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ABSTRACT. - Let ( - 1B + V - = 0 in QR = ~ x E x ~ &#x3E; R},
t/J E where E  0 and V = + V2(x) with Vl, V2 tending
to zero for x ~ I -&#x3E; oo and satisfying suitable regularity assumptions. Further
let ( - 1B + = 0 for Ix &#x3E; R where v &#x3E; 0 and v -+ 0

for x ~ -~ oo .

Previous results on the asymptotics on for n = 2 are here extended

to the n-dimensional case: It is shown that! (I x I satisfies certain
v

regularity properties uniformly for x ~ I -+ oo as a map from to tR.

Furthermore using a certain scaling it is shown that the asymptotic
behaviour of can be characterized by eigenfunctions of the isotropic
(n - 1)-dimensional harmonic oscillator.
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248 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF AND J. SWETINA

RESUME. - Soit ( - 1B + V - = 0 dans Qp = ~ x E &#x3E; R},
t/J E ou E  0 et V = + V2(x) avec Vl, V2 tendant vers zero
pour x ~ I -+ oo et satisfaisant des conditions de regularity convenables.
Soit en outre pour Ixl &#x3E; R OÙ v &#x3E; 0 et
v -+ 0 pour x ~ I -+ oo . On etend ici au cas de la dimension n des resultats
anterieurs sur Ie comportement asymptotique de pour n = 2. On

montre que v satisfait certaines proprietes de regularite
comme application de Sn - 1 dans R uniformément pour |x| -+ oo. En outre,
en utilisant un certain changement d’echelle, on montre que Ie compor-
tement asymptotique de peut etre caracterise au moyen des fonctions
propres de 1’oscillateur harmonique isotrope a dimensions.

1. INTRODUCTION AND STATEMENT
OF THE RESULTS

In [13 ] we considered the 2-dimensional Schrodinger equation in exterior
domains. Here we shall derive similar results for the n-dimensional case.
Our results will cover also some examples of physical relevance, for instance
eigenstates of a Hamiltonian, that describes a one electron molecule with
fixed nuclei. The case n ~ 3 forces us to develop some new techniques
but we shall rely on results obtained in [13 ]. This paper is not self-contained
and we shall frequently refer to [13 ]. See also [7~] for motivation.
We start by describing the problem in the n-dimensional setting : We

consider real valued W2,2-solutions 03C8(x) of

Here the Sobolev space W2,2(OR) is defined as in [7 ]. Throughout the paper
we assume that

and that V(x) satisfies the following assumptions in 

V(x) is real valued and continuous

(1. 2), (A 1) and (A. 2) imply that we can choose R so that

Poincaré - Physique theorique



249ASYMPTOTICS AND CONTINUITY PROPERTIES

The conditions on V imply that there is a unique selfadjoint operator
associated to - 0 + V - E whose corresponding quadratic form is posi-
tive definite with form core This guarantees that the Dirichlet

problem in Qp is uniquely solvable given 03C8 on ~03A9R. Furthermore our
assumptions imply that 03C8 has continuous derivatives in QR [7].
We split V(x) such that

and assume that VI and V2 satisfy the assumptions (A) separately. As in 1
we consider the radial comparison problem

Since VI satisfies (A) there exists &#x3E; 0 such that v ~ L2(03A9R) and v(R) &#x3E; 0.
In the following we shall investigate the regularity and asymptotic
nronerties of the function

We start with a result given essentially in [72], see also Thoe [17] who
obtained related results with different methods independently.

THEOREM 1. - Let and satisfy the assumption (A) and
assume that in QR

i ) is continuously differentiable and

I V21 ::; for some co, yo &#x3E; 0.

Assume that ~ and v satisfy (1.1) and (1.4) respectively, then for some
/r Bi/2

0  c-  c +  oo |u|  c + and (Sn - 1 u2d03C3)1/2 &#x3E; c- for r &#x3E; 

. 

R. Here d03C3

denotes normalized integration over the unit sphere 

Proof. 2014 The proof of the lower bound was given under less restrictive
conditions in [72] and the proof of the upper bound given for the 2-dimen-
sional case in [7~] carries over. D

This result tells us that in an averaged sense 03C8 and v have the same
asymptotics. To obtain more detailed informations on the properties of u
we consider u as a map from (R, oo) x to tR, write u = u(ry) where
y = x/r E and consider the regularity properties of u(ry) for fixed r &#x3E; R

as a map from to [R.

Vol. 46, n° 3-1987.



250 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF AND J. SWETINA

Let us first introduce hyperspherical coordinates in Rn, n ~ 3:

with 0 - E~~  = 1, ...~ 11 - 2, - 7T ~ (~ ~ 7L For our purposes it
will be advantageous to replace these angles by

We shall denote by (~ == (~ 1, ~ 2, ... , ~" -1 ) a vector in Q

The Laplacian reads in these coordinates

with the Laplace-Beltrami operator - L2 given by

In order to state regularity results for u(ry), y E 1 
we introduce an

atlas on whose charts are Coo (real analytic) compatible. Let Q be
given by (1 . 8) and define for ç E Q

Annales de Henri Poincare - Physique " theorique "



251ASYMPTOTICS AND CONTINUITY PROPERTIES

where the e~ are the canonical basis of i. e.

