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ABSTRACT. 2014 In this paper we will study the asymptotic behavior in
time of the solutions and the scattering theory for the following Hartree
type equation

We prove that when (4/3)  y  Min (4, n) and ~, &#x3E; 0, all solutions of

(1)-(2) with (~ E are dispersive in and that when 1  y  Min (4, n)
and ~, E ~, the solutions of ( 1 )-(2) with 4&#x3E; E and II 4&#x3E; 11~1,1 small are disper-
sive in This implies asymptotic completeness in of the wave

operators for (4/3)  y  Min (4, n) and /). &#x3E; 0. Furthermore when /). &#x3E; 0,
we show the existence of scattering states in L2((~") for arbitrary data
in if 1  y  (4/3) and the non-existence of scattering states in L2((~n)

1.

RESUME. - On etudie Ie comportement asymptotique en temps des
solutions et la theorie de la diffusion pour 1’equation de type Hartree
suivante
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188 N. HAYASHI AND Y. TSUTSUMI

On montre que lorsque (4/3)  y  Min (4, n) et ~, &#x3E; 0, toutes les solutions
de (1)-(2) avec 03C6 E sont dispersives dans et que lorsque
1  y  Min (4, n) et 03BB E !?, les solutions de (1)-(2) avec 03C6 E et ~ 4&#x3E; 111:1,1
petit sont dispersives dans Ceci entraine la completude asymptotique
des operateurs d’onde dans pour (4/3)  y  Min (4, n) et ~, &#x3E; 0. En

outre, pour ~, &#x3E; 0, on montre 1’existence d’etats de diffusion dans.L 2(n)
pour des donnees initiales arbitraires dans ~1 ~ 1 si 1  y  (4/3) et la non
existence de tels etats pour 0  y  1.

1. INTRODUCTION

This paper deals with the asymptotic behavior in time of the solutions
and the scattering theory for the following Hartree type equation

where 1B is the n-dimensional Laplacian in x, ~, e M and

for 0  y  n. Let U(t) be an evolution operator associated with the free
Schrodinger equation and be the Hilbert space defined by

with the inner product

where

When ~, &#x3E; 0 and 0 2  y  Min (4, n), Ginibre-Velo o [7] showed o that

Annales de Henri Poincare - Physique - theorique



189SCATTERING THEORY FOR HARTREE TYPE EQUATIONS

a) For any u + (l E N) there exists a unique 03C6 ~ 03A3l,1 such that

where u(t) is the solution of (1.1)-(1. 2) with U(- t)u(t) in C(!R;E~).
For any M- E EI~ ~ (l E N) the same result as above holds valid with + 00

replaced by - oo in ( 1. 3).
b) For there exist unique M~ such that the solution

u(t) of (1.1)-(1. 2) with U( - in C(tR;~’~) satisfies

We note that a) and b) imply the existence of the wave operators defined
in the space E1~ 1 and their asymptotic completeness (for details see Corol-
lary 5.1). They proved the above results by using the pseudoconformal
conservation law

where

and Lq estimates for solutions of the free Schrodinger equation.
By making use of the space-time estimates obtained by Strichartz [20] ]

(see also Ginibre-Velo [9]) and Lq estimates, Strauss [79] showed
a) and b) in the space provided that 2 ~ y  Min (4, n) 
is sufficiently small, and he also showed that if (4/3)  y  Min (4, n) and
M- E L4"~~2n+ y)(~n) ~ L2(~n)~ then for sufficiently large T &#x3E; 0 there exists
a unique solution u(t) in C(( - oo, - T ] ; L,4n/(2n- y)(~n) ~ of (1.1)
such that

When y = 1, n = 3 and 03BB &#x3E; 0, Glassey [70] ] established that for non-
there do not exist any satisfying

But his result does not seem to imply the non-existence of any scattering
states since in his proof he essentially uses the fact that
!! II 00 = 0( I t I n~2~ as t -+ ’±’ 00 .
Our main purpose in this paper is to extend the above results as follows

when n ~ 2.

(1). Suppose that 1  y  Min (4, n) and À &#x3E; 0. Then, for any 03C6 E’L1,1

Vol. 46, n° 2-1987.



