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ABSTRACT. 2014 The set of stationary, axially symmetric solutions of
Einstein’s vacuum field equations is acted on by some infinite dimen-
sional group (Geroch). A precise definition of this group is given as the
central extension of a group of holomorphic functions with values in SL (2).
This group acts in the non-linear way known from 03C3-models on functions
with values in SL (2) which are solutions of a system of linear differential
equations and at the same time parametrize an infinite dimensional coset
space. This implementation is shown to be directly related to the « Inverse
Scattering Method » known for « Completely Integrable Systems ».

RESUME. - L’ensemble des solutions stationnaires a symetrie axiale
des equations d’Einstein du vide admet 1’action d’un groupe de dimension
infinie (Geroch). On donne une definition precise de ce groupe comme
extension centrale d’un groupe de fonctions holomorphes a valeurs dans
SL (2). Ce groupe agit de la façon non lineaire connue a partir des modeles (7
sur des fonctions a valeurs dans SL (2) qui sont solutions d’un systeme
d’equations différentielles lineaires et parametrisent en même temps un
espace quotient de dimension infinie. On montre que cette realisation est
directement reliée a la « methode inverse de diffusion » connue pour les

systemes completement integrables.
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216 P. BREITENLOHNER AND DIETER MAISON

1. INTRODUCTION

The subject of stationary, axially symmetric solutions of the Einstein
vacuum field equations resp. the Einstein-Maxwell equations experienced
a dramatic boost with the development of « solution generating methods »
in the years 1978-1980. These methods are based on an observation of
Geroch [7] ] that each given stationary, axially symmetric solution was
accompanied by an infinite family of potentials, which in turn allowed
for an infinite parameter set of infinitesimal transformations acting on
the initial solution. What remained, however, unclear in Geroch’s work
was the precise Lie algebra structure of these infinitesimal transforma-
tions and even more so the structure of a corresponding group of finite
transformations. Later the problem of constructing finite transformations,
i. e. elements of the « Geroch group », found a number of seemingly diffe-
rent solutions in the form of the already mentioned solution generating
methods (compare [2] for an exhaustive list of references). In 1980 Cos-
grove [3] ] made the heroic effort to unravel the interrelationships between
all these various methods. Unfortunately his work did not really shine
much light on the underlying mathematical structure. It is the aim of the
present work to provide a clear group-theoretical picture of all the solu-
tion generating methods. First attempts in this direction were already
undertaken by B. Julia [4] ] and the present authors [5 ].

In contrast to the infinitesimal transformations, which show a rather
obvious Lie algebra structure, the group structure behind the various
explicitly known finite transformations is less evident due to their highly
non-linear and non-local action on the solutions. For the analysis of the
group-theoretical significance of various steps in the implementation
of the infinite dimensional « Geroch group » it turned out important that
similar structures prevail in so-called Kaluza-Klein theories [6] ] [7] ] [8] ]
resp. extended supergravity theories [4] ] [9 ].

Quite naturally the field equations for stationary, axially symmetric
solutions of the 4-dimensional theory can be reduced to those of a 2-dimen-
sional theory. Remarkably in all the cases mentioned above the latter
turns out to have the structure of a non-linear (7-model for a non-compact
symmetric space G/H. It is this group theoretical structure that provides
the clue to our analysis of the Geroch group resp. its implementation. In
fact, we construct a natural extension !(oo») of the triple (G, H, i)
defining the symmetric space G/H (where! is the involutive automorphism
leaving H invariant). Here and are infinite dimensional groups
of holomorphic functions with values in the complexification of G, cor-
responding to the algebra of infinitesimal transformations discovered by
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217ON THE GEROCH GROUP

Geroch. The elements of the coset space are solutions x)
of a system of linear differential equations, whose integrability conditions
are the field equations of the non-linear 6-model. The latter situation is
typical for « Completely Integrable Systems ». In fact, we shall show that
the action of the Geroch group is directly related to the « Inverse Scattering
Method » developed for these systems. Implementing the group 
on the coset space turns out to be equivalent to the solution
of a factorization problem for group-valued analytic functions, a so-called
Riemann-Hilbert problem. The well-known Bäcklund transformations [IO]
correspond to meromorphic group elements.

Besides the fields parametrizing the coset space G/H there remains
another field from the original 4-dimensional theory, a conformal factor /)
describing the reduced 2-dimensional geometry. Following a suggestion
of B. Julia [4] we show that the transformation of this conformal factor
leads to a central extension of the group acting on the solutions of
the non-linear 6-model. We construct the corresponding group 2-cocycle Q
and derive the beautiful explicit formula for the conformal factor

The Geroch group is thus given a precise meaning as the central extension
G~~ ~ of a group of holomorphic functions (with values in G = SL(2))
acting in the usual non-linear way on the infinite dimensional coset space

of group-valued holomorphic functions.

In the present paper we shall restrict ourselves to the simplest case of
pure Einstein gravity in four dimensions leading to the coset space SL(2)/
SO(2). Using the so-called Kramer-Neugebauer transformation [77] ] we
shall derive in a rather elementary way the infinite dimensional Lie algebra
of Geroch. In a subsequent paper we shall dispose of the use the Kramer-
Neugebauer transformation and derive the action of the group 
in a more abstract form exploiting the structure of the linear spectral pro-
blem adj oint to the non-linear 7-model. In this form the analysis applies
immediately to 03C3-models for arbitrary symmetric spaces G/H.

2. DIMENSIONAL REDUCTION FROM 4
TO 2 DIMENSIONS

Stationary, axially symmetric space-times are characterized by the
existence of two Killing vector fields, K describing asymptotically time
translations and M describing axial rotations. In adapted coordinates t
and ~p the Killing vector fields are given by and resp. and hence

Vol. 46, n° 2-1987.



