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ABSTRACT. 2014 We study the semi-classical asymptotic behavior as h  0
of total scattering cross-sections for Schrodinger 
when energies are fixed in non-trapping energy ranges. The proof is based
on the semi-classical estimates for resolvents and the argument applies
to the asymptotics for forward scattering amplitudes.

RESUME. - On etudie Ie comportement asymptotique semi-classique
quand h ~ 0 de la section efficace totale pour l’opérateur de Schrodinger
- (1/2)~A + V, pour des energies dans des regions sans trajectoires
piegees. Les demonstrations sont basees sur des estimations semi-classiques
de resolvantes, et les arguments s’appliquent au comportement asymptotique
de 1’amplitude de diffusion vers l’avant.

§ 0 INTRODUCTION

In the present paper we study the semi-classical asymptotics for total
scattering cross-sections of Schrodinger operators H(~)= 2014(l/2)~A-t-V,
0  h  1, in the n-dimensional space Rnx, n ~ 2. As is well known (e. g. [10 ]),
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416 D. ROBERT AND H. TAMURA

if a real-valued potential V(x) satisfies ! !~ (1 + x ~ )-’° with p &#x3E; (n + 1)/2,
then the scattering matrix S(~ h) with energy /), &#x3E; 0 can be defined as a

unitary operator acting on being the (n-1)-dimensional
unit sphere and also S(/~ h) - Id is an integral operator of Hilbert-Schmidt
class. The kernel of this operator is represented in terms of the scattering
amplitude 0; ~ h), 8) E x S" -1, with the incoming direc-
tion co and the outgoing one 8. (The precise definition of 0;/~)
is given in section 1.) The total scattering cross-section ~(cv; ~,, h) is defined by

and also the averaged total cross-section cr~(~ h) is defined by averaging
~,, h) over The aim of the present paper is to study the asymptotic

behavior of ~,, h) in the semi-classical limit h  0.

We shall first formulate the main theorem precisely together with some

assumptions and then make several comments on recent related results.
We make the following assumption on V(x).

ASSUMPTION (V)p. - V(x) is a real C~-smooth function and satisfies

for some p &#x3E; 0, where  x &#x3E; = (1 + I x I )1/ .
We further assume that the energy ~, &#x3E; 0 under consideration is non-

trapping in the following sense.

Non-trapping condition. be the solution to

the Hamilton system x = ~ ~ = 2014 VxV with initial state ( y, ri). We say
that energy ~, &#x3E; 0 is non-trapping, if for any R » 1 large enough, there
exists T = T(R) such that y, ~)| &#x3E; R for t| &#x3E; T, when |y|  R
and ~, = I ~ I2/2 + V(y).
We require some notations to formulate the main theorem. We fix the

incoming direction 03C9 E and denote by the hyperplane orthogonal
to M. We write x = y + s E R1, with y E Under the above assump-
tions and notations, the main theorem is stated as follows.

THEOREM 1. - Assume (V)p with p &#x3E; (n + 1)/2, ~ ~ 2, and that the
energy 03BB &#x3E; 0 is fixed in a non-trapping energy range. T hen the total scattering
cross-section 7(~; ~ h) obeys the following asymptotic formula as h  0:

with v = (n - 1)/( p - 1).
We should note that if C-1  jc )’~ V(~-) ~ C ( jc )’~ C &#x3E; 1, then

the leading term is comparable to the order 
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417ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

The proof of Theorem 1 is based on semi-classical estimates for
resolvents. We denote by the same notation H(h) the unique self-adjoint
realization in L2(R") and by R(z; H(h)), Im z ~ 0, the resolvent of H(h);
R(z; H(h)) _ (H(h) - z) -1. Let be the weighted L2 space defined by

Then, by the principle of limiting absorption ( [1 ], [3 ], etc.), there exist
bounded operators :t tO; H(h)): La -~ a &#x3E; 1/2, defined by

strongly in The next theorem plays an essential role in proving
the main theorem.

THEOREM 2 (resolvent estimate). Assume (V)p with p &#x3E; 0 and that ~, &#x3E; 0
is non-trapping. Denote by ~ ~ the operator norm when considered as an
operator from into itself. Then, for any a &#x3E; 1/2,

as h ~ 0. Furthermore, if ~, ranges over a compact interval in a non-trapping
energy range, then the above bound is uniform in ~,.

Now, we shall make several comments on recent results related to the
main theorem.

1 ) The bound

is proved by Enss-Simon [2] ] when C ~ x ~ - p, p &#x3E; (n + 1)/2.
It should be noted that the above bound is obtained without assuming
the non-trapping condition for ~, E [a, b].