190 N. HAYASHI AND Y. TSUTSUMI

there exist unique scattering states satisfying (1. 6) (see sec-
tion 3).

(II). Suppose that 1  y  Min (4, n) and G &#x3E; 0 is sufficiently small.
Let M+, M- and QJ E = { tf E 111:1,1 ~ s}. Then a) and b) hold
valid in the space (see section 4).

(III). Suppose that (4/3)  y  Min (4, n) and ~, &#x3E; 0. Then a) and b)
hold valid in the space (see section 5).

(IV). Suppose that 0  y ~ 1 and /), &#x3E; 0. Then, for any non-zero

QJ E ~1,1 there do not exist any u± E satisfying (1.6) (see section 3).

REMARK 1.1. (I) and (IV) imply that y = 1 is a critical value. (II) and
(III) not only extend Strauss’ result [79] ] and Ginibre-Velo’s result [7] ]
but also formulate the scattering problem for (1.1)-(1.2) in the more
natural space than used by Ginibre-Velo [7 ].

REMARK 1. 2. 2014 In the case of 2)u = ~M there exist the ana-

logous results to (I), (III) and (IV) which were obtained by Y. Tsutsumi-
K. Yajima [23 ], Y. Tsutsumi [27] ] [22 ], Ginibre-Velo [6] ] [9], Strauss [77] ]
and Barab [1 ].

(A) [23 ]. Suppose that 1 + (2/n)  p  and /), &#x3E; 0. Then the same

result as (I) holds valid, where oo for n =1, 2 and a(n) _ (n + 2)/(n - 2)
3.

(B) [22 ]. Suppose that  p  and ~, &#x3E; 0. Then the same result

as (III) holds valid in the space where ~) = (~ + 2 + ~/~ +12~ + 4)/2~.
(C) [9 ]. Suppose that 1 + (4/n)  p  3 and ~, &#x3E; 0. Then the

same result as (III) holds valid in the space (= ~l,o).

(D) [21 ]. Suppose that 1 7? ~ 1 + (2/n) and ~, &#x3E; 0. Then the same

result as (IV) holds valid.

Y. Tsutsumi-K. Yajima [2~] showed (A) by using the following pseudo-
conformal conservation law

and the following transform C

(B) has been proved 0 by Y. Tsutsumi [22] by using (1. 7), (1. 8) and o the
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191SCATTERING THEORY FOR HARTREE TYPE EQUATIONS

space-time estimates obtained by Strichartz [20 ] (see also Ginibre-Velo [9 ]).
Ginibre-Velo [9] have shown (C) by making use of the Morawetz estimate
instead of ( 1. 7) (see also Brenner [2 ] [3 ]). Y. Tsutsumi has shown (D)
by using (1.8) and a contradiction argument (see also Strauss [17] and
Barab [7]).

Finally we introduce some notations which will be used in this paper.
Let a be a multi-index, a = (a 1, 
and D" = ~03B111 ... == xil ... xnn, where ~j = (j = 1, 2, ... , n).

= denote the usual Sobolev spaces, namely, the completion

of with respect to ~f~m,p = II where

We put

(see, e. g., [12 ]). For any interval I and any Banach space with the

C(I ; B) denotes the space of B-valued continuous functions
on I. Positive constants will be denoted by C and will change from line
to line. If necessary, by C(*, ... , *) we denote constants depending on
the quantities appearing in parentheses.

2. PRELIMINARIES

We summarize some useful lemmas in this section.

LEMMA 2.1 (the Gagliardo-Nirenberg inequality). - Let be any
numbers satisfying 1  q, r ~ oo, and let j, m be any integers satisfying
0 ~ /  m. Then for any u E Hm,r n Lq

where ( 1 /p) _ (//m) + a(( 1 /r) - (m/n)) + ( 1 - a)/q for all a in the interval
(//~) ~ ~ ~ 1 with the following exception : ifm - j - (n/r) is a nonnegative
integer, then (2.1) is asserted for a = and where M is a constant depend-
ing only on n, m, j, q, r, a.
For Lemma 2.1 see, e. g., Friedman [5 ].

