
ANNALES DE L’I. H. P., SECTION A

ERIK SKIBSTED
Truncated Gamow functions and the
exponential decay law
Annales de l’I. H. P., section A, tome 46, no 2 (1987), p. 131-153
<http://www.numdam.org/item?id=AIHPA_1987__46_2_131_0>

© Gauthier-Villars, 1987, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1987__46_2_131_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


131

Truncated Gamow functions

and the exponential decay law

Erik SKIBSTED

Matematisk Institut, Aarhus Universitet,
Ny Munkegade, DK-8000, Aarhus C, Denmark

Ann. Henri Poincaré,

Vol. 46, n° 2, 1987, Physique ’ theorique ’

ABSTRACT. 2014 For a quantum mechanical two body l-wave resonance
we prove that the evolution of sharp cut-off approximations of the Gamow
function is outgoing and exponentially damped. An error estimate is given
in terms of resonance energy and width, the time variable and finally an
integral expressed by the potential V. Except for spherical symmetry, V is
assumed to be a rather general short-range potential. We make use of
the energy eigenfunction representation. The energy-transformed function
is obtained explicitly (a Breit-Wigner form). The mathematical results
are applied to a-decay to prove (within the usual simplified model) general
validity of the exponential law for periods of several lifetimes.

RESUME. 2014 On montre, pour une resonance de moment angulaire l
du probleme quantique a deux corps, que des approximations a cut off
raide de la fonction de Gamow evoluent comme des ondes sortantes

exponentiellement amorties. On donne une estimation d’erreur en termes
de l’énergie et de la largeur de la resonance, du temps et d’une integrate
s’exprimant au moyen du potentiel V. En dehors de la symetrique sphe-
rique, on suppose que Vest un potentiel a courte portee assez general.
On utilise la representation en fonctions propres de l’énergie. On obtient
explicitement la fonction transformee en energie, qui a une forme de Breit
Wigner. On applique les resultats mathematiques a la désintégration a
pour demontrer (dans Ie modele simplifie habituel) la validite generale de
la loi exponentielle pour des durees de plusieurs vies moyennes.

Annales de l’Institut Henri Poincaré - Physique theorique - 0246-0211
Vol. 46/87/02/131/23/$ 4,30/~) Gauthier-Villars 5



132 E. SKIBSTED

1. INTRODUCTION

In a recent paper [19] we proved rigorous results concerning the evolu-
tion of truncated Gamow functions. We consider a spherically symmetric,
compactly supported potential V = V(r), the s-wave Hamiltonian

HO = - 2 + Vr ( ), a resonance E - i/ ( ko, 2 ko - - a y) and finallydr
the corresponding Gamow function fo(ko, r). This function is regular at
r = 0 and equal to for r larger than RS, a number satisfying V(r) = 0
for r &#x3E; RS. Introducing the truncated Gamow functions fR := f o(ko , ’ )X(O,R)
the main result of [19] now is as follows (here stated in an imprecise way).

Let R 1 &#x3E; RS be given and define R2(t) = 2at + R 1, t ~ 0. Then for a

period of many lifetimes we have (measured by the L 2-norm):

It is remarked that in our units the (reduced) mass of systems described

by H° is equal to -. 2 1 Hence = Vc1t R where V is the classical

speed corresponding to momentum a. The resonance considered is assumed

to be narrow in the sense that 1 » ~ so the energy E is given a pp roxima-
tely by a2. a

In [19] ] we apply ( 1.1 ) to a-decay. An a-particle is (as usual) considered in a
spherically symmetric barrier potential V= V(r). The success of Gamow [10 ],
in the framework of this model to connect the observed relatively small
energy differences of a-particles escaping from heavy nuclei (RaA, RaC’,
Ur, etc.) with the observed extremely large decay-rate differences (the
decay-rate formula), is well-known. It is claimed in [70] that the function

r) should describe the a-particle state. In this way also the exponential
law follows (unrigorously). However, Gamow is somewhat imprecise.
Explicitly he does not worry much about the fact that r) is exponen-
tially growing at infinity and hence not square integrable. Taking (1.1)
into account we complete the theory of Gamow. The oc-particle is at t = 0
described by some According to (1.1) the evolution of JR1 is outgoing
and exponentially damped. Beyond the (free) classical evolution radius
the position probability is zero. These properties of a radioactive state
should be expected. For instance the exponential decay law almost imme-
diately follows. It is remarked that one can as well use smooth cut-off

approximations of the Gamow function (close to without any signifi-
cant alteration of the statement (1.1).
Some attempts to normalize the function some way and

prove exponential decay have been done, see for instance [5 ] [6] and [7].

Annales de l’Institut Henri Poincaré - Physique theorique



133TRUNCATED GAMOW FUNCTIONS AND THE EXPONENTIAL DECAY LAW

In spite of the simplicity of our approach ( [19 ]), however, there does not
seem (in the otherwise extensive physical literature concerning unstable
systems) to be any rigorous results on the subject.
The purpose of this paper is to generalize results of [79] in two directions.