2) The weak bound for the averaged cross-section 6a(~,, h) without avera-
ging over energy /t; 6a(~,, h) = is proved by Sobolev-Yafaev [13]
without assuming the non-trapping condition.

3) Recently, Yafaev [7~] has obtained the sharp bound ~,, 
in the high energy case

The proof is based on the sharp resolvent estimate

with C independent of h, 0  h  1, and r, r ~ 1. Under assumption (V)p,
the restriction (0.1) implies that in a non-trapping energy range. Our
resolvent estimate (Theorem 2) is a special case of (0.2) with r = 1.

Vol. 46, n° 4-1987. 16



418 D. ROBERT AND H. TAMURA

4) Furthermore, under the assumption (0.1), Yafaev [7~] has obtained
the asymptotic formula as h  0 of 6(cc~; ~,, h) for a certain class of potentials
such as V(x) behaving like

where

Formula (0.3) follows from Theorem 1 by taking spherical coordinates
in The proof for (0.3) in [16 ] seems to rely on the homogeneous property
ofV(x) at infinity. Theorem 1 will be considered as an extension to the non-

homogeneous case as well as to the case of non-trapping energies, although
the restrictive regularity condition (V)p is assumed.

5) Now assume that V(x) E Then we can easily guess from Theo-
rem 1 that ~,, h) = 20’Cl(0J) + o( 1 ) as h  0, where denotes

a classical scattering cross-section for the incoming direction OJ (i. e. cross-
section of the support of V(x) along the direction co). We will prove this
result in section 4, assuming a certain condition on the corresponding
classical systems in addition to the non-trapping condition. This problem
has been conjectured in [2] and Yajima [77] has proved this convergence
when averaged over ~, without assuming the non-trapping condition.

§ 1 TOTAL SCATTERING CROSS-SECTIONS

Throughout this section we assume V(x) to satisfy (V)p with p &#x3E; (n + 1)/2.
We collect some basic facts about the stationary scattering theory for

Schrodinger operators H(h) _ - (1/2)~A + V. For details, see, for

example, the book [10 ]. 
_

Let Ho(~)= -(1/2)~A and denote by (~,, co) E (0, oo) x S" B
the generalized eigenfunction associated with Ho(h);

where (, ) denotes the scalar product in R n. We further define ~ro(x; ~,, OJ, h) by

with the normalized constant

Annales de l’Institut Henri Poincaré - Physique theorique



419ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

Then the unitary operator Fo(h): L2(Rx) ~ L2((o, oo); defined by

gives the spectral representation for Ho(h) in the sense that Ho(h) is trans-
formed into the multiplication by ~, in the space L~((0,oo);L~(S""~)).
The generalized ~ h) of H(h) is given by

and we define ~r ± (x; ~,, co, h) as in the same way as ~ro ; ~r ± - ~o(~,, 
Let S(~,, h): L2(Sn-1) ~ be the scattering matrix defined for the
pair (Ho(h), H(h)). As is well known, S(~, h) is unitary and takes the form

Here TU, h) is an integral operator of Hilbert-Schmidt class with the kernel

where (, ) denotes the L2 scalar product.
We shall discuss the relation between the scattering amplitude f(03C9 ~ e;

~,, h) and the kernel T(6, ~; ~ h). Let Go(x-y; ~ h) be the Green function
of + io; Ho(h)). We know (p. 196, [2 ]) that Go(x; ~ h) behaves like

where

We now write x = |x| Ie, 0e Then it follows from the Lippmann-
Schwinger equation that 03C6+(|x| 03B8; 03BB, 03C9, h) behaves like

as x ~ --~ oo, where 
’

The function ~ 0; ~ h) is called the scattering amplitude and it
is related to the kernel T(e, M; ~ h) through

where

Thus the total scattering cross-section 6(cv; ~,, h) is represented as

Vol. 46, n° 4-1987.



420 D. ROBERT AND H. TAMURA

Let K(/L; ~ = h) - T(/L, h)*. By unitarity of h), T(~, h) is normal
and also

Hence, K(~,, h) is of trace class. We denote by K(8, a~; ~,, h) the kernel of
K(~,, h). Then, 0’( OJ; /)., h) can be rewritten as

where

§ 2. BOUNDS FOR TOTAL CROSS-SECTIONS

As a preliminary step toward the proof of the main theorem, we shall
first establish the semi-classical bounds for total cross-sections, accepting
Theorem 2 (resolvent estimate) as proved. The proof of Theorem 2 will
be given in sections 5 and 6.