~=(1,0,...,0), ~=(0,1,0,...,0),..., ~=(0,0, ...,0,1).

Denoting ~-1 (Q) = U and noting that U = we obtain from the chart

(U, 1» by rotations the charts (Ui, D~), i E I some index set, U Ui= sn-l,
ieI

and the collection of these charts is our Cw-atlas. For a function f : -+ [R

we say then as usually f E if Vi E I, ( f ~ l&#x3E;i-I)(ç) E Ck(Q). We also
need Holder continuity and say for -+ ~, for
some x E (0, I] ] if Vf E I, ( f o ~i 1)(~) E Here Ck, have the usual

meaning [7]. If x = 1 we talk of Lipschitz continuity. Analogously we
define and (real analyticity).

In order to describe the uniform behaviour with respect to r of the regu-
larity properties of u(ry) we introduce the following definitions :

DEFINITION 1.1. - Let g : 03A9R ~ R be continuous. g ~ Ck,03B1u,R(Sn-1)means
that &#x3E; R _ .. _ _

is a uniformly bounded set of functions. Analogously 
and is defined.

Obviously we could have chosen any other equivalent C03C9-atlas on 
to describe the regularity properties of u, for instance we could have used
stereographic projection and in fact in section 2 we will use some kind
of stereographic projection.

After these definitions we can state our regularity results for u in the
n-dimensional case :

THEOREM 2. - Let Vl, V2 and V satisfy the assumptions of Theorem 1.

a ) If yo &#x3E; 1 2 set ~ = 1, while 2yo), then 

and lim M(ry) == A( y) exists and I is bounded in SZR.
Furthermore A E 

h) Suppose that for 0  k  m

where yk &#x3E; 2 + v (with some v &#x3E; 0) for 0 ::; k  m - 1 and ym &#x3E; 0. Let

dk = 1 for k S m - 1 and 0  dm  2ym if ;.", S 1 /2, otherwise dm = l,
then u E 

Let a~ denote any partial derivative of order k, then for k - m
lim exists Vç E Q, di E I and A E cm,ðm(sn-I). In addition forr ~ o0

0km-2,,uk= min (l,yl,...,yk)

Vç E Q, Vf E I, Ro &#x3E; R with some 0  Cm  oo. In particular if for

Vol. 46, n° 3-1987.
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some v &#x3E; 0, then and 
c) If for some a &#x3E; 1/2, then and

A E Furthermore dk E I~I

’Vç E Q, di E I, dr &#x3E; Ro &#x3E; R with some 0  Ck  oo.

Remark 1. l. 2014 As noted already in [7~] these results reflect the fact that
we consider for r -+ oo a non-uniformly elliptic problem as is obvious if
we write (1.1) or the corresponding equation for u in the spherical coordi-
nates (r, ç) so that with ( 1. 9)

That part a) of Theorem 2 is not far from optimal is demonstrated in [13)
for the two-dimensional case with an explicit example.
Next we consider the asymptotics of u in more detail. We assume that

the conditions of part c) of Theorem 2 hold. Hence and
A E For each y E we consider asymptotic regions

large. Now we rotate our coordinate system so that ~=~_ i =(0, ..., 0,1,0)
and consider A(I&#x3E;-l(ç)) in a neighbourhood of ç = 0. For simplicity we shall
often write A( ç) resp. ç) instead of u(r~-1(~)). A( ç) is then because of
part c) of Theorem 2 real analytic and we have near ç = 0

where PM, the first nonvanishing term in the Taylor expansion of A(~),
is a homogeneous polynomial of degree M, M a nonnegative integer and

The following theorem describes how the asymptotics of u in the domains

is related to the assumptions (1.14) and (1.15) on A.

THEOREM 3. - Let V, VI and V2 satisfy the conditions of part c) of

Annales de l’Institut Henrt Poincare - Physique theorique



253ASYMPTOTICS AND CONTINUITY PROPERTIES

Theorem 2. Suppose A(ç) satisfies (1.14) with PM given by (1.15). Then
in D~ defined by ( 1.16) for some ~ &#x3E; 0

where

and the H~ are the usual Hermite polynomials of degree l:

with [//2] integer part of 1/2 and

( 1.17) implies (see section 3).

COROLLARY 1. - Suppose that A is given by ( 1.14) then for

and (u - is bounded in 
Let us discuss the results given in Theorem 3. The corresponding 2-dimen-

sional results have been given in [13 ]. For this case the r. h. s. of ( 1.17)
reduces to a single Hermite polynomial and we could therefore draw in
a direct way conclusions about the asymptotics of nodal lines and nodal
domains since Hermite polynomials have separated nondegenerate zeros.
The situation is a lot more complicated for ~&#x3E;:3 since then with z=(zi,
Z2 ... 

Vol. 46, n° 3-1987.