Vol. 46, n° 2-1987.



192 N. HAYASHI AND Y. TSUTSUMI

where

where

For Lemma 2 . 2 see, e. g., Ginibre-Velo [6 ], and for Lemma 2 . 3 see,

e. g., Strichartz [20] and Ginibre-Velo [9 ].

where

and M is a constant depending only on y, p, q, n.
For Lemma 2 . 4 see, e. g., Stein [l6 ].

LEMMA 2 . 5. 2014 Let 0  b  1, a + b &#x3E; 1 and f(t) E [R~) satisfying
the following inequality

Then

For Lemma 2. 5 see, e. g., N. Hayashi-M. Tsutsumi [77].

Proof 2014 We have by Holder’s inequality and Lemma 2.4

Annales de l’Institut Henri Poincaré - Physique " theorique "



193SCATTERING THEORY FOR HARTREE TYPE EQUATIONS

We again use Holder’s inequality and Lemma 2.4 to obtain

(2. 2) follows from (2. 3) and (2.4). Q. E. D.

LEMMA 2 . 7. 2014 Let 0  y  = 4n/(2n - y), q’ - 4n/(2n + y),
r = 2n/(n - y) and G &#x3E; 0 be sufficiently small. Then

for any Ul, u2 and u3 having finite right hand sides.

Vol. 46, n° 2-1987.



194 N. HAYASHI AND Y. TSUTSUMI

Proof 2014 We note (1. 9). We put vj = e-i|x|2/4tuj. A simple calculation
shows

By virtue of Holder’s inequality, Lemma 2 .1 and Lemma 2 . 4 the R. H. S.
of (2.9) is dominated by

where pj and satisfy

3

From (2.11) and (2.12) we see. that = 1. Indeed we have from

(2 .11 ) and (2.12) , j=l

3

Hence we have aj(m) = 1. Therefore (2.10) shows (2 . 6). The same
j= 1

argument as in the proof of (2 . 6) yields (2 . 5). We next prove (2 . 7) and (2 . 8).

Annales de l’Institut Henri Poincaré - Physique theorique
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In the same way as in the proof of (2.6) we have

where pj and bj(m)satisfy

3

We see that b,(~) = 1. Indeed (2 .14) and (2 .15) show

Vol. 46, n° 2-1987.



196 N. HAYASHI AND Y. TSUTSUMI

3

Hence we have 1. (2 . 8) follows from (2.13). The same

j= 1

argument yields (2. 7). Q. E. D.

3. EXISTENCE AND NON-EXISTENCE
OF SCATTERING STATES

In this section we will consider for what value of y the solution of

( 1.1 )-( 1. 2) has the scattering states satisfying ( 1. 6) and for
what value of y the solution of (1.1)-(1.2) does not.
Our main theorem in this section is as follows.

THEOREM 3. 1. 2014 Let ~ &#x3E; o.

1) Suppose that 1  y  Min (4, n): Then, for there exist

unique scattering states M± E L 2 satisfying

where u(t) is a solution of ( 1.1 )-(1. 2) with U( - t )u(t) in C(f~ ; ~ 1,’ ).
2) Suppose that 0  03B3 ~ 1. Then, for any non-zero 03C6 ~ 03A31,1 there do

not exist any scattering states M± E L 2 satisfying (3 .1).
REMARK 3.1. 2014 When y = 1, n = 3 and ~, &#x3E; 0, Glassey [7~] ] showed

the non-existence of scattering states M~ 
(t ~ :t oo). Theorem 3.1 (2) shows the non-existence of any scattering
states in L2.

Proof of Theorem 3.1. - We prove Theorem 3.1, following [22] ]
and [23]. By  and / we denote the Fourier transform and the inverse
Fourier transform of f, respectively.
Our proof is based on the following observation : Since the asymptotic

profile of the free evolution U(t) f is given by exp (i ~ x ~2/4t) f (x/t)
and (1.1) is transformed by (1.8) into the new equation

the relation (3.1) is equivalent to the existence of the strong limits

(see, e. g., [22, Lemma 2.8] ] and [23 ]). We define the operator R by

Annales de Henri Poincare - Physique " theorique "



197SCATTERING THEORY FOR HARTREE TYPE EQUATIONS

We note that 1(1 u ~ 12) = 12. Now we consider only the case ~-~+00,
since the case t -~ - oo can be treated in the same way.