218 P. BREITENLOHNER AND DIETER MAISON

the 4-metric is independent of t and ~p. This fact allows to « dimensionally
reduce » the 4-dimensional theory to a 2-dimensional one. There are
several possibilities to construct such a 2-dimensional field theory des-
cribing 4-dimensional space-times with the considered symmetry. They
differ by dualizations of various potentials describing the 4-dimensional
geometry. At the level of equations of motion these dualizations consist
in an exchange of genuine field equations with Bianchi identities [12 ].
This requires that the potentials enter the equations of motion only through
their field-strength (and not through covariant derivatives). At the level
of the action such dualized potentials appear as Lagrange multipliers for
the corresponding Bianchi identities.
We may use the invariance under local Lorentz transformations to bring

the 4-bein into the following triangular form

adapted to the 2 + 2 dimensional coordinates XK = ;~)with.~ = 
The field eak is a 2-bein for the isometry group, whereas eak is a 2-bein for
the orbit space and ~, is a suitable conformal factor chosen later. The fields
Bmk are a column of two vector fields. The vanishing of the field strengths
Bmkl = ~lBmk is the condition for the hypersurface orthogonality
of the Killing vector fields. From eam we can build the metric m as usual
m = eT~e with ~ = ( - + ).
The 4-bein field EAK transforms covariantly under diffeomorphisms

and local Lorentz transformations, but the special triangular form (1)
is preserved only by a subgroup consisting of [13 )

i ) diffeomorphisms and local Lorentz transformations in 2 dimensions
acting on eak,

ii) local Lorentz transformations in 2 dimensions depending only on x
and not on x = acting on 

iii) global GL(2) transformations acting linearly on the coordinates ac,

iv) diffeomorphisms of the special form ;c -~ x + /(jc) acting as gauge
transformations Bmk  Bmk + on the vector fields.

The Lagrangean for the 4-dimensional gravitational theory can be

expressed by the 2-dimensional fields of the parametrization (1) (ignoring
surface terms)
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219ON THE GEROCH GROUP

where ~abakbl and p = det (e). R resp. R are the scalar curvature
of EAK resp. 

_

The vector fields Bmk have no dynamical degree of freedom in 2 dimen-
sions. From the field equation

it follows that the dual field strength *B = ~ obeys the

equation 
2 e

and hence *B = const. For asymptotically Minkowskian solutions *B
vanishes at infinity and hence the constant vanishes. This means that Bk~ = 0,
i. e. the Killing vector fields are hypersurface orthogonal. This will be
assumed in the following. Then .~ simplifies to

It turns out to be convenient to choose also e in a triangular gauge. We use

A = K 2 and 03C8 = - in order to parametrize e and put

which makes sense as long as 0394 &#x3E; 0. We could as well have used 0’ - - M 2

= 20142014; although this latter choice has certain advantages for the
description of rotating black holes, since ~’ &#x3E; 0 outside the horizon and

off the rotation axis (whereas A vanishes on the ergosurface), we prefer
to use A and 03C8 which tend to constants at infinity.
The metric m = eT~e = pM with

corresponds to the so-called « Lewis » form [14 ].

Vol. 46, n° 2-1987.



220 P. BREITENLOHNER AND DIETER MAISON

Rescaling ~ -~ we obtain

The field equations derived from 2(4,2) are (we omit the field equation for ~,,
since it is of no relevance)

The 2-dimensional metric hkl = - = ( - - ) can be brought
to the conformally flat form hkl = by a suitable choice of coordinates.
Finally h can be absorbed into the conformal factor ~, leading to hkl = (5~.
Since the field equations for M and p are conformally invariant they become
those on flat space. In particular p is a harmonic function on R2. Together
with its conjugate harmonic function z defined by az = - *ap (note
that **8 = - 8 in a 2 dimensional space with definite metric) it provides
a canonical coordinatization of the 2-dimensional reduced manifold as

long as 0 (Weylss canonical coordinates). With this choice, which
we shall always make from now on, the equation for M is that of a gene-
ralized (not translationally invariant) SL(2)/SO(1, 1) non-linear 6-model
on flat space independent of ~,.

Eq. (9) turns into an equation for ~,, since the left hand side vanishes
for One finds

From these equations ~, can be computed by a simple integration once M
is known. The integrability conditions are satisfied if eq. (10) is fulfilled.
An alternative description is obtained using the so-called twist potential ~

instead defined by _

Annales de Henri Poincaré - Physique theorique



221ON THE GEROCH GROUP

In order to switch from 03C8 to  we add the Bianchi identity *~~03C8=0
with the Lagrange multiplier  to 2(4,2), i.e. replace 2(4,2) by

1 ’"
2(4,2) + - The resulting field equation (13) for 03C8 can be solved

algebraically in terms of ~. Substitution into 2(4,2) yields

with

and

M can be factorized again in the form M = PTP with

parametrizing an SL(2)/SO(2) non-linear 6-model.
Since the group-theoretical structure of the symmetric space SL(2)/SO(2)

plays an important role in our investigation we shall mention a few relevant
features in appendix A.

3. THE LINEAR SYSTEM

In chapter 2 we saw how the replacement K:(P,/L) -~ (P, ~,) leads
from an SL(2)/SO(1, 1) o--model structure to one for SL(2)/SO(2). The
transformation K was first considered by Kramer and Neugebauer [77] ]
and will be called the Kramer-Neugebauer transformation. In terms of
the component fields it is

Vol. 46, n° 2-1987.



222 P. BREITENLOHNER AND DIETER MAISON

Obviously we have to distinguish the two SL(2) groups acting on P resp. P.
Let us call the first one, acting on P the « Matzner-Misner» group G and
the second one, acting 4n P the « Ehlers» group G. In the following we
shall demonstrate how their interplay leads to the infinite-dimensional
Geroch group. Our approach differs from that of Geroch, who exploited
the interplay of the Ehlers group G (acting on 0 and ~) with the group
GL(2)2014mentioned in chapter 2 as item iii ) mixing the two Killing vector
fields K and M. The result, however, is the same.