254 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF AND J. SWETINA

might itself have a complicated nodal structure. Some observations are
however straightforward : We have with

Hence is an eigenfunction of the (n-1)-dimensional quantum
mechanical isotropic harmonic oscillator. Although a detailed analysis
of the nodes of such JtM’s is not available the fact that J~M satisfies (1.23)
implies (see [7] or [11 ]) that J~M changes sign in every ball containing zo
with = 0. The same is true in QR for 03C8 and hence for u itself but
in general for 03C8 or u restricted to some hypersurface e. g. the surface of a
ball in this will not be true.
As mentioned in [7~] Theorem 3 is nontrivial even if we consider (1.1)

with V2 == 0. To illustrate this we consider

where 03C8 is assumed to be nonradial. Certainly if we set

where each f E L"(QR) satisfies

and where the are the usual surface harmonics (see section 2) then 03C8
will satisfy (1. 24). If we pick fo(r) positive (this corresponds to v(r) of (1.4))
we can demonstrate the results of Theorem 3 by choosing M and the c~’s
appropriately and by selecting the so that

has zeros of prescribed order. A physical relevant example is for instance
the nonrelativistic Hydrogen atom where one can explicitly simulate the
findings of Theorem 3 for eigenfunctions due to the well-known degene-
racies of excited eigenvalues. (See any textbook of quantum mechanics.)
More on the explicit structure of nodes and nodal domains will be

given in a forthcoming paper ] where a suitable generalization of

l’Institut Henri Poincaré - Physique theorique



255ASYMPTOTICS AND CONTINUITY PROPERTIES

Corollary 1 of [13] ] on the growth properties of nodal domains is established.
For the 2-dimensional case it is shown in [9] (by using the scaling given
in Corollary 1) that the nodal lines of 03C8 look, roughly speaking, asymptoti-
cally either like straight lines or like branches of parabolas.
Most of the relevant literature on asymptotics of solutions of exterior

problems of Schrodinger type has been cited in [13 ]. The recent results
of Herbst [8 and Froese and Herbst [6] provide some new insights in
the exponential decay of such solutions in cones for a wide class of poten-
tials. Local properties of nodes have been investigated recently by Cafa-
relli and Friedman [3] who generalize results of Bers [3] and Cheng [4 ].

In section 2 we shall prove Theorem 2. The major steps will involve some
estimates which enable us to use the results of [73] ] together with some
rather involved arguments to set up the iterations which are necessary
for the proofs of part b) and c) of Theorem 2.

In section 3 we prove Theorem 3. Similarly as in [73] we analyse itera-
tions of an integro-differential equation for u(r, ~). Here again the case
n &#x3E; 2 is more involved than the two-dimensional case.
We have profitted during the beginning of our work on this subject

from many discussions with K. Yajima. We gratefully acknowledge helpful
comments by P. Michor and W. Thirring. Some ideas that appear in this
paper stem from thesis of J. S. ( 1984, unpublished).

2. PROOF OF THEOREM 2

Our assumptions on V imply via standard techniques for elliptic
PDE’s [7] that 03C8 is for any Ro &#x3E; R. Since v(r) &#x3E; 0 in Qp this implies
also that u is locally differentiable in 03A9R0 and hence that for each finite
fixed r, Hence the problem is to establish uniformity
with respect to r. The main strategy will be to reduce the problem to the
two-dimensional case for which the results derived in [73] are available.

First we shall derive a lemma which permits us to draw conclusions on
the regularity of a continuous function f : -+ [R once the regularity
along geodesics in S" -1, i. e. « great circles » is known. As is easily seen,
each great circle in can be expressed by a parametrized curve 
in of the form

where v 1 and v2 are orthogonal unit vectors in By ~ we denote this
family of unit speed geodesics

Vol. 46, n° 3-1987.
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LEMMA 2.1. - Let f : -~ {R be contihuous.

a) Suppose that Vy ~ F, f o y E Ck( - 7r, yc) for some k ~ N u { 0}, then

In addition if for some a E (0,1 ] and Vy E ~ ,

then f E Ck’"( Sn -1 ).
b) Suppose there exist constants C, ~ &#x3E; 0 so that for all and b’y E 

then

Proof. - It will be convenient to use some kind of stereographic projec-
tion: Let and let 

Obviously is the tangent plane in the point (0,0,... 0, -1). Let

and define

then it is straightforward to see that if we draw a ray from the origin to
n-i

a point (jci, ... , xn -1, - with 03A3 x2i  d - 2 - 1 that this ray

hits Sn -1 at the x2, ... , xn _ 1 ). Furthermore 03C6 maps a geodesic
in U ci Sn -1 into a straight tine in X. By rotations we get U~ c Sn -1, f e I,
I some index set, such that and ~~~ 1: X -~ Ui c S"’~.

The charts (U~, ~i), f e I constitute a Cw-atlas (~-equivalent to the one of
the preceding section).
To verify a) of Lemma 2 .1 we first show that Vfel, 

Let then ~b ~ Rn-1 with b = 1 we have a + bt ~ X for |t| _ 
where E(a) depends only on the distance of a from 3X. For any 03C6i and a
given as above there exists a y e ~ such that ~i 1(a + bt ) = y(t ) V ~ ~ ~ s(~).