1) We first prove (1). The calculations below are rather formal, but
they can be easily justified by the regularizing technique of Ginibre-
Velo [6-9 ]. We multiply (3 . 2) by and take the imaginary part to obtain

If 0  y ~ 2, we multiply (3 . 2) by and take the real part. This
leads us to

if 0  y ~ 2. If 2  y  Min (4, n), we multiply (3 . 2) by vt and take the
real part. This leads us to

if 2  y  Min (4, n). By (3 . 5-3 . 7), Lemma 2. 4 and the Sobolev imbedding
theorem we conclude that if 0  y ~ 2,

for t E (0, 1] ] and that if 2  y  Min (4, n),

for te(0,l], where C = C(n, y, ~ ~ v( 1 ) ~ ~~ 1, ~). Let .pEH1,2. By (3 . 2) we have

for 0  s, t  +00. Since y - 2 &#x3E; - 1 for 1  y and H1,2 is dense in L2,
(3.8-3.10) show that the weak limit

exists in L2. Now we choose 03C8 = in (3.10). Then,

Vol. 46, n° 2-1987.
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for 0  s ~  +00. Here we have used the following inequality :

If 1  y ~ 2, by (3.8) we have

Let s ~ + 0 in (3.14) and use (3.11) to obtain

where C=C(n,7,!~(l)!b..). For 2  y  Min (4, n), we obtain (3.15)
with replaced by t in the same way. Therefore,

as t ~ + 0. This completes the proof of ( 1 ).

2) We next prove (2). We assume that for some non-trivial solution v(t)
in C«O, + of (3 . 2) there exists a satisfying (3 . 3) and
we deduce the contradiction. can be represented as follows :

for 0  t, r  +00. (3 . 3) and (3 . 8) give us

Ri/2~)j2_Ri/2~~o)~ weakly in L2 (t ~ + 0) , (3.18)

since for any 03C8 E 

where  is a sufficiently small positive number.
In addition, (3.3) and (3.5) give us

Annales de l’Institut Henri Poincaré - Physique theorique



199SCATTERING THEORY FOR HARTREE TYPE EQUATIONS

Therefore, we can choose E ~(tR") satisfying

We consider the inner product between (3.16) and and take the
real part. This leads us to

Now we show that

For that purpose, we consider

By K1, K2 and K3 we denote the first term, the second term and the
third term at the R. H. S. of (3 . 23), respectively. By (3 . 8) and Lemma 2.4
we have

Since we have by (3.3) and Lemma 2.4

we obtain by (3.18)

In the same way as (3.24) we have

(3.24)-(3.26) show (3.22).
It follows from (3.22) that there exists 0  )  1 such that

Vol. 46, n° 2-1987.
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Therefore, by (3.21) and (3.27) we have

Since y - 2 ~ - 1 for 0  y ~ 1, the R. H. S. of (3 . 28) tends to + 00
as r ~ + 0. This contradicts the boundedness in L2 of v(t). Q. E. D.

4. SCATTERING THEORY
FOR SMALL DATA IN 

In this section and the next section we let q = 4n/(2n - y), q’ = 4n/(2n + y),
r = 2n/(n - y) and r’ = 2n/(n + y), unless specified otherwise. In this

section we will give the global existence theorem for the Cauchy problem
( 1.1 )-( 1. 2) for small data which yields the scattering theory for small
data. For convenience we introduce the following Banach spaces Bym
and by

where and the closed balls and by

THEOREM 4 .1. 2014 Let ~ E fR. There exists an s &#x3E; 0 depending only on n,
y and 03BB such that if 03C6 E = { t/J E 03A3l,m; ~03C8~03A31,1 ~ G }, then the following
results hold :

1) Suppose that 1  y ~ (4/3). Then there exists a unique solution u
of ( 1.1 )-( 1. 2) such that

Annales de l’Institut Henri Poincaré - Physique theorique



201SCATTERING THEORY FOR HARTREE TYPE EQUATIONS

2) Suppose that (4/3)  y  Min (4, n). Then there exists a unique solu-
tion u of ( 1.1)-( 1. 2) such that

Proof. 2014 We may assume t &#x3E; 0. We consider the following linear Schro-
dinger equations

We define the operator S formally v = Sw.