Let us study the action of the Ehlers group on P in some detail. There
are three different generators ~g which yield the following infinitesimal
transformations:

i 03B4  = (0 -1 0 0), a shift of : 03B40394 = 0, 03B4  = 1;) g = 
-1 0 

, a shift of : 0 0, = 1;

ii ) ~ g ~ - (-1 0) a scalin g~ ~0 = - ~ - 2 ~ ~ii) ðg = 
0 1 

a scaling: ð,1 = 2,1, 03B403C8 = 203C8;

iii) ð .  =( 0 1 the « Ehlers» transformation: 03B40394 = 20394, 03B4 = t/12 - 0 . 2
For the transformation of P we require the SO(2) element h(P, g) restoring
the triangular form of P (compare eq. (A . 2)). Only iii) requires a non-
vanishing 03B4 h given by

Clearly  is invariant under these transformations.
The interesting question now is, how these transformations act on (P, /L).

First of all the invariance of  together with eq. (2.15) yields 2014 = - _.
/) 2A

Obviously f) does not act on (P, ~) at all. Under ff) ~ scales oppositely 
and

The « Ehlers » transformation iii) yields

but is more complicated, since  and 03C8 are related through the diffe-
rential equation (2.13) :

The r. h. s. is one of the conserved currents in the matrix pM -1 aM giving
rise to a potential ~ via dualization *~=p(A’~A2014A’~~),i.e.

Annales de l’Institut Henri Poincaré - Physique theorique



223ON THE GEROCH GROUP

Two more potentials (one of them is ~) are required by covariance under
the « Matzner-Misner » SL(2). This already shows that implementing the
« Ehlers » SL(2) on (P, ~,) requires new potentials not yet contained in P or P.
This phenomenon repeats itself if we try to apply the « Ehlers » SL(2)
to these new potentials and in fact does not stop after finitely many steps.
Hence, the attempt to implement both SL(2)’s on (P, ~.) (or equivalently
on (P, 2)) requires infinitely many new potentials, which can be derived
recursively. The integrability conditions for these new potentials are a
consequence of the equation of motion (2.10) for M. Instead of resolving
the recursion we shall employ a simpler but equivalent method. Let us
introduce a generating function P(S, x) = P(x) + SP1(x) + ... incor-

porating all the required potentials. For reasons of covariance under the
Matzner-Misner group the new currents constructed from these potentials
are expected to be linear combinations of the original currents F and their
duals. This suggests the following ansatz (compare eq. (A. 5))

where a and b are functions of s. In order to determine the functions a and b

we require that the integrability conditions for eq. (6) are satisfied if and
only if P satisfies the field equation

equivalent to eq. (2.10) and find that this is the case if the algebraic equation

and the differential equation

are satisfied. The algebraic equation (8) can be solved in terms of one

unknown function t(= - b a) such that the linear system (6) takes the form

The function t must satisfy

or equivalently

Vol. 46, n° 2-1987.



224 P. BREITENLOHNER AND DIETER MAISON

leading to

with a constant of integration w. The quadratic equation for t has the
solutions

The pairs (w, t ) solving eq. ( 13) define for each given x = (z, p) with p 5~ 0
a two-sheeted Riemann surface with the branch points w = z :t i p. The

1
replacement t ~ t exchanges the two sheets. For z, p and w real we choose

t+, i. e. a positive value for the square root, in the first (physical) sheet. We can
choose the branch cut along the line segment (z = ~ | Jw). With
this choice t± is purely imaginary on the branch cut and Rt ~ 0 and
9lt -  0 for all (w, x). At the branch points w = w+(jc) = z ± i p we find

x) _ + i. For z  9lw resp. z &#x3E; 9tw the value of t +
lies inside resp. outside and t _ lies outside resp. inside of the unit circle.

Finally we can identify

in order to obtain the correct behaviour for small s (in the physical sheet)
and find

For p = 0 the Riemann surface degenerates and splits into two disconnected
planes w = z. The function t(w) becomes singular and we find in particular

We will see later that the solution of eq. ( 10) has a branch point as well,
i. e. we have in fact two solutions ~+(w, x) and ~_(w, x) which are analytic
continuations of each other and which satisfy

The two branches ~± (w, x) correspond to one function ~(t, x) defined on
the Riemann surface with

Annales de Henri Poincaré - Physique theorique



225ON THE GEROCH GROUP

which satisfies eq. (10). Note however that a~ is to be interpreted as diffe-
rentiation with w held fixed, i. e.

These differential operators commute with the substitution t --+ 2014 -.

t

They are, apart from the replacement t ~ the differential ope-
rators introduced in [15 ].

It is sometimes convenient to introduce slightly different linear systems
for functions U and V constructed from ~ x) and P(x) = &#x26;&#x3E;(0, x). The
function

whereas

They have been introduced previously [76] and V(t, x) is nothing but the
function p -1 ~r(~,) of Belinskii and Sakharov [7~].
The linear system eq. (22) is analogous to the one proposed by Pohl-

meyer [77] for the standard 0(3) non-linear (7-model, but with the essen-
tial difference of the explicit p-dependence of eqs. (2.10) resp. (7), leading
in turn to the ( p, z)-dependence of the spectral parameter t.

There exists a simple relation [3] ] between and a

generating function introduced by Kinnersley and Chitre [18 ],
namely

The linear system for x) has been used extensively by Ernst and
Hauser [19 ].

Clearly and V are not determined uniquely by the differential
equations. For each value of s there are constants of integration which

Vol. 46, n° 2-1987.



226 P. BREITENLOHNER AND DIETER MAISON

have to be determined in such a way that x) has a Taylor series expansion

The remaining ambiguity corresponds to gauge transformations, such as
~ ~ ~ + const., and will be discussed later on.