Poincaré - Physique théorique



257ASYMPTOTICS AND CONTINUITY PROPERTIES

Since f ~ y E Ck and ( f ~ y)(t ) = ( f ~ ~i 1)(a + bt) the directional deriva-
tives ’

exist, are bounded da E X and Vb E b ! I = 1 and furthermore

Db( f o ~~ 1) is continuous in the direction b. Therefrom it follows via

some results of Boman (see [2 ] : Lemmata 4,5) that f ~ 4&#x3E;i-l E Ck(X) Vi E I,
implying f E Ck(Sn -1 ).

If in addition for some rl E (0, I] (2.2) holds, then obviously

Va E X and Vb E =1. Now again we make use of Boman’s results : If
x==1 we conclude from the above via Lemma 6 in [2] that f ~ 
whereas for the case 0«xl, follows with the help of
Lemma 7 by proceeding in the same way as for the proof of Theorem 2 in [2].
To show b) we proceed as before and note that (2 . 3) implies for kE N u { 0}

for |t|  ~(a), Va E X and Vb E with |b| = 1. Again Boman’s results [2]
imply f ~ E C"(X) Vi E I. Therefore

where V = 2014, ... 201420142014 . But due to (2.4)B~i I 

converges absolutely for every |t| ~ 03B41  5. (Note that

is a homogeneous polynomial of degree kin the variables b2t, ... , 
Applying a result given e. g. in Mujica ( [14 ], Proposition 4 . 6) it follows
that for t ~  

Vol. 46, n° 3-1987.
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n- 1

where a = (a 1, ... , an _ 1 ) denotes the multi-index with Both

f=i

series converge absolutely and uniformly. The above result holds Vb E ,

with b ~ I = 1 and therefore b) is proved. D
We start now the proof of Theorem 2 as in [7~] and split so that

where

and

First we investigate the regularity properties of 

LEMMA 2.2. - Under the assumptions of Theorem 1 on VI and E,
Specifically if y(t) is a geodesic given as in Lemma 2.1

there are constants do, d &#x3E; 0 such that for r ~ Ro &#x3E; R

Proof of Lemma 2.2. - We first show that 
03C80 v 

(r, .) E 1) for r &#x3E; Ro.

Let We know that for fixed r, 0(ry) ~ L2(Sn-1). We

express in a series of surface harmonics so that

where E ~k and ~k denotes the linear span of the surface harmonics Y~k~
of degree k, i. e. the restriction of the real valued homogeneous harmonic
polynomials in [R" of degree k to Then with L2 given by (1.10) we have

We also assume the to be normalized and real valued so that

Annales de l’Institut Henri Poincaré - Physique theorique



259ASYMPTOTICS AND CONTINUITY PROPERTIES

where ~kl is the Kronecker delta. Obviously the coefficients ak are deter-
mined by - -

00

and if we set Ã(Ro) = = ~(Rol&#x3E; - 1( ç)) = ~(Ro, ç).
!=0

From (2.10) and (2.11) we infer that

where

If we set L 2(1) = 1(1 + n - 2), then with the aid of Lemma 2 . 3 of [13]

for some 0  b  oo and where v(r) = This implies that

where the for some d &#x3E; 0 and for r &#x3E;_ Ro + 8, 8 &#x3E; 0. By a
result given in Stein [16] ] this implies 
Next we show that First we derive an upper bound

h(1)

to sup We have [5 ] 0 that y(1) where for fixed l
y~Sn-1

the are orthonormal on and m= I

From (2 .11) it follows that 03A3 I bl,m 12 - 1. From [5] we also know that

( 12 = c(n)h(l) for some constant c(n), implying

Vol. 46,~3-1987.
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Therefore

x
Let x Iy(/) - r 

for x E (~"B ~ 0 ~, then PI is a harmonic polyno-
mial, homogeneous of degree l. Let en - 1 and en be the unit vectors
en -1 - (o, ... , 1, 0) and e" _ (o, ... ,1) in It is easily seen that for

[ - 

Now let Since Pl is harmonic for 
for any small ~ we can use an estimate for harmonic functions (see for
instance [7 ], p. 23), namely

for any small 03B4 and But (2 .16) implies

Combining (2 .17), (2.18) and (2 .19) we get and for every small ~ &#x3E; 0

for E [ - 03C0, 03C0]. Now we consider - - (r, ç) (0,..., 0, 03BEn-1),
where we again denote 1 V

From (2.9), (2.14) and (2.20) we get

Annales de Henri Physique - theorique .
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for some Since 5 &#x3E; 0 in (2. 21) is an arbitrary small number

we can choose 5 = 5(r) = exp (b’-v)(2014 - -) - 1 for some v E (0, b’)
to obtain L Ro r