1) We prove (1). We first construct the solution of (1.1)-(1.2) in B~
by the contraction mapping principle. We have by Lemma 2.2, (2.7),
(2.8) and the integral equation corresponding to (4.1)-(4.2)

where == II 11;+£1 w(s) 11;-£1’ and 81 &#x3E; 0 is sufficiently
small. Here we have used the fact that D" and J~ commute with ~/~ + ~
(see [12] [14] [15] and [24]). Using Lemma 2.1, we have for p &#x3E; 0 and

w ~ B1,11,03C1

and

where p is a small positive constant to be determined later. Therefore we
obtain from (4.5) and (4.6)

In the same way as in the proof of (4.7) we have

and

Vol. 46, n° 2-1987.
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where E2 = sj 1 - -). (4.3), (4.4) and (4.7)-(4.9) show

and

Now we let wl, and v1 = SW1, v2 = Sw2.
We put V = v2 and W = W1 - w2. Then V satisfies with zero

initial condition :

In the same way as in the proof of (4 .10)-(4 .11 ) we have by (4.12)

and

From (4.10), (4 .11 ), (4 .13 ) and (4.14) it follows that

and

Now we choose f; and p so that

Then (4.15) and (4.16) imply that S is a contraction mapping from
to itself. This implies that there exists a unique solution u(t) of (1.1)-(1. 2)

such that We next prove The calculations below are
rather formal, but they can be easily justified by the regularizing technique.

Annales de l’lnstitut Henri Poincaré - Physique theorique
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In the same way as (4.10) and (4 .11 ) we easily obtain by ( 1.1 )-( 1. 2)

and

By (4.17), (4.18) and Gronwall’s inequality we have

This completes the proof of ( 1 ).

2) We next prove (2). In the same way as in Part ( 1 ) we first construct
the solution of ( 1.1 )-( 1. 2) in by the contraction mapping principle.
(2 . 5), (2 . 6), the integral equation corresponding to (4 .1 )-(4 . 2) and
Lemma 2. 2 yield

For p &#x3E; 0 and we have by the same argument as (4. 7)

Vol. 46, n° 2-1987.
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where p is a small positive constant to be determined later. We apply (4. 21),
Lemmas 2.3-2.4 and Holder’s inequality to (4.19) to obtain

Similary we have by (4.20) and (4.21)

By the integral equation corresponding to (4 .1 )-(4 . 2) we have

Using Lemma 2.2 and (2.5) we can estimate the second term of the
R. H. S. of (4. 24) as follows

Annales de l’Institut Henri Poincaré - Physique theorique
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Applying (4.21), Holder’s inequality and Lemma 2.4, we see that (4.25)
is dominated by

Hence we have by (4.25) and (4.26)

We have by (4.23) and the same argument as in the proof of (4.27)

Let Wand V be defined as in (4.12). In the same way as in the proof
of (4.22)-(4.23) and (4.27)-(4.28) we have

and

Vol. 46, n"2-1987.
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We have by (4.22), (4.23) and (4.27)-(4.32)

and

If we choose 8 and p so that

(4.33) and (4.34) show that S is a contraction mapping from B2;p to
itself. This implies that there exists a unique solution u(t) of (1.1)-(1.2)
such that In the same way as in the proof of (4 . 22)-(4 . 23) and
(4.27)-(4.28) we easily have

and

(4 . 35)-(4 . 38) imply u(t) E B2~‘ . Q. E. D.

REMARK 4.1. 2014 From the proof of Theorem 4.1 and the uniqueness
of solutions in of ( 1.1 )-( 1. 2) we can easily see that if the initial datum ~
is in E~~m~(l, then the solution u(t) in of (1.1)-(1.2) belongs to
B2m for (4/3)  y  Min (4, n) and to B1m for 1  y ~ (4/3).