Rewriting eq. ( 10) in the form

with A and F as in eq. (A. 5) one can easily verify that it is invariant under
the transformation

This transformation 1’(00) will play an important group-theoretical role
later as a natural extension of the automorphism l’ of SL(2) to the infinite
dimensional Geroch group. The function ~’(t, x) considered as an element
of that group is again « triangular » in the sense that it has a Taylor series
expansion (i. e. only positive powers of t ) and the t-independent term is
triangular.
Guided by eq. (A. 3) we can construct a new function

Since and r~ --,~jj are solutions of the same differential
equation we find, as a consequence, that x) satisfies jc) = 0
and the corresponding functions are x-independent and therefore
cannot have branch points at w = z :t fp, i. e. = and hence

is a symmetric matrix. It is important to observe that, although

~-) and -, ~- j j are solutions of the same differential equation,
the constants of integration are different and hence is in general a
non-trivial function of w.
The linear systems (10, 22, 24) with spectral parameter t resp. s have in

common that their integrability conditions are equivalent to the non-linear
field equation (7) for resp. (2.10) for M. This situation is typical for

Annales de l’Institut Henri Poincaré - Physique théorique



227ON THE GEROCH GROUP

« completely integrable » dynamical systems, although it is difficult to
find a generally applicable and accepted definition of this term. In any case,
it allows to code the information about a solution of some non-linear PDE
into the analyticity properties of special solutions (like ~(t,~)) of the
linear system resp. their scattering or monodromy matrices (like 
considered as functions of the spectral parameter [20 ]. Along with that
goes the possibility to produce solutions of the non-linear equation through
the construction of solutions of the linear system with the required analy-
ticity in the spectral parameter (« Inverse Scattering Method » ). In fact,
it is the transition from one such solution to another one with the required
properties that incorporates the action of the infinite-dimensional Geroch
group as will be demonstrated in chapter 6. Before we describe an adaption
of the « Inverse Scattering Method » (ISM) in chapter 5 we shall study
the analytic properties of P and M.

4. PROPERTIES
OF THE GENERATING FUNCTIONS P, U, V AND M

In this chapter we want to derive some properties of the generating
functions ~, U, V and ~~. We will first determine the behaviour of these
functions on the z-axis ( p = 0) and will then study their domains of ana-
lyticity.
We prefer to give the discussion for the generating functions ~ etc. referring

to P. The group SL(2) is, in this case, the « Ehlers » group and the vacuum
solution (4-dimensional Minkowski space) is described by the constant
matrix P(x) = 1 (and thus ~(t, x) = 1). This parametrization avoids the
explicit powers of p present in the « Lewis » form denoted by P(x) in chapter 2

In a configuration with (one or several) black holes p = 0 corresponds
to the horizons and to the pieces of the axis outside the horizons. In this
case M(x) is an analytic function of z and p in the whole x = (z, p) half
plane (p &#x3E; 0) with the exception of the points (zi, 0) where the axis meets
a horizon (where coordinate singularities are present) and of possible
naked singularities. P(x) and P(x) have a « coordinate singularity » at the
ergosurface where ð vanishes and correspondingly the factorizations
M = PT~P resp. M = PTP become singular. This problem can be avoided
using 0’ (compare chapter 2).

Let us assume that P(x) is an analytic function of x = (z, p) in a simply
connected domain of the (z, p) half plane and that the complement

Vol. 46, n° 2-1987.



228 P. BREITENLOHNER AND DIETER MAISON

of radius R. This assumption allows not only black hole configurations
but the exterior solution of localized matter distributions as well. The

regularity of the 4-dimensional solution at the rotation axis p = 0 is gua-
ranteed by the regularity of M. Let us further assume that the configuration
is asymptotically flat and sufficiently regular, i. e.

We shall call such solutions « physically acceptable », although the required
conditions may have to be supplemented by additional ones as e. g. positi-
vity of the mass etc., for physically really meaningful solutions.
We have to choose the w-dependent constants of integration in x)

such that in the limit p -~ 0, z -~ 2014 oo (i. e. t + -~ 0)

Due to the asymptotic behaviour (2) of P(x) we can integrate the diffe-
rential equation (3.18) along a large circle and find

in the whole asymptotic region.

4.1. Behaviour on the z-axis.

Let us keep w fixed 0. If we integrate eq. (3.18) along the z-axis
we find (for z ~ &#x3E; Rand z ~ 9tw) taking into account eq. (3 .17)

N IV

where P(z) is a shorthand for P((z, 0)). The constant matrices Cl(w) and
C2(w) will, in general, be different for z  - R and z &#x3E; R. The relations (5) .
remain obviously valid in the limit 3w -~ 0. Finally for &#x3E; R + I
we can integrate eq. (3.18) around a circle of radius 13w I centered at
x = (9iw, in order to relate and Due to the assumed analy-
ticity of P(x) the rhs. of eq. (3.18) is uniformly bounded on all such circles
and therefore

Henri Poincaré - Physique theorique
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With this information we can determine (z, 0)) for all real w with
I R and all z with 1 z &#x3E; R. For w  - R we find

whereas for R  w

and thus

We see from eq. (9) that although is x-independent, it contains
enough information to determine the behaviour of M(x), and thus P(x)
on the axis &#x3E; R, p = 0). Together with the assumed analyticity pro-
perties this is sufficient to determine P(x) everywhere [19 ].

4.2. Domains of analyticity.

Starting from the asymptotic value x) r ~ 1 we can, for a fixed

value of w, determine x) by integration of eq. (3.18) along a suitable
path in the (z, p) half plane. The r. h. s. of eq. (3.18) is analytic (in x and w)
for x ~ X except for the branch cut starting at x = Jw I). The resulting

x) will therefore be an analytic function of w and x as long as we can
find a path of integration avoiding these singularities. For (i. e. in the
physical sheet) this is possible for all x E ~’ except those on the branch cut.
In order to determine we have to reach the second sheet, i. e. w must
lie in the domain of the complex w plane.
For the moment we need, as before, the additional assumption that 0
but again the results remain true for 3w=0. Except for the branch cut the
function x) will be analytic if (w, x ~.

Vol. 46, n° 2-1987.