Noting that 03B4(r) ~ c(2014 - 1 r) for r &#x3E; Ro with a suitable C &#x3E; 0 we obtain

via Stirling’s formula

for r &#x3E; Ro, E [ - 7T, 7c],~ E tBJ u {0 } with some constants &#x3E;

not depending on k and r. Now t -+ ... , 0, t ) = cos + sin te"

describes a geodesic on and - 0 + Vl(r) - E is invariant with respect to

rotations. Hence it follows from (2.22) (now using the notation of Lemma 2.1)
that (2 . 8) holds. Lemma 2.1 implies that and

since Ro can be chosen arbitrarily close to R this proves Lemma 2 . 2. D

We continue with the

Proof of part a) of T heorem 2. 2014 We start by investigating the Holder

continuity of ~(r.)/u: For short we again write r~(r, ç) instead of r~(r~-1(~))
and we note that t -+ ~-1(t, ~2, ... , ~n-1), ~(-Tc/2~/2) with fixed

arbitrary ~...~n-26(-~7r/2), describes a geodesic
on For reasons that will become clear below it suffices to show that

with Ç2, "~n-i as above we have

with some suitable constants CI, &#x3E; 0 and c0, 03B30 defined

according to our assumptions on V2 and c + given as in Theorem 1. We

note that it is necessary to give Ca(r) so explicitly because it will enter in
the proof of part b) and c) of Theorem 2.

Vol. 46, n° 3-1987.
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To verify (2 . 23) we shall follow partly [13 ]. Let

1
ç) = - 2. «(V2 ~Or~ ~ I, ... , Çn-I) - (V2 ~Or~ - ~ I’ Ç2, ... , Çn-I)) (2 . 25)

with 03BE E Q such that 03BE 1 E [0, 03C0/2). We have from (2 . 7)

By Theorem 1 and the assumptions on V2 we get

which together with Kato’s distributional inequality (see [13 ] for the same
argument) leads to

By the maximum principle a function which satisfies

will obey

Having in mind the definition of ~a it suffices to find a suitable upper
bound to F. We first observe that F is invariant under rotations around
the xl-axis, since in (2.29), 1B, Vl - E, Go and the boundary conditions
enjoy this property. Therefore F(r~-1 (~)) depends only on rand ç I and
we shall write F(r, ~ 1 ). We could now try to expand F for fixed r in spherical
(zonal) harmonics but we shall follow another route and derive the upper
bound for F by reducing our problem to a two-dimensional one. First
we note that F E by elliptic regularity. Let F(r, ~1)=r~"-l~nF(r, ~),
Go = and let "1 be given by (2.13), then F(r, ~ 1 ) satisfies

in

and

The 2-dimensional problem defined by (2.31), (2.32) and (2.33) leaves
ç I) at ç I = 03C0/2 unspecified. But by the rotational symmetry of F(x)

Annales de l’Institut Henri Poincaré - Physique théorique
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with respect to the x 1-axis ~F(r, 03BE 1)/~03BE 1= 0 for 03BE1 = 03C0/2 and since F E 
it is easily seen that

Hence we can symmetrize our problem in the following way : let

and set

Furthermore define on f~2

or-

then it is easily seen that

Hence we have reduced our problem to a two-dimensional one and it

suffices to find a suitable upper bound to f

LEMMA 2.3. - Let f be defined as above and suppose

and

then  ~  in Q.

Proof 2014 Existence and uniqueness follows immediately by noting that
with r = (xi + X~)1/2, x 1 = r cos = r sin OJ, r -1 ~2 g(r, transformed
into two-dimensional cartesian coordinates satisfies

in O2 = {x ~ R2: r &#x3E; R0, x2 &#x3E; = 0 in ~03A92.
Since Vi&#x3E;0 and continuously differentiable, 
Go &#x3E; 0, we have uniqueness and g &#x3E; 0, g ~ L2(03A92) n C2(Q2).
We first show that g(r, co) is monotonically increasing in for [0,7~ 2 J.

By symmetry we observe that g(r, cc~)= for 
and define h(r, M) = g(r, 2co 2014 Then for cc~ E (0, &#x3E; Ro,

Vol. 46, n° 3-1987.
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~g = ~~ = Go(r) and g(~ 0) ~ ~) = ~) for r &#x3E; Ro
and ~) = ~) = 0 Vc~ E (0,6{j’). Hence by the maximum principle
(h - )(r, 03C9) cannot have a negative minimum for 03C9 ~ (0, 03C9) so that h ~ g
for (0, c~). Therefore for r &#x3E; Ro, ~)  ~(r, 2~ - ~) ~] and
for arbitrary fixed 03C9 ~ (0, Tr/2]. This implies 0 for 03C9 ~ (0, ?r/2)
and by symmetry 3g(r, ::; 0 for ~ E (Tr/2,7r). This implies that

0 for WE [0,7r]. Also lim tg 

corresponding to (2.34) and we find 

This differential inequality together with (2.38) implies

and therefore f )(r, cv) cannot have a negative minimum by the maxi-
mum principle proving the assertion of Lemma 2.3. 0
We continue with the proof of part a) of Theorem 2. Collecting our

findings we obtain by (2. 30) and the above lemma

with g satisfying (2.39). Now since we have reduced our problem to the
2-dimensional case we can use the results derived in [7~] ] to obtain an
upper bound to g. There we have shown (see eq. (3.21) and (3.32) and
identify Fo with g) that for r &#x3E; Ro and 03C9 E (0,7r)

with suitable constants CI, d(yo, £5). (2.41) and (2.42) immediately
imply (2.23). Now rotating the coordinate system it is easily seen by the
assumption on V2 and equation (2. 7) for ~ that the preceding arguments,
particularly the estimates remain unchanged and hence we conclude by
(2.23) that

