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ABSTRACT. — Point-like fields are considered as elements of the quasi
x-algebra £(9, 2'). This approach allows to recover in natural way a
necessary and sufficient condition for the existence of a field A(x) associated
to a given Wightman field A(f).

RESUME. — Les champs localisés en un point sont considérés comme
¢éléments de la quasi x-algébre £(2, 2'). Cette approche permet d’obtenir
de fagon naturelle une condition nécessaire et suffisante pour I’existence
d’un champ A(x) associé & un champ de Wightman donné A(f).

1. INTRODUCTION

One of the most unpleasant features in the mathematical description
of quantized fields is that the point-like field A(x) cannot be described as an
operator over some state space. Thus it turns out that a satisfactory mathe-
matical approach to quantum fields must make use of more singular objects.
In a previous paper [/] one of us et al., following some idea of Haag [2],
proposed a definition of field at a point as a mapping from the Minkowski
space-time M into the weak sequential completion C, of the algebra of
unbounded operators .C, (= £ *(2)). This corresponds to the heuristic
approach where the field at a point is a limit of observables localized in
d shrinking sequence of space-time regions.
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176 G. EPIFANIO AND C. TRAPANI

C,-valued fields allowed to give a precise mathematical meaning to rela-
tion of the form

@) Alf) = J d*xfAX)  feZM)

where #(M) is the Schwartz space of fast decreasing C*-functions on M.

In fact, it is proved in [/] that, under suitable assumptions, a Wightman
field is presentable in the form (1).

In [3] Fredenhagen and Hertel considered a point-like field as a sesqui-
linear form on an appropriate pre-Hilbert space 2 which fulfils an high
order energy bound.

As proposed by several authors [see reff. from 4 to 8] we consider here
the field as an element of £(9, 9’), where L(2, P') is the set of all linear
continuous maps from 2 endowed with a topology finer than the Hilbert-
norm into its topological dual 2’. In particular we consider 2 = 2*(H),
where H is the energy operator. In this case #(9, 2') is a quasi-algebra [9].

Starting from the notion of £(2, @’)-valued field, for & as above, we
show first that integrals of the form (1) always converge and that energy-
bounds of the kind considered in [3] are consequences of the definition
itself.

Following this approach the theorem 4 of [I] can be extended to a more
suitable domain and completely inverted. Moreover some propositions
proved in [3] are given here under different assumptions which appear
to be in some sense, more natural.

2. MATHEMATICAL FRAMEWORK

Let us first recall some known facts about sets of operators.

Let 2 be a pre-Hilbert space and s its norm-completion. By C,
(= £7(2)) we denote the set of all operators in 2 which have an adjoint
in 9.

In Cy it is possible to introduce the 9-weak topology defined by the
set of seminorms

A - |AdY)| o ¥e

Cy is a topological *-algebra, in general not complete. We call C,, its
92-weak sequential completion.

In recent years some partial algebraic structures, such as partial =-alge-
bras [I0], quasi *-algebras [9], have been studied by several authors. In
this paper a remarkable role is playied by quasi *-algebras.

A quasi *-algebra is a pair (7, &/,) where .o/ is a linear space with invo-
lution A —» A" and &/, < </ is a *-algebra such that both the left- and
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QUASI *-ALGEBRAS VALUED QUANTIZED FIELDS 177

right-products of elements of &/ and elements of ./, are defined in .
If a topology t on .o is given such that both the right- and left-multiplica-
tions are continuous and 7, is dense in o, & is said to be a topological
quasi *-algebra with distinguished algebra «7,.

We are interested, in particular, to the set of operators £(2, 2’) which
is, for special 9, a quasi *-algebra.

Let 9 be a pre-Hilbert space, endowed with a topology t stronger than
the norm-topology, 2’ its topological dual. Thus we get the familiar triplet

@eH <D

which is called « rigged Hilbert space ». We will consider on 2’ the strong
dual topology t'.

Following Lassner [9], we denote by £(2, 2’) the set of all continuous
operators from 2 [t] into 2’ [t']. The equation (A* ¢, ¥) = (AY), @) , Y €D
defines an involution in #(2, 2’), which becomes so a *-invariant linear
space.

If T is any self-adjoint operator in #, the set 2 = 2%(T) = mD(T")
n>0

endowed with the t-topology defined by the set of seminorms
¢ - [IT¢ll neN

provides a very simple example of the situation discussed above. In this
case D [tr] is a reflexive Fréchet space (and hence barrelled). For this 2,
Cy S L(2,2’) and the latter is a quasi »-algebra. If we endow £(2, 2')
with the t4-topology defined by the seminorms

A — sup |(Ad,¥)], 4 bounded in 9 [t1]
P peM

then C, is dense in (2, 2’) and thus £(2, 2’) is a topological quasi
x-algebra [9].