230 P. BREITENLOHNER AND DIETER MAISON

We can finally analyze, for WE ~, the behaviour near the branch point
and find 

’ 

’"

with matrix valued functions 91 and 92 analytic in a neighborhood of
the branch point.

In order to characterize the domain of analyticity of ~(t, x) we need
some definitions. Let ~’ = CB 1f/" be the complement For each point x
in the (z, p) half plane we define the domains bx±, Xx± and bx

The transformation t ~ - 1 t will clearly onto bx+ and will therefore

leave their intersection ø’x invariant. Furthermore let and !Ø be the
domains

We can then use the analyticity of ~±(w, x) and the behaviour ( 10) near
the branch point to deduce that ~(t, x) is an analytic function in the domain

~ + and that 9 - is analytic in ~-. x ) will therefore be analytic

in ~ but the domain of analyticity is in fact much larger. Since 
is x-independent it is analytic in ~’ and x) is therefore analytic in
the domain

5. A RIEMANN-HILBERT PROBLEM

The idea of the « Inverse Scattering Method » [20] is to trade a solution
P(x) of the non-linear field equation (3 . 7) for its corresponding « Scattering
matrix » and vice versa. To go from P to ~~ requires to solve a diffe-
rential equation (eq. (3.10)); the opposite direction can be reduced to the
solution of a Fredholm integral equation equivalent to the solution of
a Riemann-Hilbert problem. The clue to this Riemann-Hilbert problem
is the formula (3.29). If we succeed to factorize x) in the form

i~ °° ~(~ -1 (t, x))~(t, x) with some « triangular » ~ we can reconstruct the
solution P(x) _ ~(0, x) from This factorization of ~lZ relies on the

analytic properties of ~ as a function of the spectral parameter t. For reasons
already explained above we shall again employ ~~, although this is not
essential.

We can consider x) as a family of functions, depending parametri-
cally on x, analytic for t E All (possible) singularities lie in the comple-
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mentary domain ~:.. In order to formulate the Riemann-
Hilbert problem we first have to study the location of these singularities and
in particular their x-dependence. As long as z  - R, the domain ~~
lies entirely outside the unit circle and to the left of the imaginary axis
whereas bx lies inside the unit circle and to the right of the imaginary axis.
For these x all singularities of M(t, x) in bx+ should be due to P(t, x) and
those in 79: due -, x (compare cq. (3.29)). If we var x, these
domains and the singularities of ~(t, x) will move in the complex t plane
and will eventually cross the unit circle but the two domains F~ will never
intersect as long as z + ip E ~ or equivalently x E ~’. As soon as z &#x3E; R,

~+ lies entirely inside the unit circle (but still to the left of the imaginary
axis) and 7;:. lies outside the unit circle.
We can, therefore, choose a family of contours Cx in the t plane which

have, for all x E ~, the following properties :
1

1. Cx is invariant under the mapping t -&#x3E; 2014-and will thus pass through
the two fixed points t = :t i of this map. 

t 
_

2. The domain ~" contains a neighborhood of CX and the domains 7;~
lie in the exterior resp. interior of Cx.

3. The contours Cx depend continuously on x.

There remains a lot of ambiguity in the choice of these contours, and we
could e. g. choose the unit circle for z  - R. The solution of the Rie-
mann-Hilbert problem (if such a solution exists at all) will, however, be
unique and therefore independent of the particular choice of contours.
What we_really need is the existence of a contour which separates the
domains 7;~. No such contour can exist for x E ~’ because, in this case,
both ~+ and ~x will contain the points t = + ~ and this non-existence of
a suitable contour will lead to singularities of ~, x) and P(x).
We can now formulate the Riemann-Hilbert problem for the construction

of (t, x) from Ã :t.(w). Given Ã :t(w) with the properties stated above we
have to factorize ~(~, x) _ ~~+(w(t, x)) in the form

with x) analytic in ~ satisfying A+(0,~) = 1 = A_( 00, x).

If this factorization does exist then A-(~~) = A+( 2014 -,jc) and Ao(x)
is symmetric and real. Moreover = 1 and therefore 
will be analytic as well. Comparing with eq. (3.29) we can identify

M(x) = Ao(x), U(t, x) = A + (t, x), V(t, x) = Ao(x)A+(t, x) . (5.2)
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Finally we factorize in the form

with a triangular matrix P(x) and define

There are now two questions to be answered. Is there a solution to the
Riemann-Hilbert problem under the given circumstances and, if so, has
the solution the right properties to yield a « physically acceptable » solution
P(x) as defined in chapter 4 ?
The first question has been analyzed in [27] (compare also [19 ]). There

the problem is reduced to a Fredholm integral equation, which has a solu-
tion under the present circumstances is holomorphic on the curves Cx ! ).
The only question is about the so-called indices of the Fredholm operator.
However, in the present case these (integer) indices vanish for x ~ 1 ~ oo,
since x) ~ 1 for x ~ I ~ oo and hence they vanish for all x E ~’

by continuity.
Let us then turn to the second question about the properties of the

solution. Since the parametric dependence of x) on x for x is

smooth also the factors in eq. (1) depend smoothly on x there. Furthermore
we claim that the functions P(x) resp. M(x) defined by eqs. (2, 3) satisfy
the field equations (3 . 7) resp. (2.10) and (t, x), U(t, x) resp. V(t, x) given
by eqs. (2, 4) are the solutions of the linear systems (3.10), (3 . 22) resp. (3 . 24)
for these P(x) and M(x).
We will first prove that U(t, x) and M(x) satisfy eq. (3 . 22). The field equa-

tion (2.10) will then be fulfilled automatically because it is the compatibility
condition for the linear system (3.22). The validity of the remaining equa-
tions follows by elementary manipulations.
The differential operator (3 . 20) has poles at t = :t i but

is analytic in ~+ due to the structure of the differential operator and because

U(O, x) = 1. Since Ã :t(w) is x-independent and therefore x) = 0
we find

and thus there is some G(x) such that
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Finally we observe that

because x) is analytic at t = :t f and thus

This proves that eq. (3.22) is indeed satisfied.
As smooth solutions of the elliptic differential equations (3 . 7) resp. (2.10)

the functions P(x) resp. M(x) are actually analytic in ~. The only remaining
property to be checked is the asymptotic behaviour (4. 2). Yet, this follows
from the asymptotic behaviour of At(w)  1 for w -~ ± oo and the ana-

lyticity of P(x) in ~.
This demonstrates that the process of relating a holomorphic function :~~

with the specified properties to a « physically acceptable » solution P(x)
can in fact be inverted, i. e. P(x) can be reconstructed from (w).