THEOREM 2.1. - Under the same assumptions as in Theorem 1, we have

Proof - The proof is rather long and is divided into several steps.

STEP (0). - We begin by fixing several notations. We denote by I 10
and (, ) the L2 norm and scalar product, respectively. We fix the two posi-
tive constants y and 03B2 as

with some 5o &#x3E; 0 small enough. Throughout the proof, y and 03B2 are used
with the meanings ascribed above. We further introduce three smooth
cut-off functions Xj = h), 1 ~ 7 ~ 3, with the following properties :

Finally, for brevity, we write for ~ OJ, ~) ~id o (~; /)-, OJ, /!),
respectively, with the fixed 0 incoming j direction a~ and 0 energy ~,.

Annales de l’Institut Henri Poincare - Physique theorique



421ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

STEP ( 1 ). 2014 The " first step 0 is to rewrite " 6(cv ; ~,, h) in a more " convenient
form.

LEMMA 2.1. - Under the ’ above notations

where o-i = and

Proof 2014 It is sufficient to prove the lemma when V(x) is of compact
support. The general case in which V(x) satisfies (V)p with p &#x3E; (n + 1 )/2
can be proved by approximating V(x) by a sequence of Co-potentials.
Thus we assume that V(x) E Then, by (1.1) ,we have

Therefore, the lemma follows immediately from the relation

We assert that

from which the theorem follows at once.

STEP (2). - We write + io) for + io; H(h)) and denote by [,] ]
the commutator notation. By a simple calculation

This relation, together with Theorem 2, plays an important role in

proving (2. 3).

Proof - By (2.4), ’ 2  j _ 3, can be decomposed 0 into
0" = where ’

We prove 631 - only, because the other terms can be dealt
with similarly. We write

Vol. 46, n° 4-1987.



422 D. ROBERT AND H. TAMURA

where f has support  I x  2h - y ~ and ! f ’  C ( x ~ - p
uniformly in h. Hence, by Theorem 2,

for a &#x3E; 1/2 (but close enough to 1/2), where

We can take bo &#x3E; 0 (see (2.1)) and (X - 1/2 &#x3E; 0 so small that  &#x3E; 0. This

completes the proof. D
We now make use of the relations V~+ = 2014 (Ho(h) - ~,)~ + and

l/J+ = R(~ + to rewrite h) as

Hence, by (2 . 4) again, h) can be decomposed as follows :

By an explicit calculation, we can easily see that 61p= p(hl-(n-1)y~ and in the
same way as in the proof of Lemma 2 . 2, we can prove that = 

1 ~ ~ ~ 2. Thus we have

STEP (3). - By step (2), the proof is reduced to evaluating terms such as
R(~, + with f supported in By~ being as in (2 . 2). We first consi-
der waves passing over the effective region of scatterer and we prove that
such waves do not make an essential contribution to the asymptotic behavior
as h  0 h).
We fix another positive constant x as

with the same ~ o as in (2 .1 ).

LEMMA 2 . 3. - Recall the ’ notation Let f = f(x; h) be a function
such that :

Then, for any oc &#x3E; 1/2 close enough to ’ 1/2,

Annales de l’Institut Henri Poincare - Physique - theorique .
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Proof. - By Theorem 2, the term under consideration is of order
with

By the choice of 03B2 and x, we can take (X 2014 1/2 &#x3E; 0 so small that  &#x3E; 0,
which completes the proof. D

Let f be as in Lemma 2. 3. If r = r(x; h) has support in V03B303B2 and satisfies
|r|  C x&#x3E;-03C1 uniformly in h, then it follows from Lemma 2 . 3 that

STEP (4). - Next we consider waves passing over an outside of the
effective region of scatterer and we see that only such waves make an
essential contribution of the asymptotic behavior 0 of ~,, h).

Let f(x) = f(x; h) E be a function such that :

We shall evaluate the term R(~, + with f as above by constructing
an approximate representation. We fix T = r(~ h) as

and define go = go(x; h) by

where

By a direct differentiation,

Making use of this relation, we calculate

where

Thus we can represent + as

We evaluate the remainder terms + 1 ~ 7 ~ 2.