As previously we proceed rigorously. In this paper we do not require
that V(r) has compact support. Instead of this condition, V(r) is assumed
to be a rather general, radial and short-range potential. Explicitly of the
form of an B exterior analytic » plus an exponentially decaying potential.
Secondly we prove results for all angular momentum numbers l ~ 0

(not only for l = 0). 
Considering the l-wave Hamiltonian HC = - dr2 + l(l 

+ 1)/r2 + 

a resonance E - ir/2 ( = ko) and the Gamow function r) (these two
concepts will be carefully defined) we find a result completely similar
to (1.1) concerning the states The functions fR(r) are defined (as
before) to be sharp cut-off approximations of The procedure in
the present paper leading to this (main) result and some corollaries is
close to the one of [19 ]. For instance we consider the l(l + 1)/r2-potential
(in an exterior domain) on the same footing as any other analytic potential.
In that way the problem of this paper essentially concerns an s-wave reso-
nance defined for a rather general, radial and short-range potential.
To state the main result in three dimensions we put Ho = - 1B and

H = Ho + V on L2(~3) and = where Y?(r)
is a spherical harmonic and r) a Gamow function. Now the analogue
of (1.1) is as follows (ko = a - 

Let R1 be given B large » and define = 2at + R1, t &#x3E; 0. Then
for a period of B many » lifetimes we have (measured by the L2-norm).

To prove (1.2) it is crucial to know the transformed functions

~ ~(~ ), FR ~ ~ 1 ~ of the normed (essentially continuum) states

expressed by the energy p. 299).

As R ~ oo and 03B2 ~ 0 these tran s f o rme d functions a re found t o approach
oc

(we measure by the L2-norm)

where for k ~ RB { O} is the l-wave S-matric element.

It is remarked that for 03B1-decay 1 » 03B2 03B1 is certainly satisfied. Also of course Ri,
interpreted as the radius of detection if a decay measurement is started
at t = 0, is large compared with atomic units.

Vol. 46, n° 2-1987.



134 E. SKIBSTED

We now explain in a heuristic way why (1.2) follows from (1.3). Firstly
we note that it can be (easily) proved that ~e-itk20FR2(t)~~~ FRl II. This
fact together with (1.3) provides that the energy-transform of

e-itk20FR2(t)~FR1~-1 is given by

Because e itEei(a-k)R2(t)-e-it(a2-/32-(a-k)2a)+i(a-k)R1 we

conclude that the energy-transform of e - itkoFR2(t) and e-itHFR1 are essentially
connected as follows:

For a long time and for k near a, that is where the functions (1. 3) are con-
centrated, we have that 1 Hence, for a

long time.
In [73] and [7~] the cross section for reactions as 0~(d,/?) 170* is cal-

culated using the distorted-wave Born approximation. To do this it is

necessary to know the neutron wave function representing the resonance
state 170*. It seems that the authors to overcome this problem are forced
to B guess », cleverly, however still to some extent arbitrarily. In spite of
the fact that the resonance considered is not very sharp as for a-decay,
such that the energy-transform of FRi is now given more approximately
by ( 1. 3), it is tempting to claim that ( 1. 3) represents the  right » energy-
transform of the state 170*. Here we take the point of view (as for a-decay)
that FR1 is the B best candidate » to represent unstable systems. Making
this assumption the above claim is justified by a direct computation ((1.3)
is the leading term of the exact transformed function) and we avoid to
B guess » as it is done in [73] ] [7~] ] and [8 ].
For s-waves and compactly supported potentials the limit transition

R --+ oo, leading asymptotically to g ether with 03B2 03B1 ~ 0) to (1.3), is

superfluous. This is so because for R finite the deviation from ( 1. 3) (preci-

sely, of modification of (1.3) d u e to - &#x3E; 0 ) is estimated in terms of a

parameter E = E(R) typically given (see (3.18)) by

Hence the analysis in this paper is more lengthy than in [19] ] due to B E-modi-
fications ». Also we remark that the proof of Lemma 4. 3 is quite different
from the proof of the analogous Lemma in [19 ]. A better estimate is

Annales de l’Institut Henri Poincaré - Physique theorique



135TRUNCATED GAMOW FUNCTIONS AND THE EXPONENTIAL DECAY LAW

obtained, and this is one of the reasons why the main result (here confining
ourselves to the potentials of [19 ]) is in fact slightly improved.
The mathematics in this paper is self-contained. However we refer to [19] ]

for a more detailed discussion concerning application to a-decay and
physical interpretation.

In Section 3 (2) we define the notion of resonance and Gamow function.
We prove asymptotic estimates to be used in Section 4, where all other
mathematical’results are derived. The results corresponding to (1. 2)
and (1.3) are Theorem 4.7 and Lemmas 4.2 and 4.1, respectively. In
Section 5 we apply our results to a-decay. We prove general validity of
the exponential law for periods of several lifetimes.