In the same way as in the proof of Theorem 4.1 we have the following
results.

THEOREM 4 . 2. Suppose that 1  y  Min (4, n), and There
exists an 8 &#x3E; 0 depending only on n, y and ~, such that the following results
hold valid ; 

.

1-a) For any u + there exists a unique 03C6 ~ 03A3l,m such that

where u(t) is the solution of ( 1.1 )-( 1. 2) with U( - in 

1-b) For any M- the same result as above holds valid with + 00

replaced by - oo in (4.39).

Annales de Henri Poincaré - Physique theorique
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2) For there exist unique M± such that the solution

u(t) of (1.1)-(1. 2) with U( - in C(!R; E~°m) satisfies

Proof 2014 We consider the following integral equation :

(4.40) is the integral version of the initial value problem of (1.1) with
the initial data given at + oo. In the same way as in the proof of Theorem 4 .1
we can prove that there exists an G &#x3E; 0 depending only on n, y and /). such
that for any u + (4 . 40) has a unique solution u(t) satisfying (4 . 39)
in if 1  y  (4/3) and in B2m, if (4/3)  y  Min (4, n). Then, we put

This completes the proof of 1-a). 1-b) and 2) can be proved in the same
way. Q. E. D.

Remark 4. 2. 2014 Theorem 4. 2 and the proof of Theorem 4.1 imply that
sufficiently small s&#x3E;0 the wave operators W± : U:t -~ ~ and W; 1 : ~ -~ M~
are well defined as mappings from into E2m and are one-one and conti-
nuous from into E2m. Accordingly, for sufficiently small ~ &#x3E; 0 the

scattering operator S = W 1 . W - is well defined as a mapping from
into and is one-one and continuous from into 

COROLLARY 4.1. Suppose that the assumptions of Theorem 4.1 hold
valid with l, m &#x3E; j~/2] + 1, where [~/2] denotes the largest integer smaller
than or equal to n/2. Then the unique solution u(t) of (1.1)-(1. 2) constructed
in Theorem 4.1 satisfies

Proof 2014 By Lemma 2.1 we have for any u E B i m

and

where a satisfies ( [n/2 + 1)a = n/2. Hence (4 . 42) follows from (4 . 43)
and (4. 44) immediately. Q. E. D.

Vol. 46, n° 2-1987.
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5. SCATTERING THEORY
FOR ARBITRARY DATA 

In this section we will prove the existence of the wave operators defined
in and asymptotic completeness for (4/3)  y  Min (4, n) and ~, &#x3E; 0.
Our proof is based on the conservation laws of L2-norm and of the energy,
and the pseudoconformal conservation law. We first give the global exis-
tence theorem for the Cauchy problem (1.1)-(1.2) for arbitrary data in

THEOREM 5.1. Suppose that ~. &#x3E; 0, and (4/3)  y  Min (4, n).
Then, for any ~ E there exists a unique solution u of (1.1)-(1. 2) such
that

Proof 2014 By [6]- [8] ] there exists a unique solution u(t) of (1.1)-(1. 2)
satisfying 

_ .

(see, e. g., [7, § 2 and § 3 ]). By Remark 4.1 it is sufficient to prove that

II U( 2014 is uniformly bounded for any t in ~. For any t E [R, Ginibre-
Velo [7] ] showed that satisfies

We have by (2.3), Lemma 2.1 and (5.1)-(5.2)

Next we prove

Since it is clear that (5 . 5) holds valid in the case of 2 ~ y  Min (4, n),
we only give the proof in the case of (4/3)  y  2. We only consider the
case of t &#x3E; 0. Differentiating (5.3) with respect to t, we obtain

Annales de l’lnstitut Henri Poincare - Physique " théorique
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Multiplying (5 . 6) by t’’ - 2, we have

Integrating (5. 7) with respect to t, we get

By (2. 3), (5 .1)-(5 . 3) and Lemma 2.1, the R. H. S. of (5 . 8) is dominated

by 111:1,1). Hence we have

We consider the following integral equation

This is the integral version of the initial value problem ( 1.1 )-( 1. 2).
Taking the Lq norm and using Lemma 2.2, Lemma 2.6, Lemma 2.1 and

(5.9), we have ,..