Vol. 46, n° 4-1987.
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LEMMA 2 . 4. - For any o &#x3E; 1/2 close enough to ’ 1/2,

Proof 2014 By the choice of T, r2 has support in { x: Ixl  12~’ ~J~~&#x3E;~’"}.
If x E supp r2, then it follows from (V)p that

uniformly in t E R 1. Similarly

By choosing bo small enough, we may assume that x &#x3E; ~ 2014 1 &#x3E; 0. Hence,
by property ( f - 2),

Hence, by Theorem 2, the term under consideration is of order 
with

We can take 5o &#x3E; 0 and x 2014 1/2 &#x3E; 0 so small that ,u &#x3E; 0. This proves
the lemma. D

LEMMA 2 . 5. - Let X = the characteristic function of the set
{~’: x ~  3~’~}. T hen, for any a &#x3E; 1/2 close enough to 1/2,

Remark. 2014 By the choice of 03C4, r1 has support  3h-03B2}
and hence the support ofr does not intersect with the support of x. Roughly
speaking, by the out-going property, the classical particles with momentum
203BB03C9 starting from the support of r 1 never pass over the support of x.
Thus, it is possible to prove that the term in the lemma is of order 
for any N » 1. However, we do not intend to go into details here, because
the weak bound as above is enough to our later application.
To prove Lemma 2.5, we prepare

Proof 2014 The lemma will be intuitively obvious because of the above
remark and also the rigorous justification can be easily done. We give only
a sketch for the proof.

de l’Institut Henri Poincaré - Physique theorique



425ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

We can write X  + as

Making use of the Fourier transform, we further write the integral above
in the explicit form. Then a partial integration proves the lemma. It is
also possible to prove the lemma more directly by use of the explicit form
of the Green function Go(x - ~; ~ + io). For example, when n = 3

where ~r = ~ x - y ~ -~ ~ y, ~ ~. Ifxesupp X and yesupp rl, then 2 OJ 1
as is easily seen. Hence the lemma is proved by integration by parts. D

Proof of Lemma 2 . 5. 2014 For brevity, we write Ro and R for 
and R(~+f0), respectively. By the resolvent identity,

By Theorem 2 and Lemma 2 . 6, the L2 norm of the first and second terms on
the right side is of order To deal with the third term, we use the well-
known resolvent estimate for Ho(h) (see [1]); ~x&#x3E;-03B1R0 x&#x3E;-03B1~=0(h-1),
a &#x3E; 1 /2. Since

the L2 norm of the third term is of order with

We can take a - 1/2 &#x3E; 0 so small that  &#x3E; 0, which completes the proof.

Let f satisfy ( f 1 ) and ( f2 ). If r = r(x; h) has support in B03B303B2 and
satisfies ! r|  C  x &#x3E;- p uniformly in h, then it follows from Lemmas
2.5 and 2.5 that

As is easily seen, r) = p(h 1- cn -1 ~y) and hence

STEP (5). - We shall complete the proof. Let ~), 1 ~ j, ~ 2be as in step (2). By (2 . 6) and (2 . 9), = 0(~-"-~). This proves (2 . 3)and the proof is now complete. D
For given f(x) = f(x; h) with bound  C ( x ~ - p uniformly in h,

we define F(x, t; h) by (2. 8) and g = g(x; h) by

Vol. 46, n° 4-1987.
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Let r = r(x; ~) be as above. If / has support in then the support of

f" F(;c, t ; T being as in (2 . 7), does not intersect with By~ and if / has

support in { x e B03B303B2: | y !  h-03BA, y ~ 03A003C9 }, then r) = o(h1-(n-1)03B3).
Thus, by the same arguments as in steps (3) and (4), we can prove

if f =/(jc;h) is supported in By~ and satisfies I  
uniformly in h. Relation (2.11) plays an important role in proving the
main theorem.

§ 3. ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

In this section we shall prove the main theorem. By the arguments in
the previous section, the main contribution to the asymptotic behavior
as h  0 of ~,, h) comes from the terms ~,, h), 1 ~ ~ ~ ~ 2,
and also the leading terms of these terms are explicitly representable by
construction in step (4). The proof of the main theorem is done by looking
at the cancellations of the cut-off functions 1 ~ 7 ~ 3, carefully.

Proof of T heorem 1. 2014 The proof is divided into several steps.

STEP (1). 2014 We keep the same notations as in section 2. We set

We define Fj = t ; h) and gj = h) by (2 . 8) and (2.10) with f = f~,
0 ~ ~ 3, respectively. Then, by (2.5) and (2.11),

where

Proof 2014 The proof is easy. D

Proof. 2014 If we take account of the simple relation

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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the lemma is proved by partial integration. The calculation is slightly
tedious but direct. D
We now define G = G(x; h) by

where

Then, by Lemmas 3 .1 and 3 . 2,

Proof. 2014 By partial integration,

Hence, the lemma follows from the relation

which is verified by a direct calculation. D
By Lemma 3. 3,

Proof 2014 Define K 1 = K 1 (x, t ; h) by

Then, we have

from which the lemma follows after a simple calculation. D

STEP (4). - We are now able to complete the proof. By Lemma 3.4,

where

Vol. 46, n° 4-1987.
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Hence, the desired asymptotic formula is obtained from (3.1) and the
proof is now complete. D
The same arguments as used for Q(cc~; ~,, h) apply to the semi-classical

asymptotics for the forward scattering amplitude f(03C9 ~ 03C9; 03BB, h). We here
mention only the result without proof.