In general, to each element A € #(2, 2') it corresponds a sesquilinear
form on 2 which is, as is readily checked, separately continuous with
respect to t. If Be Cy then the product AB is always defined in the sense
of composition of maps, whereas the product BA can be defined in the
sense of forms. Neverthless both AB and BA are not, in general, elements
of L(2,9'). For reflexive 9, however, we get AB, BA e ¥(2, 2’) and
L(2, 2') is a quasi x-algebra with distinguished algebra C,. If, moreover,
9 isaFréchetspace(e. g. 2 = 2°(T)) the correspondence between £(2, 2')
and separately continuous sesquilinear forms is an isomorphism of linear
spaces, because all separately continuous sesquilinear forms are continuous.

From now on, we will consider the case where 9 = 2®(T) for some
self-adjoint operator T in s and prove some propositions about £(2, 2’).

PROPOSITION 1. — Let 2 = 2°(T) [tr]. Then L(2, 2’) is sequentially
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178 G. EPIFANIO AND C. TRAPANI

complete with respect to the &-weak topology defined by the set of semi-
norms

A - [ApY)|  SYeD.

Proof. — First notice that 9’ is 6(2’, Z)-quasi complete since it is the
dual of a barrelled space ([/7] 23 n. 1 (3)).

Let A, be a weak Cauchy sequence in #(2, 2’) i.e.
(An — An)od,¥) - 0 Vo, yeg.

Then the sequence { A, } is 6(2’, 9)-Cauchy in &', therefore there exists
an element ® € 9’ such that

(Auh,¥) = (@) WWeD.

Put ® = A¢; in this way we define an operator which maps 2 into 2".
Taking into account that the operation of taking adjoints is continuous,
we can also define the operator A*. Therefore A is continuous from 2
with the o(2, 2')-topology into 9’ with the 6(2’, 9) or equivalently with
respect to the Mackey topologies ©(2, 2’) and 1(2’, 9). Since 9 is metrizable
the ©1(2, 2’)-topology coincides with the topology ¢+ ([//], §21 n. 5 (3));
on the other hand, for the reflexivity of 9, the topology ©(2’, 9) coincides
with 7 ([/1] §23 n. 3 (1)).

PROPOSITION 2. — In the hypothesis of the previous proposition, £(2, 2')
is isomorphic to C,.

Proof. — Since 9 = 2*(T), Cy = L(2, 2') thus it is enough to prove
that C, is dense in L(2, 7).

LetT= J 2dE(A) be the spectral decomposition of T ; put P,= E(n+1)—E(n)
0

n=0,1,...; we get thus a decomposition of 7# in mutually orthogonal
subspaces #,. Each of the #,’s is contained in & because if f € # the
vector P, f is analytic for T.

On the other hand each P, can be extended by continuity to the whole
of 2’ and we get an operator P, : 9’ —» #,. Vk,leN the operator
P,AP,, with A e X(2, ') is a bounded operator of Cy, (see [12]). Let

A = zz P.AP,. We will show that VA € #(2, 2’) the sequence A,
k=01=0
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defined in this way, converges to A.

naesi= () rarenf) <
Sy Y- {s0 ) o T
AB e gimaH o Zrmli koo

PROPOSITION 3. — Let 9 = 9*(T) with T > 1. If A is a sesquilinear
form in 92, then A € #(2, 2') if, and only if, there exists a natural number k
such that T"*AT* is defined as a bounded operator in 2.

Proof. — The operator T~*AT ~* is defined since T~'9 = 2. Now it is
enough to prove that T"*AT ~*is bounded if, and only if A is a t;-continuous
sesquilinear form. But

[TTAT ", p) | < I ¢ 1l 1]l

is clearly equivalent to
[(Ad, )| < 1T D Il I T ||

PROPOSITION 4. — Let 9 = 9®(T) with T > 1 and A € C,. Then there
exists a natural number k such that AT ¥ is defined as a bounded operator
in 2.

Proof. — Let Ae Cy; then A is 6(2, 2')-continuous ; then its graph G4
is weakly closed in @ x 2. It follows that G, is also closed in 2 x 2
with respect to the product topology induced on 2 x 2 by the t-topology

of 9. Therefore, by the closed graph theorem, A is t-continuous. Then
VreN there exists ne N such that

ITAGI <TGl VoeD.
This is in particular true for r = 0; taking ¢ = T~ ") we get

AT <ll¥ll+ WeD.
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3. #(9, 2')-VALUED FIELDS

DEFINITION 5. — An (9, 9')-valued field is a mapping from the Min-
kowski space-time M into £(2, 2’)

A:xeM - Ax)e X(2, 2)

which satisfies the following axioms:

1) Translation invariance: There exists in # a strongly continuous
representation U of the group of the translations in M such that Yae M
U(a)2 < 9 and

U(a)A(x)U(— a) = A(x + a)

(where the product is intended in the sense discussed in §2).