6. ACTION OF THE GEROCH GROUP
ON P AND M

In chapter 3 we defined the Kramer-Neugebauer transformation K
as the change from (P, ~,) to (P, 1). P resp. P determine two different gene-
rating functions f?lJ(t, x) resp. ~(t, x) via eq. (3.10) reducing to P(x) resp.
P(x) for t = 0. Once we know how K extends to we are able to act with
both SL(2) groups simultaneously on P, since we can simply transfer the
action of the « Ehlers » group G from (P, 1) to (P, /),) with the (extended)
transformation K.

Expanding 9 in a Taylor series in t we deduce from eq. (3.10)

and an analogous expression for ~’(t, x). Recalling eq. (2.17) we find, to
the order given in eq. ( 1 ), ,

where K(x) is the 2 x 2 matrix
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The limiting behaviour (3.16) of t( = t + ) suggests to define the mapping

with

and one can indeed rather easily verify that this mapping maps a

solution x) of eq. (3.10) into a solution x) of the corresponding
equation. The mapping is therefore the looked for extension of the

Kramer-Neugebauer mapping K (compare eq. (3 .1 )).
We can now easily determine the action of the Ehlers group G on x).

Given an element ~ g from the Lie algebra of G

and therefore

with

Note that although K(x) contains fractional powers of x the transforma-
tions (8) do not introduce branch points. The transformation (4) does,
however, introduce branch points at p = 0, p = oo and t = x).
They are a rejection of the branch points at p = 0 and p = oo introduced
by the Kramer-Neugebauer mapping (3 .1 ).

Choosing in particular 
’"

we find

and

Commuting the transformations generated by 5g(.s) (eq. ( 10)) with the
s-independent ones of the Matzner-Misner group G we can generate the
infinite dimensional loop algebra related to SL(2) [22 ]. ’

Let Ta (a =1, ... , 3) be the generators of sl(2) with commutation relations
and metric gab = Tr (Ta Tb). The generators of the loop

algebra (a=1, ... , 3, k= ..., -1, 0, + 1, ... ) are realized by ~g( s)= 
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The involutive automorphism ~ ( - )k(i(Ta))( - k) determines a
subalgebra ~f~~ invariant under In addition to the right action 
there is the left action of an induced ~h(t ) E ~f~ realized by ~ 

The total (non-linear) action of ~g(s) on x) is given by (7) where

~h E £(00) (i. e. = r( ~~( - -))) is determined such that the resulting
x) is « triangular » in the sense that it has a Taylor series expansion

in t and the t-independent term is triangular. Apart from the x-dependent
relation between s and t, which is entirely due to the factor p in front of
the Lagrangean (2.5), this is just the standard action on the 
non-linear cr-model parametrized by x), which is an element of the
« triangular » subgroup of (see below for a precise definition of 
The corresponding action on ~(~ x) is given by

with

and the condition that 5~) is an element of now takes the

form~)= T~~-~)).
The matrix .A introduced in eq. (3.29) transforms as

Quite similar to the action of sl (2) on M(x) this action of the loop algebra
~~ on ~2(t, x) is again linear. Note that, apart from a phase due to branch
points, ~~l(t, x) transforms under the Kramer-Neugebauer mapping 

as expected.
Given the action of the loop algebra ’5(00) and of the mapping 

on ~(t, x) we can deduce the corresponding action on the functions U(t, x)
and V(t, x) given by eqs. (3.22, 24). This action is, however, less explicit
because the old and new values of P(x) have to be extracted from these
functions in a somewhat indirect way.

It is well-known [22] ] that the loop algebra ’5(00) allows for a central
extension with the commutation relations

or equivalently
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The bilinear skew-form 03B4g2) ~ 1 2 Tr (03B4g1(s)d 03B4g2(s)) is a so-called2nl J
Lie algebra 2-cocyclc (compare appendix B).

There is a natural extension of the involutive automorphism 1"(00) to ~~~)
compatible with (16) given by

which we denote again by for simplicity.
We see from the transformation law (7) that the generator Z of the central

extension does not act on ~(t, x). But, as was first observed by B. Julia [4 ],
this central extension becomes relevant, if we consider the action of ~~°°~
on the conformal factor /L
From the relation (2.15) we get

under the action of the Ehlers group (leaving  invariant). Taking the
commutator of two elements of the form ( 10) we find

and hence

corresponding exactly to the Z term in eq. (17). This suggests that the
action of Z is

For the moment we will ignore the central extension, but we will have
to come back to it in chapter 7.

Let us study the action of bg(s) = sk03B4gk on P(t, x) in some detail:
1. The case k = 0 is given by i)-iii) in chapter 3.
2. For k &#x3E; 0 the induced ~h(t ) vanishes and 5~(t, x) = 

This corresponds to the freedom to add constants to the potentials needed
to determine 

3. If k  0 then (due to the structure (5) of s(t, x)) the corresponding 
has the form ~h(t) = and depends only on the first k ~ + 1
terms 1 ~ k ~ I of the Taylor series expansion of ~(~ x).
The determination of 5~(~ x) and ~~(t, x) is in all these cases completely

straight-forward although tedious.
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To the infinitesimal transformations (7) resp. (14) correspond finite ones

resp.