THEOREM 3.1. - Assume with p &#x3E; n and that 03BB &#x3E; 0 is fixed in a
non-trapping energy range. Then

and

By the above theorem, the forward amplitude /(co -~ cc~; ~,, h) is of
order Thus the amplitude 0; ~,, h) has a strong peak in a
neighborhood of OJ. See ] [77] and [7~j for the asymptotic behavior
as /! -~ 0 of 8; /L, h) with 0 7~ ~.

§ 4. FINITE RANGE CASES

The aim here is to prove that

for a class of finite range potentials.
Let V(x) E 

for some Ro &#x3E; 0. We fix the incoming direction OJ and assume that ~, &#x3E; 0
is fixed in a non-trapping energy range. We denote by E~, the projection
of supp V to the hyperplane 

ASSUMPTION (A .1). - The boundary is C~-smooth.
Let dist (x, A) denote the distance from x to the set A. For G &#x3E; 0 small

enough, we define

Annales de l’Institut Henri Poincare - Physique ’ théorique ’



429ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

z, ~), ~; z, be the classical phase trajectory with initial state
( y, r~) for the hamiltonian function p(x, ç) = I ç 2/2 + V(x).

ASSUMPTION A. 2. - There exists To &#x3E; 0 such that

when z = y - R003C9 with y E 03A3i03C9(~), E &#x3E; 0.
The above assumption means that classical particles have momentum

different from (initial momentum) after they are scattered by the
potential V(x).

THEOREM 4.1. - Let V(x) be a real C~-smooth potential with compact
support and let ~. &#x3E; 0 be fixed in a non-trapping energy range. Assume (A. 1)
and (A . 2) , for incoming direction cv. Then

Proof 2014 The proof is done through several steps.

STEP (0). - We begin by fixing notations. Let Ro be as above. We intro-
duce three smooth cut-off functions a(y) E 0 _ a  1, and

0  b ± _ 1, such that :

We set b(s) = b-(~) 2014 b + (s), so that b has support in {.s:! I s  5Ro}
and b = 1 for H  4Ro. We further define xo E by

We again writer = 

STEP (1). - By the same argument as in the proof of Theorem 2.1, we
have

as h ~ 0. We now define

Then, by Theorem 2, we obtain

Recall the notations E~), E~) and E~). We 0  E « 1, arbitrarily

Vol. 46, n° 4-1987.
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and introduce three smooth cut-off functions B) E 1 ~ y ~ 3,
with the following properties :

e decompose fo into fo = ~~-1 f;, where

STEP (2). - 3, where
the order relation uniform in h.

Proof 2014 The " lemma . follows from Theorem 2. D

where the order relation may depend on E.

Proof. 2014 We give only a sketch for the proof. The proof is based on
the same arguments as in step (4) of section 2 and is done by constructing
approximate representations for R(~, + In this case, such a

construction is simpler, because classical particles starting from the sup-
port of f3 with momentum never pass over the scatterer (support
of V).
We consider the + case only. Let x be the characteristic function of the

I x  lORo }. Then, + is approximately represented
in the form

where

and the order relation o(1) means that the L2 norm of the remainder term
is of order o(1) as h -~ 0. The bound (4.1) with 7 = 1 is obvious, because
the supports of g3 and fl do not intersect with each other. The bound with

j = 3 follows from the relation

By the same argument as in the proof of Lemma 4.2, we can prove the
following two lemmas.

Annales de l’Institut Henri Poincare - Physique theorique



431ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

LEMMA 4.4.

The next lemma, together with Lemmas 4.1-4.4, completes the proof
of the theorem. Assumption (A. 2) is used only for the proof of this lemma.

4) To prove Lemma 4. 5, we prepare two lemmas. We again denote by
{~; z, ~), ~; z, r~) ~ the classical phase trajectory with initial state (z, r~)
and define the canonical mapping by

LEMMA 4 . 6 o (semi-classical Egorov 
Fix T arbitrarily and I define ’

Then, B(T, asymptotically expanded as

for any N » 1, where ’ the symbol ç) has support in

and the ’ remainder operator RNT(h) is bounded uniformly in h as an ope-
rator from L2 into the weighted L2 space ’ L~ for any o « 1.
For a proof, see, for example, the literature " [11 ]. Let a(x, ç) be as above.