2) Existence (and uniqueness) of a translation invariant vacuum: There
exists a unique vector Qe 2 such that Vae M

U@ =Q
(Q is unique up to a constant phase vector).

3) Spectral condition: The eigenvalues of the energy-momentum ope-
rator (of the theory) P” lie in or on the plus cone.

We call Wightman field what is in general understood with these words
(see, for instance, [/3]) and suppose for this field the following axioms
to be verified:

W1) Translation invariance
W2) Existence of a translation invariant vacuum
W3) Cyclicity of the vacuum vector.

From now on we choose 2 = 2*(H) where H = P is the energy ope-
rator and we consider in 2 the ty-topology.

As consequence of Proposition 2, in this case, the two approaches with
L(9, 9')-valued fields and ég-valued fields may be regarded as equivalent.

PROPOSITION 6. — Let x — A(x) be an #(2, 2')-valued field with
2 = 2°(H), let R = (1 + H)™'; then there exists a natural number k
such that R*¥A(x)R* is defined as a bounded operator in 2. (H-bound
condition).

The proof follows immediately from Proposition 3 taking into account
that for the spectral condition H is a self-adjoint positive operator in .
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ProposITION 7. — Let x — A(x) be an £(2, 2')-valued field with
2 = 2*(H) then the integral

AN, ¥) = Jd“xf (x)AX)9, ¥)
converges for all ¢,y e P and defines for each f e ¥(M) an operator
of L(9, D).

Proof. — Since A(x)e L(2, 2’) for each ¢ € 2 the form (A(x)o, ¥) is
an (anti)-linear continuous form on 2. Thus there exists an integer n such
that

[A(¥)p, ¥) | < [|HY ||
where n may depend on xeM and on ¢ € 9. But
[(AX)$, ¥) | = [ (AO)U(— x)p, U(— x)y) | < [|H'U(—= x)y || = || H ||

therefore n does not depend on x.

I(A(N)o, ¥)| =

fd“Xf (NAX)$, l//)' < Id“xl FEIAF, ¥)| <
< IIH"tllllfd‘*XIf(X)l <.

Thus the integral exists in the sense of the weak convergence. The above
inequality also shows that A(f)pe2’. We will now prove that
A(f)e L(2, 2') i.e. that A(f) maps continuously D [ty] into 2'[ty].
Now, since A(x)e £(2, 2') it is continuous from 2 into 2’ ; hence for
each bounded set .# in & there exists kK > 0 and ne N such that

sup | (A(), ¥) | < k|| H"$ |
yeM
then

sup | (A(f)o, )| < sup Jd“x I ‘f () AOU(— x)¢, U(— x) | <
yet yet

< Jd“x )] sup [(AO)U(= x)¢, U(— x) | < k|| H"9 || J‘d“x [f(X)].

Thus A(f) is also continuous.

At this stage of our discussion we know that the « smeared » field asso-
ciated with an (2, 2')-valued field, with 2 = 9°(H), is also L(2, D)-
valued. But what is usually required is that A(f)e Cy Vf € (M)

In [3] Fredenhagen and Hertel proposed the idea of selecting point-
like fields A(x) in a class F satisfying the requirement that R*A(O)R¥, with
R = (1 + H)™!, be bounded for some natural k and they proved that in
this case the A(f)’s are operators of C,. In our approach, because of Pro-
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position 6, if 2 = 2®(H), this H-bound is a natural consequence of the
definition itself. Therefore, in this case all ,Sf(@ 9")-valued fields are ele-
ments of the class F.

We will prove here that the H-bound condition is not only sufficient
but also necessary. Actually in [3] a sort of necessary condition was proved
but under stronger assumptions ([3], relation 2.6).

ProrosITION 8. — Let #M)a f — A(f)eCy with 9 = 2°(H) a
Wightman field ; then there exists a natural k (independant of f) such
that A(f)R* is a bounded operator V f € #(M).

Proof. — We procede by absurd, showing that if Yk > O there exists
an f, € (M) such that A( f,)R*is unbounded whereas A(f;)R** ! is bounded,
then it is possible to find a sequence { , } of real numbers and a sequence
{ @, Y } of pairs of vectors of 2 with || @ || = || |l = 1 such that the

series
00

Zakfk
k=1

converges to an element f e (M) and such that Yne N

> 2"

. Z(akA(fk)R”% V)
k=1 :
and .
l (an+rA(.f;l+r)Rn¢n’ ll’,,) I < 2_
If such a sequence exists, taking into account that the map
feSM) — (A(f)e, ¥)

is, Yo, ¥ € 9, a tempored distribution, one has

(AR @y, )| > ‘ 2 A A(fi)R"Pn, Y1) — Z(an+rA(f;l+r)Rn(pm V)| >
2"—1.

