and eqs (3 . 24)-(3 . 27),
(6.3) and (6.4)). A rough check in all remaining cases IIb)-III shows that

and suffices (however, most likely
one can improve on this).

g) One can show that Eq. (6 . 39) remains valid in cases IVa)-c).

ACKNOWLEDGEMENTS

We thank S. F. J. Wilk for participating in the initial stages of this work.
D. B. is indebted to the Nationaal Fonds voor Wetenschappelijk Onderzoek,
Belgium for financial support as an Onderzoeksdirecteur. F. G. would
like to thank B. Simon for the warm hospitality extended to him at Caltech.
He also gratefully acknowledges financial support from the Max Kade
foundation and from the USNSF under grant No. DMS-8416049.

[1] M. ABRAMOWITZ, I. A. STEGUN, Handbook of Mathematical Functions, New York,
Dover, 1972.

[2] S. K. ADHIKARI, Am. J. Phys., t. 54, 1986, p. 362.
[3] S. K. ADHIKARI, W. G. GIBSON, T. K. LIM, J. Chem. Phys., t. 85, 1986, p. 5580.
[4] S. AGMON, Ann. Scuola Norm. Sup. Pisa, Ser. IV, t. 2, 1975, p. 151.

[5] A. ALBEVERIO, D. BOLLÉ, F. GESZTESY, R. HØEGH-KROHN, L. STREIT, Ann. Phys.,
t. 148, 1983, p. 308.

[6] S. ALBEVERIO, F. GESZTESY, R. HØEGH-KROHN, Ann. Inst. H. Poincaré, t. A 37, 1982,
p. 1.

[7] P. BENILAN, H. BREZIS, M. G. GRANDALL, Ann. Scuola. Norm. Sup. Pisa, Ser. IV,
t. 2, 1975, p. 523.

[8] D. BOLLÉ, Sum rules in scattering theory and applications to statistical mechanics,
in Mathematics + Physics: Lectures on Recent Results, vol. 2, L. Streit (ed.), Singa-
pore, World Scientific, 1986, p. 84.

[9] D. BOLLÉ, C. DANNEELS, T. A. OSBORN, Local and global spectral shift functions in
R2, Univ. of Leuven, Preprint-KUL-TF-86/16.

[10] D. BOLLÉ, F. GESZTESY, Phys. Rev. Lett., t. 52, 1984, p. 1469.
[11] D. BOLLÉ, F. GESZTESY, Phys. Rev., t. A 30, 1984, p. 1279.
[12] D. BOLLÉ, F. GESZTESY, C. DANNEELS, S. F. J. WILK, Phys. Rev. Lett., t. 56, 1986, p. 900.
[13] D. BOLLÉ, F. GESZTESY, M. KLAUS, J. Math. Anal. Appl., t. 122, 1987, p. 496.
[14] D. BOLLÉ, F. GESZTESY, C. NESSMANN, L. STREIT, Rep. Math. Phys., t. 23, 1986, p. 373.
[15] D. BOLLÉ, F. GESZTESY, S. F. J. WILK, J. Operator Theory, t. 13, 1985, p. 3.

Vol. 48, n° 2-1988.



204 D. BOLLE, F. GESZTESY AND C. DANNEELS

[16] M. CHENEY, J. Math. Phys., t. 25, 1984, p. 94.
[17] M. CHENEY, J. Math. Phys., t. 25, 1984, p. 1449.
[18] M. CHENEY, J. Math. Phys., t. 26, 1985, p. 743.
[19] R. FROESE, I. HERBST, M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, J. d’Anal.

Math., t. 41, 1982, p. 272.
[20] I. M. GELFAND, G. E. SHILOV, Generalized Functions I, New York, Academic, 1964.
[21] F. GESZTESY, Perturbation theory for resonances in terms of Fredholm determinants

in Resonances, Models and Phenomena, S. Albeverio, L. S. Ferreira, L. Streit (eds),
Lecture Notes in Physics, t. 211, New York, Springer, 1984, p. 78.

[22] F. GESZTESY, On stationary two-body scattering theory in two dimensions, in Models
and Methods in Few-Body Physics, L. S. Ferreira, A. C. Fonseca, L. Streit (eds.),
Lecture Notes in Physics, t. 273, New York, Springer, 1987, p. 609.

[23] W. G. GIBSON, Phys. Lett., t. A 117, 1986, p. 107.
[24] W. G. GIBSON, Phys. Rev., t. A 36, 1987, p. 564.
[25] I. S. GRADSHTEYN and I. M. RYZHIK, Table of Integrals, Series and Products, New

York, Academic, 1980.
[26] H. HOLDEN, J. Operator Theory, t. 14, 1985, p. 263.
[27] A. JENSEN, T. KATO, Duke Math. J., t. 46, 1979, p. 583.
[28] A. JENSEN, Duke Math. J., t. 47, 1980, p. 57.
[29[ A. JENSEN, J. Math. Anal. Appl., t. 101, 1984, p. 397.
[30] M. KLAUS, B. SIMON, Ann. Phys., t. 130, 1980, p. 251.
[31] M. MURATA, J. Funct. Anal., t. 49, 1982, p. 10.
[32] M. MURATA, J. Funct. Anal., t. 56, 1984, p. 300.
[33] R. G. NEWTON, J. Math. Phys., t. 18 1977, p. 1348.

[34] R. G. NEWTON, J. Operator Theory, t. 10, 1983, p. 119.
[35] R. G. NEWTON, J. Math. Phys., t. 27, 1986, p. 2720.
[36] T. A. OSBORN, D. BOLLÉ, J. Math. Phys., t. 18, 1977, p. 432.

[37] T. A. OSBORN, K. B. SINHA, D. BOLLÉ, C. DANNEELS, J. Math. Phys., t. 26, 1985,
p. 2796.

[38] S. H. PATIL, Phys. Rev., t. A 22, 1980, p. 2400.
[39] S. H. PATIL, Phys. Rev., t. A 25, 1982, p. 2467.
[40] M. REED, B. SIMON, Methods of Modern Mathematical Physics III, Scattering Theory,

New York, Academic, 1979.
[41] M. REED, B. SIMON, Methods of Modern Mathematical Physics IV, Analysis of Ope-

rators, New York, Academic, 1978.

[42] N. SETO, Publ. RIMS, Kyoto Univ., t. 9, 1974, p. 429.
[43] N. SHENK, D. THOE, J. Math. Anal. Appl., t. 36, 1971, p. 313.
[44] N. SHENK, D. THOE, J. Math. Anal. Appl., t. 37, 1972, p. 467.
[45] B. SIMON, Ann. Phys., t. 97, 1976, p. 279.

(Manuscrit reçu Ie 28 octobre ’ 1987)

Annales de Henri Poincaré - Physique ’ theorique ’