There are two questions connected with these formulae. The first one is,
what are the admissible functions g(s) mapping the class of physically
acceptable solutions into itself ? The set of these functions, which constitute
obviously a group, is our candidate for the Geroch group. Actually we
prefer to identify the Geroch group with the central extension of the latter
corresponding to eq. ( 17), since we would like to include the conformal
factor ~, in the set of dynamical variables. This provides the possibility to
compute ~, by group-theoretical methods (compare chapter 7). The second
question is, how does one construct ~g(t, x) resp. h(t, x) for a given g(s) ?

In order to answer these questions we recall from chapter 5 that there
is a one-to-one correspondence between r and Therefore it is sufficient
to consider the transformations (24) of Ã. In chapter 4 we showed that 
is holomorphic in a domain ~’ _ ~ w : (9tw,! 13w I) E ?£} where ?£ is that
part of the (z, p)-plane where P(x) is analytic. ~~(w) is symmetric, real
for real w, i. e. ~(w) _ ~~(w) and det ~~ = 1. Furthermore 1

for I w I ~ oo . Let be the set of SL(2)-valued functions g(s) holomor-
phic in a domain containing a neighbourhood of the origin (remember

-s = 2014) with the additional p ro p erties g( ) s - and = 1. It is quite
2w

obvious that transforming ~ according to (24) with such g’s does not
change its properties (apart from a possible admissible change of its domain
of analyticity). It is the central extension G~~~ (compare chapter 7) of .

that we propose as the Geroch group. For a similar definition (without
the central extension) we refer to the work of Ernst and Hauser [19 ].
They also proved, what they called the « Geroch Conjecture », that the
group G( 00) acts transitively on the set of « physically admissible » solutions.
Translating their approach to our formalism we shall try to find some g(s)
with values in SL(2) transforming a given ~l into .~ = 1 corresponding
to Minkowski space, i. e.

Writing ~l(w) in the form
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where ~(w) 7~ 0 in ~’, there is a unique triangular matrix

1
fulfilling eq. (25). This function is also holomorphic for w = - in 1f’",
has det g = 1, is real for real s and tends to 1 for s ~ o. 2s

In order to answer the second question about the construction of
from for some given we can

proceed as indicated in the following diagram

As was shown in chapter 5 the last and only non-trivial step reduces
to the solution of a Riemann-Hilbert problem. Its solution gives directly

x), from which we can obtain x) a posteriori, if so wanted.
The solution of the Riemann-Hilbert problem is particularly simple

if the singularities of are just (simple) poles. For such meromorphic
(with N poles) the Riemann-Hilbert problem can be reduced to a

system of N linear equations, i. e. it can be solved by inverting an N x N
matrix and the conformal factor ~, can be determined in closed form [2 ].

It is sometimes convenient to express the new solution x) as

and use a slightly different Riemann-Hilbert problem in order to determine
directly Z~(~ x) [23 ]. We could obviously use similar equations for U(t, x)
or v(t, x) but the function ~(t, x) has the advantage of a more direct group
theoretical interpretation. Clearly Z~(~ x) is analytic in the domain ~+
(for a suitably chosen ~’) as are ~(t, x) and ~(~ x). We find that we have
to construct

and decompose ~g(t, x) in the form

where Z ± (t, x) is analytic in ~ and Z~(0, x) = x) is a triangular
matrix.

If the function x) in the Riemann-Hilbert problem (31) is meromor-
phic (e. g. with 2N poles) then the transformation (29) corresponds to an
N-fold Bäcklund transformation [2~] ] adding N poles to the solution
ij(t, x) of the linear system. For a general x) it is, unfortunately, prac-
tically impossible to find an element g(s) E such that the corresponding

x) is meromorphic. One can, however, investigate what are the condi-
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tions on a meromorphic Z + (t, x) in order that x) determined by eq. (29)
is again a solution of the linear system (3 .10). This is, in fact, the procedure
of Belinskii and Sakharov [7~] (for V(t, x) instead of jc)). This method
yields algebraic equations for the residues of Z~(~~-) and the conformal
factor ~, can again be given in closed form. Cosgrove [3] has shown the
equivalence of this method with the Bäcklund transformations introduced
independently by Harrison and Neugebauer [10 ].

7 . THE CENTRAL EXTENSION OF 

In chapter 6 we found that the inclusion of the conformal factor /). in
the transformations of the Geroch group leads to a central extension ~~
of the loop algebra ~°~ defined by the Lie algebra 2-cocyle OJ. As explained
in appendix B there is a corresponding central extension G~~~ of the group

defined by a related group 2-cocycle Q.
According to eq. (6.22) ~ transforms as (M _ ~, under Z. This suggests

to consider the pairs (~(t, x), ~,-1(x)) as « triangular » elements of the
extended group G~~~ representing the coset space G~~)/H(oo). Moreover
eq. (6.22) suggests to extend the transformation law (6.23) to

where the multiplication « 0» is defined in appendix B. Let us prove that (1)
yields indeed the correct transformation law for ~,. We may restrict ourselves
to infinitesimal elements of the Matzner-Misner and Ehlers group, since
they generate the whole Lie algebra ~B Ignoring the trivial rescaling of ~,
due to y and using the results of appendix B we get from eq. (1 )

where we have used that SZ’( ~’, ~ -1 b~) = 0 since both arguments are
holomorphic functions of t in some simply connected domain !Ø + (compare
chapter 4). For the Matzner-Misner group ~h is constant and we get U = 0
as required. On the other hand the only element of the Ehlers group leading
to a non-vanishing 5~ is the Ehlers transformation with (compare eqs.
(3.2, 6.8)) 

. ^ . ,

From eq. (B. 25) we get
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where we can choose an arbitrary contour in !Ø+ to evaluate the integral.
The only singularity of the integrand is the simple pole at t = 0 from 5~.
Inserting the expansion (6.1) for ~(~ x) we find the correct result (compare
eq. (3.3fn)) _, 

.

Similar to the construction of ~~ from ~ we can define

where the last expression is obtained using eq. (B . 5).
The expression requires some words of explanation.