On the other hand we have from Lemma 2 . 2 Vy E ff’
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Recalling 03C8 = we obtain ’Vy E 

This verifies the Holder continuity of u = asserted in part a) of Theo-
rem 2 because of Lemma 2.1. ,

To complete the proof of part a) of Theorem 2 we have to show that
lim Vy E exists and that A E Denoting 

by u(r, ç) and assuming without loss

we derive a contradiction. For this purpose we proceed as in [7~] ] and
pick a function 0  x, X E with sufficiently small support so that

also has no limit, i. e.

Following [7~] (see the arguments from (3 . 35) to (3 . 40)) we see that with
a suitable constant C and with y = min (1, Yo)

and this in turn implies via integration that the limit of g(r) for r -+ 00

exists contradicting (2.46). The Holder continuity of A is an immediate
consequence of (2.45).

Proof of part b) and c) of T heorem 2. 2014 First we show by using elliptic
regularity as in [7~] that u satisfies for 0 - k  ~-1, u(r, . ) E and

for rE(Ra, Rb) for any such that Ro  Ra  Rb  00
for some a &#x3E; 0. Pick for 1  ~  2m, pk E (Ro, Ra) increasing and Rk E (Rb, oo)
decreasing and define Dk = { x E Qp |03C1k  r  and set Do = 03A9R0. Then
Dk+1 ~ ~ Dk (strictly contained) and {x ~ 03A9R0| Ra  |x|  Rb } c c Dk Vk.
Let m = 1 and consider (1.1) in Do. We know that the assumptions on V
and E imply that 03C8 ~ W2,2(03A9R0) and that i = 1, 2, ... n belongs
to Noting that expressed in cartesian coordinates
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we obtain by differentiating ( 1.1 ) in the distributional sense

Since is bounded by assumption is Holder continuous
in D2 ~ ~ D1 by Theorem 8 . 22 of [7]. Now let m &#x3E; 1. We consider (2 . 48)
in D3. Again following [13 ] we observe that Theorem 8 . 30 and Theorem 8 . 9
of [7] yield ~/~-ieW~(D3). Differentiating (2.48) with respect
to we get

By the preceding arguments the r. h. s. of (2.49) is bounded in D3 and
we conclude Theorem 8 . 22 of [7] that a2 ~r~a~n _ 1 is Holder continuous
in D4. Repeating these arguments we obtain by differentiating (2.49)
sufficiently often with respect to that is Holder continuous
in D2m. Since v(r) &#x3E; 0 these local properties hold also for u.

Finally we observe that the set

is a great circle on so that by the rotational invariance of the assump-
tions in part b) of Theorem 2, and hence u(ry(t)) have the above men-
tioned regularity properties Thus we conclude via Lemma 2. I
that for k  ~ - 1, u(r, . ) E for r E (Ra, Rb) and M(~ .) E 
for some 1 ~ a &#x3E; 0. In particular we note that if for
r &#x3E; Ro that for r &#x3E; Ro.
Next we show the uniformity of the regularity properties of u with respect

to r 1. We follow the proof of part a) and we shall also use estimates
established in [7~] ] (see inequality (3 . 48) there). Due to our assumption
in Theorem 2 b) we have r1+03B3kV2 ~ Cku,R(Sn-1) for 0 ~ k  m which obviously
implies the existence of constants ck &#x3E; 0 such that

Ro and ç E Q. (2. 50) remains true if we rotate the coordinate system.
Specifically r1+03B1V2 ~ C~u,R(Sn-1)implies that for k=0,1,2, ..., ck ~ c0k |03B4-k
for some ~ &#x3E; 0.

Noting that for 0  k  m - 1 for r &#x3E; Ro we shall
demonstrate for 0  ~  ~ 2014 1 that

Annales de Poincaré - Physique " theorique "



267
ASYMPTOTICS AND CONTINUITY PROPERTIES

(Compare (3 . 48) in [13 ].) To verify (2 . 51) we proceed by induction. The

case k = 0 follows from the proof of part a) of Theorem 2: Pick any ç,
ç’ E Q as above, then there exists a 03B3 ~ F with 03A6-1(03BE)=03B3(t), 03A6-1(03BE’)=03B3(t’).
Further it is easily seen that ~n-1- ~n-1 I ~ t-t’! and hence it follows

from (2 . 45) that Ro, V ç, ç’ E Q as above

verifying (2.51) for k = 0 and any m &#x3E; 0. Now assume that (2.51) holds

for ~-1. To show that it is also true for k we use 

for 0  k  m - 1 and that in ~

Moreover since for r&#x3E;Ro, and ~(?-,.)eC’-’(S ,

= + Denning ~. and W. as in (2.24), (2.25) we

e

This equation corresponds to (2.26) in the proof of part a) of Theorem 
2

and in the following we shall use the procedure given there to derive an
upper bound to in order to obtain an upper bound to 
Hence we give only the main steps. Noting that due to our induction hypo-
thesis (see 2.51)

and taking into account the assumptions 011 V2 (see inequality (2.50)) we have
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with