By virtue of Lemma 2.4 we obtain

Using Lemma 2.1, (5.9)-(5.10) and (5.13), we have
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and we obtain by (5.4)

(5.14) and (5.15) imply

Since the operator J03B2 commutes with i~/~t + 0, we have from (1.1)-(1. 2)

Multiplying (5.17) by integrating with respect to x and taking the
imaginary part, we get

We apply Holder’s inequality, Lemma 2.4 and (5.16) to the R. H. S.
of (5.19) to obtain

Since 2y/(4 - y) &#x3E; 1 for y &#x3E; 4/3, (5.20) and Gronwall’s inequality yield

We also obtain (5 . 21) for t  0 in the same way. Therefore, Theorem 5.1
follows from (5.4) and (5.21). Q. E. D.

THEOREM 5.2.2014 Suppose that ~, &#x3E; 0, (4/3)  y  Min (4, 
1-a) For any u + there exists a unique 03C6 ~ 03A3l,m such that

where u(t) is the solution of (1.1)-(1. 2) with U( - in 

1-b) For any M- the same result as above holds valid with + 00
replaced by - oo in (5.22).

2) For there exist unique U:t such that the solution

u(t) of (1.!)-(! 2) with U( - in C(tR; satisfies
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Proof 2014 The theorem follows from the same argument as in the proof
of Theorem 4 . 2 and the is uniformly bounded as
a function of t, which is shown in Theorem 5.1. Q. E. D.

COROLLARY 5.1. 2014 Under the assumptions of Theorem 5.2, the wave
operators and the scattering operator constructed in Theorem 5.2 are
homeomorphisms from to 

Proof - 1-a) and 1-b) of Theorem 5.2 implies the wave operators
W:t : Mj; -~ (~ are well defined in 

(2) of Theorem 5 . 2 implies that Range (W + ) = Range (W-)=E~.
Therefore W± are bijections from E~ onto E~~m. Accordingly, the scattering
operator S = W+ 1 W - is well defined in and a bijection from 
onto EI’m. The continuity properties ofW+, S, W~ 1, S -1 are proved by
the fact that the nonlinear term f ( ~ u ~ 2)u is infinitely differentiable with
respect to u and u. Q. E. D.

COROLLARY 5.2. - Suppose that the assumptions of Theorem 5.1
hold valid with l, m &#x3E;- [n/2 ] + 1. Then the unique solution u(t) of ( 1.1 )-( 1. 2)
constructed in Theorem 5.1 satisfies

Proof Corollary 5.2 is proved in the same way as in the proof of
Corollary 4.1. Q. E. D.
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Note added in Proof 2014 After this paper was completed, Ginibre [25 ]
pointed out to the authors that if the nonlinear function f ( ~ u p) in (1.1)
satisfies the following three assumptions :

for any V1, v2 E L2 E L2 n L 00, where K(s) is a nonnegative increasing
function defined on [0, (0),

where the transform C is defined in (1.8),

(3) 2)v = 0. is equivalent to v = 0,
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then the same result as Theorem 3 .1 (2), that is, the non-existence of scat-
tering states holds for all non-trivial solutions in C(tR; L2) of (1.1) satisfying
the L2 norm conservation law. Under suitable assumptions on f, for any
~ E L2 we have a solution in L2) of (1.1)-(1. 2) satisfying the L2
norm conservation law (see, e. g., [2~] and [27 ]). Under the assumption (2)
the inverse transform of (1. 8) translates a solution in C([R; L2) of (1.1)
into a solution = (C -1 u)(t) in C(~B{0};L~) of the new equation :

and the transform (1.8) conserves the L2 norm. The assumptions (1)-(3)
ensure that the proof of Theorem 3.1 (2) can be directly applied to the
solution in C(tRB(0};L~ of (*) with the L2 norm conservation law.
The assumptions ( 1 )-(3) cover the following cases.
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