If b(x, ç) E x R~) vanishes on then it follows from Lemma 4 . 6 0 that

foranyN» 1.

, LEMMA 4.7. - Let U(x) E and let a(x, ç) E x (R~B { 0 } )).
Assume that free particles starting from z with momentum ri, (z, ri) E supp a,
never pass over the support of U for time t &#x3E; 0. Then

for any N » 1.

Proof. - By the resolvent estimate

and by the calculus of pseudodifferential operators, it suffices to prove

Vol. 46, n° 4-1987.
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the lemma for the conjugate pseudodifferential operator a(hDx, x) defined by

The lemma can be proved in the standard way using a partial integra-
tion. D

STEP (5). - Proof of Lemma 4.5. - Let x± be such that

/+ == 1 on the support of f± . We may assume that the supports of ~± do
not intersect with each other. Let Co(R), 0 ~ (0 ~ 1, be a function
such that (0 has support in { ~: ~ - I  2~} and (0 = 1 on

{ ç: 1 ç -  5}. The choice of 03B4 depends on E. We can easily obtain

where the abbreviation ~(1) is used with the same meaning as before.
Define the symbols d ± (x, ~ ; E, h) by

By assumption (A. 2), we can choose ð so small that the classical phase
starting from never pass

over the support of ~+. We have only to show that 
’

To prove this, we write

We take T sufficiently large and decompose the above integral into

two parts ; R(03BB + fO) = ih-1 {+ dt. We denote by Qi and Q 2(Jo T J

the first and second integrals, respectively. By the choice of 03B4 and by
Lemma 4. 6,

for any N » 1. We can rewrite as

For brevity, we write R = R(~, + io) and Ro = R(~, + ?; Ho(h)). By the
resolvent identity,

Annales de l’Institut Henri Physique - theorique 
-



433ASYMPTOTICS FOR TOTAL CROSS-SECTIONS

where

By Theorem 2 and by Lemmas 4.6 and 4.7, the norm of both the ope-
rators PI and P2 is bounded by This proves the lemma. 0

§ 5. OUT-GOING PARAMETRICES

Throughout this section, the potential V(x) is assumed to satisfy (V)p
with p &#x3E; 0. Without loss of generality, we may assume that 0  p  1.

One of basic tools which we use for the proof of Theorem 2 is the out-
going parametrices constructed globally in time t ~ 0 for the non-sta-

tionary Schrodinger equations. Such parametrices have been constructed
by [5 ] and [6~, etc., and have played an important role in proving the
completeness of wave operators in long-range scattering problems by the
time-dependent method (Enss method). We here follow the idea due to
Isozaki-Kitada [5 to construct such parametrices.
We start by introducing a certain class of symbols.

DEFINITION (A~ ). - For given Q c R~ x R~, we denote by 
the set of all ~), (x, ç) E Q, such that

If, in particular, Q = Rx x R~, we write A~ for A~(Q).
We say that a family of a(x, ~ : s) with parameter 8 belongs to 

uniformly in 8, if the constants Ca~ above can be taken uniformly in E.

We further define by

Most of symbols we consider in later application have compact support
in ç and hence are of class 
For given (6, d ), -1  6  1, d &#x3E; 1, we use the notation

where

Now, assume that ç ranges over { ~: do 1  ~ ~ ~  for some do &#x3E; 1.

Then, according to the result (Proposition 2 . 4) of [5] ] (see also [4 ]), we can
construct a real C~-smooth function ç) with the following properties :
given 60, there exists Ro large enough such that : i ) l/J solves the equation
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in r+((7o, Ro, do); ii) ~(x, ç) -  x, ~ ~ is of class A1 _ P ; iii) ç) satisfies
I  being the Kronecker notation, where

we can make c(Ro) as small as we desire by taking Ro sufficiently large.
Let ç) be as above and let a(x, ç) be of class A~ . Then we define

the Fourier integral operator I~(~;~):S(R~) -~ S(Rx) by

where the integration with no domain attached is taken over the whole
space. We use this abbreviation through the entire discussion.
We now take Rj and d~, 1  j  3, as follows : 0’3 &#x3E; 0-2 &#x3E; 61 &#x3E; 0-3,

R3 &#x3E; R2 &#x3E; R1 &#x3E; Ro and d3  d2  dl  do . Let ç) E Ao be supported
in r+(~3, R3, d3). We shall construct a parametrix (approximate represen-
tation) for the operator

in the above form of oscillatory integral operators.
We first determine the symbol ~; h) to satisfy