Let ny be the smallest number such that A(f)R™ is bounded (Prop. 4);
taking into account that || R || < 1 we get for n > n,

TA(/R™ || = [| R®AT(f) | = | R"AT(f) || = | (@n, R"AT (W) | =
= |(A(f)Rn(pn’ '//n)l = 2” - 1
which is a contradiction.

Let us now prove the existence of the sequences { a; } and { @y, ¥y } as
described above.
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We denote with || ||, the k-th seminorm defining the topology of (M)
and which may be supposed to increase with k.

To begin with, take n = 1.

The functional (A(f1)Re,y) is unbounded then VM > O there exist
two vectors @y, Y, with ||, || =||¥, || =1 such that |(A(f;)Re4, ¥1)| >M.
We suppose M > 2|| fi |l;e. We choose a number a}l such that

Mi<al <l all)t
and a sequence { ai ., },»; such that
ai+r < min { (” fl +r ”1+rexp (r + 1))-1’2—r/| (A(fl +r)R(P1’ l//1)‘ }

then we get
I(a%A(fl)lealljl)' >2

and
I(a}wA(er)R(Pu '/’1)' <277

We put a; = al.
Following an analogous procedure, for each n, we put

n—1
)y
k=1

and choose a number M > max { (2" + C,)|| f,|l.exp (n), (2" + C,)/ai}.
Jj<n

The functional (A(f,)R"@, y) is unbounded ; then there exist two vectors
@ns Yn€ D With || @, || = || Yn |l = 1 such that | (A(f,)R"@,, ¥s) | > M; thus
we can choose a number af with

Q2"+ CM ™ <an < (Il fullexp (n))~*
and a sequence dj,,, r = | with
duir <IN (| fusrllnsr€Xp (4 )7L 27 H(ACfus )R, W) |}

then we get

\ <ZakA(ﬁc)Rn(Pm l/h.) + (@ASIR" P, ) | =
k=1 n—1
- I (ZakA(fk)Rn(pm ll’n) + a: l (A(f;t)Rn(Pm lpn) | > 2"
and =

| (a:+fA(ﬁl+r)R"(pn5 l/’n) | <27
We put a, = min { a},aZ, ...,a }.
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The sequence Zak f, for the above choice of the a;’s is a Cauchy
k=1
sequence in (M) and then it converges to an f € #(M); the other require-
ments are, also fulfilled and thus the theorem is proved.

PROPOSITION 9. — Let 2 = 2°(H) and f — A(f) a hermitean (scalar)
Wightman field satisfying the axioms W;, W,, W3, then in order that
there exists an L(2, @’)-valued field ye M — A(x)e L(2, 2') such that

ViesM)  (AN)d.¥) = Jd“xf ()AX)D,Y) Vo, YeD

it is necessary and sufficient that the sesquilinear form R*A(0)R¥ is bounded
for some k, where A(0) = U(— x)A(x)U(x).

Proof. — The sufficient part follows from the proof given in [3] taking
into account that £(9, 2')-valued fields belong to the class F.

We prove now the necessity.

Let us call 9, the linear manifold of & which is obtained by applying to
the vacuum Q the algebra generated by the set of operators { A(f)| feS(M) }.
Then, by Theorem 4 of [/] one finds a sesquilinear form A(x) such that
VfeSM)

AN, ¥) = Jd“xf (xNAX)S,¥) Vo, e Ds.

Now, because of Proposition 8 there exists a natural number k (inde-
pendant of f) such that R*A(f)R¥ is bounded V f € #(M) and taking into
account that in the proof of Theorem 4 of [/] A(x) is obtained as a limit
of (A(f,)®, ¥) where f, — 6, in the topology of &' (M) we get, for x =0
and ¢, Yy € 9,

[(AQ)p. ) | = lim [(A(f)$.¥) | <IRTEG I IR ]

Therefore the functional R¥A(0)R* is bounded on %, then it can be
extended to a bounded sesquilinear form all over . Let us call B(0) the
so obtained form. Let us consider the form A(0) = R™*B(0)R ~*; this is
clearly a sesquilinear form on 2 which extends A(0) and such that R*A(0)R*
is bounded. For simplicity of notations we denote still A(0) by A(0). The
sesquilinear form A(0) satisfies therefore the requirements of Proposition 3
and thus the statement is proved.
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