In appendix B the 2-cocycle 03C9 and hence also Q are defined for functions
holomorphic in some domain of the complex plane containing a contour
encircling the origin. On the other hand ~ is (for fixed x) a function defined
on a two-sheeted Riemann surface parametrized by (8, x)). The auto-

mor p hism involves the substitution t --~ - 1 t and hence exchanges
the two sheets. For reasons of consistency we have to require

(where r~~(A, B) = ~(r~~A, r~B)). This can be achiev ed choosing
in the formula (B . 3) for (~ a contour on the Riemann surface, which is

invariant under -~ 2014 - u p to a chan g e of orientation. As discussed in
chapter 5 the function ~(~ x) is, for fixed x, holomorphic in a neighbourhood

o f the contour C" invariant under r -~ 2014 -. We could choose this contour, ,
yet, it has the disadvantage to pass through the branch points s=2014201420142014

2(z ± i p)
resp. t = ± i, where is singular as a function of 5. Therefore we prefer
to average over two contours (with the same orientation), exchanged and

reversed under t ~ - -, avoidin g the branch p oints.
In chapter 3 we concluded that ~ was x-independent due to the inva-

riance of a~~‘ -1 under r~. The natural extension of this invariance to

~ is

since = - Z.
As a consequence of eq. (7) we find a,u = 0, i. e. not only eA but the whole

pair ,u) is x-independent. This remarkable fact provides us with a
beautiful explicit formula for /). as a function of P
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(where the constant c can be determined from the asymptotic behaviour
for x ~ 1 ~ oo).
There are several ways to prove the validity of eq. (8). The simplest one

is to prove the constancy of  by relating an arbitrary pair (, ) to (1,1)
with some In analogy to eq. (6 . 25) we obtain

and thus

Now g is analytic near s = 0 and therefore g) = 0 entailing ;u = 1.
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APPENDIX A

THE SYMMETRIC SPACES SL(2)/SO(2)
AND SL(2)/SO(U)

The subgroups H = SO(2) resp. SO(I, 1) of G = SL(2) are distinguished by their inva-
riance under some invohnive automorphism

On the triangular representation P from eqs. (2.6, 17) of the cosets the group SL(2) acts
in a non-linear fashion through

where h(P, g) E SO(2) resp. SO(1,1) restores the triangular form of Pg. In contrast to P the
symmetric matrix M = PT~P = transforms linearly under SL(2) :

On the Lie algebra sl(2) the automorphism T induces the reflection

leaving so(2) resp. so(l, 1) invariant.
The Lie algebra valued 1-form can be decomposed according to

with the transformation laws (induced by (2))

i. e. A can be interpreted as connection for H whereas F transform H-covariantly and
both are G-invariant.

In contrast to F the « gauge invariant » 1-form

is invariant under 80(2) and transforms as

The invariant metric of the symmetric (pseudo-)riemannian space SL(2)/SO(2) resp. SL(2)/
S0(l,l)is given by

leading j to the form of the 7-model " Lagrangean (2.8, 14) for M.
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APPENDIX B

LIE ALGEBRA AND GROUP 2-COCYCLES

The central extension (6.16) of the Lie algebra ~°~ is defined by a so-called 2-cocycle
of that algebra. Such a 2-cocycle is given by a bilinear function M on ~°~ with the properties

The Lie algebra (6.17) as generated in chapter 6 consists of finite Laurent series 5~(s).
For those a 2-cocycle OJ is given by

where the integration path is a closed contour around the origin. The last expression for 03C9

obviously makes sense for a much larger class of functions in particular for functions

analytic in a neighbourhood of some contour encircling the origin. It is easily checked that
it has the defining properties (1, 2) also in this more general situation.

It is well-known that Lie algebra cocycles are related to inhomogeneous group cocycles
[2~] [2~]. The defining relation for such a group 2-cocycle Q (which we write additively) is

With the help of such a group 2-cocycle it is possible to define a central extension G~~)
of the group taking pairs (a, a) E x C with the multiplication law [27]

which is associative due to the defining relation (4). This extension depends only on the

cohomology class of Q, because a change of b) by a coboundary, i. e. an expression
of the form ~(b) - ~(~h) + ~(a), can be absorbed into (1..

In addition we require tha anti-symmetry conditions

and the additional condition

which can always be achieved adding a suitable 2-coboundary, to Q. From eq. (6) we get

From any group 2-cocycle obeying (6) one obtains a Lie algebra 2-cocycle taking a, b
of the form a = 1 + = 1 + ~b with ~a, bb infinitesimal or equivalently by

On the other hand it is possible to invert this process and construct a group 2-cocycle Q
from a Lie algebra 2-cocycle M. We can extend the exponential map
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to the centrally extended Lie algebra by

The group multiplication for G(~) in the parametrization (10) is given by the Baker-Camp-
bell-Hausdorff (BCH) formula [28]

and the BCH expression ( A : B ~ has the form

The Lie algebra valued function f(A, B) can be expressed through iterated commutators
of A and B; note that f(A, B) contains some ambiguity which does, however, not contribute
to  A : B ~ due to the Jacobi identity. We choose

In the same way the group multiplication for G~e ~ in the parametrization (11) is given by

with the BCH expression for ~~

where eB) is uniquely determined by co and ( A : B &#x3E;

This group 2-cocycle (17) satisfies the defining relation (4) because the BCH formula (15)
satisfies the associative law. The conditions (6, 7) are satisfied as well.

In addition to the group 2-cocycle Q and the Lie algebra 2-cocycle OJ we need a mixed
form (compare eq. (9))

with

Using the properties of Q we find
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Using eq. (18) we can rewrite this in the form

where

(with 0  !, r  1) parametrizes the interior of the geodesic triangle with vertices ~ 1, 
The expression (17) for the group 2-cocycle Q can therefore be expressed in the equi-

valent form

where the domain of integration A is a geodesic triangle with vertices { 1, a, ab }.
Using the explicit expression (3) for 03C9 and the identity

we finally obtain

with the odd function
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