We formally set

The symbols aj are inductively determined by solving the transport equa-
tions ;

under the conditions; a0 ~ 1 and aj ~ 0, j &#x3E;_ 1, as |x| I ~ oo. Since
+ 0( x ~ - p) as oo by construction, the standard charac-

teristic curve method enables us to solve (5.1) under the above conditions.
Indeed, we may assume that !V,c~~~!~~ for 5&#x3E;0 small enough.
Consider the characteristic curve q(t; x, ~), ~ 0, q = ~), q(o) = x.
If (x, ç) lies in r+(o’i, R 1, d1 ), then we can prove that

and

This proves that the solution ç) to (5.1) belongs to R1, 
We extend aj to the whole space Rx x Rn03BE in the following way : 
ii) a~ has support in r+(7o, Ro, do).
We fix N large enough and define
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and

By construction of 03C6 and aj, it follows that

uniformly in . _

Let the symbol ç) be as before. Since ç) = 1 + 0( x I ~)

as B x B ~ oo in R1, d 1 ), we can find a symbol ~(x, ~; h)EAo with

support in r+(62, R2, d2) such that

with OJN E A-N. This follows from the composite formula of Fourier integral

operators.
We define UN(t; h) and RN(t; h), t~ 0, as follows :

Then the Duhamel principle yields

where

LEMMA- 5 .1. - I f N is chosen large enough, then

Proof 2014 We write [RN(t; h)f](x) as

where

Suppose that ( y, ç) E supp bN and (x, ç) E supp rN. If (x, ç) E R1, dl),
then we integrate by parts in ~, using

On the other hand, if (x, ~) ~ r+ (61, R1, d1), then we use

which follows by the choice of 62 and 61; 0-2 &#x3E; 61. Thus, the famous
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Calderón-Vaillancourt theorem on the L2 boundedness of oscillatory inte-
gral operators proves the lemma. D
We introduce the notation

where

Let be supported in r_(7,R,~). Then, by making use of
the same arguments as above, we can construct a parametrix for the operator

in a form similar to (5.2).

§ 6. SEMI-CLASSICAL BOUNDS ON RESOLVENTS

In this section, we prove Theorem 2, following almost the same argu-
ments as in [12 ], where similar estimates have been established for a class
of Co-potentials. The method of proof is essentially based on the same
idea as in the works [7~] and [8 ], where the high energy estimates for resol-
vents have been obtained for general elliptic operators by the time-depen-
dent method (hyperbolic equation method) and have been applied to
investigate the asymptotic behavior as t ~ I -~ 00 of solutions to the cor-

responding non-stationary problems. In [14 ], such estimates have been
obtained when perturbed coefficients have compact support, and in [8 ],
these results have been extended to the case of non-compact support.
We here use the Schrodinger equation method and the commutator method
due to Mourre [7 ]. The Mourre method reduces the problem under consi-
deration essentially to the one in the case of compact support perturbations
and the proof seems to be slightly simplified.

Proof of T heorem 2. 2014 The proof is done for the « + ~ case only by
dividing it into several steps. 

-

STEP (1). - We first fix a compact interval Io = [a, b ] ( c (O.oo)) in
non-trapping energy regions. We can take Ro so large that V(x) admits
the following decomposition :

where V2 has support x ~  Ro } and V1(x) satisfies the estimate
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LEMMA 6.1. - Let V1 be as above and define ’ H 1 (h) _ ( 1 /2)h20 + Vi.
Then, for any oc &#x3E; 1/2,

uniformly in ~, E 10. Furthermore, if z ranges ouer

then the same estimates as above hold for R(z; H1(h)) uniformly in 

Proof 2014 The " proof uses the commutator method due ’ to Mourre ’ [7] (see
also o [9 ]). Let A(h) be the generator of the dilation unitary group;

and let fo E Cü(R 1), 0 ~ 1, be such that fo = 1 on I o and fo is sup-
ported in (a - E, b + E) for E &#x3E; 0 small enough. Then a direct calculation
gives

Hence it follows from (6.2) that

in the form sense. This enables us to follow exactly the same arguments
as in [7] and [9] and the lemma is proved, although we have to look at
the h-dependence carefully. D

STEP (2). - Let BR = {~: I x  R } and let /R(jc) be the characteristic
function of Bp.

uniformly E Io .
Lemmas 6.1 and 6. 2 enable us to regard H(h) as the perturbed operator

to H 1 (h) with the compactly supported perturbed coefficient v2 . W e here
complete the proof of Theorem 2, accepting Lemma 6 . 2 as proved.