Hence in Q- (given as in (2 . 26))
) ~ t

Following the arguments given in the proof of part a) we arrive at

where analogously to Lemma 2. 3

and as in (2.40)

But this equation can be identified with the equation given before (3.49)
in [7~] when Fk, Gk is replaced by Vi, r -1 /2 Gk. Making use
of the upper bound on Fk derived in [13 ] (see the inequality preceding (3 . 52)
and replace Fk by we obtain

Note that we used yi &#x3E; 1/2 for 1  i  m - 1. Combining (2 . 59) and (2 . 61)
we get for r &#x3E; Ro

Now note that equation (2.54) is invariant with respect to rotations of
the coordinate system in the sense that - 1B + VI(r) - E and the upper
bounds to I stay invariant. But under rotations a geodesic
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in S" -1, specifically t ~ 03A6-1(t, 03BE2, ..., 03BEn-1) with 03BE2, Ç3, ... , fixed,
stays a geodesic and hence (2.62) implies

Vy E ff, Ro. But for any ~ ~ E Q defined as in (2.51) there is a y E ff
with D-I(ç) = y(t) and ~-1(~’) = y(t’) with  ! ~,-1 - ~n-1 ~ I and
hence for r&#x3E;Ro

On the other hand we obtain from Lemma 2.2 in an analogous way that

Combining the last two inequalities we arrive at

verifying (2.51) for 0 ~ k - m - 1.

To show uniform Holder continuity for we proceed as before
but start with k = rn in equation (2.54). The corresponding estimate is

then for r~Ro, Vç, with ~ ~ differing only in the component

with some 0  C(~m)  oo, and where the ðm is defined in Theorem 2.

Specifically it follows from (2 . 67) that for every R 1 &#x3E; Ro

for every r &#x3E; RI and for t, t’ E ( - 7r, 7r). Since the geodesics in can be obtai-

ned from rotations of the geodesic ~-1(0, ..., 0, t) = cos t + en sin t

and is rotation invariant and since by assumption
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E for 0  k ~ m it follows from (2 . 68) that for r ~ RI &#x3E; Ro

Now we apply Lemma 2.1a) and since Ro was arbitrary close to R we
obtain

IfV2 satisfies the conditions of part c) of Theorem 2 then the constants ck
in inequality (2. 50) obey ck  cok! 5’~ for some 5 &#x3E; 0 and (2. 51) implies
that for some M &#x3E; 0 and some ~ &#x3E; 0

Vç E Q, ~r ~ RI and k ~ N u { 0 }. The proof of (2.70) is the same as for
the corresponding result in [13]. As above we conclude that (2.70) implies

thus by Lemma 2. I u E 
Finally we have to show the existence of the limits of u asserted in part b)

and c) of Theorem 2. For 0 _ k  j~1 we have with L2 given by ( 1.10)

Let us write = Suppose there is such that

u~k~(r~-1(~)) does not converge for r -+ oo. We derive a contradiction as in

[7.? ] and as in part a). We pick 0 ~ x E such that gk(r) - 

has also no limit. gk(r) can be shown as in [13] to satisfy I  
y = min ( 1, yi, ...,7~) for some d and this implies existence of lim gk

_ 

and hence of lim u~k~(r~-1(~)). This leads by the usual argument to the
roo

existence of the limits of and hence via Lemma 2. I
to the existence of lim as asserted. That -+ follows from an

equicontinuity argument as in [13 ]. Such an argument implies also

Analogously we conclude by (2 . 7) 2 that
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for some Ck and from this follows Vy E ~ via integration

and hence (1.11) via Lemma 2.1. The proof of the corresponding estimates
for part c) of Theorem 2 is similar.

3. PROOF OF THEOREM 3 :

To verify Theorem 3 we essentially follow the ideas of the proof of
the analogous result in the 2-dimensional case given in [13 ], however n ~ 3
requires some new techniques.
We start (as in [13 ]) with an integro-differential equation for u(r, 03BE)

forr&#x3E;R

where the Laplace-Beltrami operator L2 is given by (1.10). Analogously
to the 2-dimensional case [7~] this identity follows from (1.1), (1. 4) and
Theorem 2. Iterating this equation we shall work out the asymptotics
for u(r, ç) for r -+ oo small. To make the analysis of these itera-
tions more transparent we simplify the notation and introduce classes of
functions :

DEFINITION 3 .1. - Let ~ &#x3E; 0 and BE = { ç E  G }. We define
Sm to be the following family of functions

Sm = { f : Q -+ real analytic in BE for some G &#x3E; 0,

PROPOSITION 3. 1. - Let f E E S", then

REMARK 3 .1. 2014 We shall denote any member of Sm by the symbol sm
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and we formalize the above statements by introducing operations between
the symbols sm in an evident way, so that (3 . 2) reads :

Further for convenience we define for mE Z

Proof of proposition 3. l. 2014 The first two statements are trivial and the
third one follows easily from Taylor’s formula with remainder.
We proceed by analysing (3 .1 ). According to ( 1.10) we have near ç = 0

Thereby we used that for |03BE|  ~, (cos 03BEj)-1 = 1 + 82 and tg çj = s 1
in the notation introduced above. We continue to simplify the analysis
of (3 .1 ) by introducing the following notations :

According to Theorem 2 part c) u, A E and we can iterate (3 .1 )
to obtain for N &#x3E; 1

where as in j7j] or::;::; N

Due to our assumption A(ç) satisfies (1.14), i. e., for some

integer M &#x3E; 1 with PM given by ( 1.15). Let
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and

(3 . 5) becomes then with m = [M/2],

The following estimates established in [7~] ] will be frequently used for

the analysis of the asymptotics of (3 . 9) :

PROPOSITION 3.2. - Let Vi satisfy the conditions (A) and suppose

in ( R, oo) with 0  E v = then for some ; &#x3E; 0 and r

large

fory&#x3E;0

and with the notation (3.4) and (3.6)

1.

Let us remember the definition of D~ given in (1.16) and introduce the

following class of functions :

DEFINITION 3 . 2. - 0, then

The proof of the following proposition is immediate (apply Prop. 3 .2).
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PROPOSITION 3 . 3. - Let f E ~ ~ E %, then

Remark 3 . 2. 2014 Since for our purpose it suffices to determine the classes ~m
to which the higher order terms in (3.9) belong we shall introduce the 

’

following simplified notation (see also [13 ]) : We denote any member
of gm by the symbol Gm and in accordance with Proposition 3 . 3 the meaning
of the following operations with this symbols is evident, so (3.14) reads

We proceed by investigating the asymptotic behaviour of 

LEMMA 3.1. - Let M ~ 1, then in D~ for r large

for k &#x3E; 1, for some B &#x3E; 0 and with some 150 2’: 2" + 15, 15 j 2’: ~ + 15 Vj 2’: 1

and 1) --1/2 &#x3E; 0, according to the assumption
of part c) of Theorem 2. ’

Proof of Lemma 3.1. 2014 We proceed by induction with respect to k.
So we have to show first

But

From Proposition 3.2 we get
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Since A is real analytic we have because of ( 1.14) A=SM I -+ 0

and by Proposition 3.1 1

This implies

which verifies (3.16).
Hence we have to verify (3.15) under the induction hypothesis for k -1:

Application of Proposition 3.2 leads to

But by Proposition 3.1 we have

and by Proposition 3.3

Noting that by Proposition 3. I TsiGj = + siGj+ 1 +03B1 we conclude
by Proposition 3 . 3 that
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Inserting (3.18) and (3 . 20) into (3.17) we obtain

2014. + 2014, 
-

Since 1 + ~ &#x3E; 2 we observe ’ that

and further can be replaced by G~_,. Taking this into account
equation (3.21) verifies Lemma 3.1. D

Let us now investigate the asymptotics of for +1=~+1:
Since Lemma 3.1 implies 2

and with 5 = ~ 2014 1/2

On the other hand we have

Combining (3.22) and (3.23) we obtain
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But in D~ it is easily seen that for large r

where 5o(~)=M(- - ~). Next remember that A and observe

that ~ ~

so that we arrive at

To investigate the asymptotics of the leading term in (3.25) we need.

LEMMA 3 . 2. - Denote m = [M/2 ], then

where we assume ~ 2, u {0} and li = M for M a positive
1= 1

integer, and where the Hermite polynomials Hli have been introduced in
section 1.

Proof of Lemma 3 . 2. - For n = 2 (3 . 26) is proven in [13 ]. We proceed
by induction with respect to n. Without loss we assume that == l &#x3E; 1

n-2

and we set Q = Then by the induction hypothesis
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Now let D2 = 03A3 ~2 ~03BE2i and ~2 = ~2 ~03BE2n-1. Using the binomial expansion we geta~; 
;=1 1

where we took into account that the degree of the polynomial Q is M - l
and the induction hypothesis (3 . 27). This proves the lemma. p I

In order to apply Lemma 3.2 to equation (3.25) we need the (probably
well-known) identity (3 . 26) in a scaled version, which is easily established :

for À &#x3E; 0. If we - set À = r we get with PM(ç) defined o by (1.15) and o ~
given in ( 1 . 22)

Application of (3.29) to (3.25) gives

Next we return to equation (3.9). insert (3 . 30) into it and obtain for large r
in D03B2

so it remains to investigate the asymptotics of the remainder term in (3 . 31 ).
According to Theorem 2 we have

Annales de l’Institut Henri Poincaré - Physique theorique



279ASYMPTOTICS AND CONTINUITY PROPERTIES

and we conclude via Proposition 3.2 (eq. (3.13)) that

(3.33) together with (3.31) gives the desired result (1.17)

in D~ for large r, proving Theorem 3.
Specifically we have for large r in D i ~2 for any k  00

and with z = b.~r~, b given in (1.18), it follows that

proving Corollary 1 of section 1.
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