Let 03C8 E 0 ~ 03C8 ~ 1, be a cutt-off function such that 03C8 = 1 for
 1 and 03C8 = 0 for x| &#x3E; 2. We take R to be R &#x3E; Ro for Ro in step (1)

and set ~R(x) = 1 - Assume that f E L2(BR) and define vR by
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Since XN maps L2 into L 2(B2R)’ it follows from Lemma 6.1 that

and we have

where YN = - V2R(z; H1(h))XN(z; h): L2  is bounded and

STEP (4). - We keep the same notations as in step (3). Define the
symbol ç) E Ao by

and consider the equation

for f E L2(Rx), where z is again assumed to be in E + . y, ~), ~(t; y,~)}
be the phase trajectory with initial state ( y, yy) for the hamiltonian func-
tion ~). We may assume that ÀE [a - 2~ ~ + 2s] ] is non-trapping.
Fix R1, R1 &#x3E; R, large enough. By the non-trapping condition, there
exists T = T(R1) such that y, r~)’ &#x3E; R1 for t &#x3E; T, if (y, r~) E supp ~2.
We introduce a function -1, T + 1)), 0 ~ 0 ~ 1, such that 0 = 1 on
[O,T] and decompose V as V= V3(t, x)+ V4(t, x), where 

We now construct an approximate solution operator to (6.6) by the
time-dependent method (Schrodinger equation method). Let Q(t; h), t ~ 0,
be the solution operator to

with Q = hDx), where V3(t ) denotes the multiplication by V3(t, x).
Define by

and Z(z; h) by

Then we have

STEP (5). - We first complete the proof of Lemma 6.2, accepting
Lemma 6.4 as proved.
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Proo, f ’ Lemma ~.2. 2014 Let h) and YN(z; h) be as in step (3). Set
h) and h)+ Z(z; h). If f E L’(B

then, by definition

and also we have

We regard WN as an operator from L2(BR) into itself. By (6.5) and
Lemma 6 . 4-(b), there exists a bounded inverse (Id + L2(BR) ~ L2(BR)
with bound 0(1) (uniformly in z E E + ). Thus we have

By the principle of limiting absorption, Lemma 6.2 follows from (6.4)
and Lemma 6.4-(a). D

STEP (6). - We shall prove Lemma 6.4 by making use of out-going
parametrices constructed in section 5. By the definition of V3(t, x), we
may write Q(t; h) as

for t &#x3E; T + 1. Let p3(t, x, ç) = (1/2) ~ ~ (2 + V3(t, x). We denote by
{ x(t; y, ~), ~(t; y, ri) ~ the phase trajectory with initial state ( y, ri) for the
hamiltonian function p3(t, x, ~). If supper then by the non-

trapping condition, { x(t ; y, ri), ~ (t ; y, ri) ~, t &#x3E; T, lies in the out-going
region 1,+ (~o, R1, do) with some 60 &#x3E; 0 and do &#x3E; 1. (See section 5 for the
notation I-’+ (6, R, d ).

LEMMA 6 . 5. - Let I-’+ (60, R1, do) be as above. Assume that 
vanishes in h’+(6o, R1, do). Then

Proof 2014 We omit the detailed proof, because the lemma is essentially
the famous Egorov theorem. We have only to note that by assumption
the phase trajectories starting from supper never pass over the

support of co. D

LEMMA 6. 6. - Let ç) be as in Lemma 6.5. Define

for zeE+. T hen, for any N » 1,
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Proof - A simple computation gives

Hence the lemma follows immediately from Lemmas 6.1 and 6. 5. 0
Let be supported in Define

for t &#x3E; T + 1. According to (5.2), U(t; h) can be represented as

for given N large enough, where U ’N, 0 _ j _ 2, take the following forms :

Here ’ h) belongs to uniformly ’ 0 RN(t; h) has property
similar to that in Lemma ’ 5.1.

Define ’ 0 ~ ~ ~ 2, by

for z e E+. The next lemma, together with Lemmas 6 . 5 and 6 . 6, completes
the proof of Lemma 6.4.

Proof. 2014 ~) Is obvious, because by construction the symbol aN(x, ~ ; h)
vanishes in Since L~ is bounded uni-

formly in h, b) follows from Lemma 6.1 after a computation similar to
that in the proof of Lemma 6.6. For the proof of c), exchanging the order
of integrations, we calculate;

Hence, c) follows from Lemmas 5.1 and 6.1. D
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