2. DEFINITIONS AND ASSUMPTIONS ON V

We consider a multiplicative, radial and real potential V = V(r) satis-

fying 0 1+r V(r) |dr  oo. It is then known that V is infinitesimally

form-bounded with respect to Ho, where Ho denotes the free Hamiltonian
on LZ(f~3). Hence the total Hamiltonian H = Ho + V can be constructed
by the standard quadratic form technique, see e. g. [17 ].
We decompose Ho and H in a standard way corresponding to the decom-

position L2(R3) = 0 { Yml (8) L2(R, r2dr) }, where yrp are the spheri-
G m

cal harmonics. As usual we map L2(f~+, r2dr) onto by the unitary
operator u(r) ~ In this way we finally obtain the operators to be
studied, Hl0 and HC on L2(1R+) given for all angular momentum numbers

by Ho = - dr2 + l(l + 1)/r2 
and Hc = Ho + V respectively.

For some - &#x3E; r &#x3E; 0, R~ &#x3E; 0 and a &#x3E; 0 we furthermore impose the

condition that for r &#x3E; R~ ,

where

Vi(r) has a continuous extension to Ma := { z|| z| &#x3E;_ Ra and | Arg z| _ 6 },
analytic in the interior of M~ . Also 0 for z -&#x3E; oo in M~ and

~~00

sup ~dz ~  oo are assumed.
-T0T ei03B8R03C3
Vol. 46, n° 2-1987.



136 E. SKIBSTED

The following functions can all be found in Newton [14] Section 12.2.
We consider solutions r), r) and ~(~, r) of the equation

(- y-z + l(l + 1)/r2 + V(r) - k2)03A8(r) = O. r) is for all k the regular
solution satisfying = 1. can be constructed by
iteration of an integral equation cf. [14] (12.133). is for

= { , =f= 0 I 1m , ~ O} the outgoing solution defined uniquely by

The equation can be solved by iteration, cf. [7~] Section 12.1. For k 
the Jost function is given by

i. e. the Wronskian between qJt(k, r) and o r).
For/e~~0; we have

Using that FA - ~ E ~B {0 } ) we find from (2.2) that =t= O.
For k E R+ the physical wave function r) is defined to be equal to

k Fl(k) 03C6l(k, r)eil03C0/2.
The « unitary property » of := (- 1/-"20142014’ for /c E RB { 0}

and the equation

are also simple consequences of F~) = F ¿( - ~).
In this paper we make use of the following expression for the kernel

~p~
of the spectral density 20142014 of Hl, where we put 03BB = k2 and /c &#x3E; O.

~A

The expression is found utilizing the identity

Annales de l’Institut Hertri Poincare - Physique - theorique -



137TRUNCATED GAMOW FUNCTIONS AND THE EXPONENTIAL DECAY LAW

the fact that the kernel of (Hc - ~,2 ~- is given (cf. [14] (12.146)) by

and

and finally the formulas (2.2), (2.4).
The well-known eigenfunction expansion theorem (see for instance

Agmon [1 ]) is closely related to the above formula.
For 03B4 &#x3E; 0 we denote by Pa the spectral projection

d
It is easy to prove for fixed r &#x3E; 0 that r) and - r) are entire

d dr
functions in k and that r), - r) and are continuous 

dr

analytic in the interior. Letting S~={(=)=0~0&#x3E; Arg’ &#x3E; - 6 ~ and

T~={~0&#x3E;Im&#x3E; -~} we continue r) (r &#x3E; R~) and analy-
tically in k n Ta). This is done in Section 3. Of course (2 . 2)
then also holds true for k E S6 n Ta. A resonance is defined to be a point
ko = (a, ~3 &#x3E; 0) where = 0. For convenience also ko is called
a resonance. We define the resonance energy E and the width r by
ko = a2 - /32 - i203B103B2 = E - fr/2. We introduce truncated Gamow func-
tions JR = for R &#x3E; R~.
The following Wronski formulas are useful.

and

3. THE GAMOW FUNCTION,
CONSTRUCTION AND ESTIMATES

R~ fixed we shall continue the outgoing solution r) ana-
lytically from k E C + to (S6 n Ta). It is not clear how to do this from
the defining equation (2.1). However for k positive is also given
uniquely by the equation

Vol. 46, n° 2-1987.
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where for is the solution of

and

It is remarked that (- d2 2 + r’) = 03B4(r - r’) and

that (3 . 2) and (3 .1) can be solved by iteration, cf. [14].
The procedure is now as follows :

A. The function r) is for fixed r &#x3E; RQ continued analytically in k
from C+ We estimate ( and I (for k ~ S03C3,
G(r, r’) is also defined by (3 . 3)).

B. The equation (3.1) is solved for k E S~ n Ta and r &#x3E; Ra. It is proved
that r) is analytic in k E C + U n Ta) (1).

A

Using the conditions imposed on V1(r) we can extend r) for k posi-
tive and continuously in r to z and 

analytically in the interior of N a’

e) In the above procedure " for construction of outgoing solutions the potential V2
d2

is considered as a perturbation of - 2 
+ V 1. This is also o a basic strategy in Balslev’s

article in [2 ]. ~

Annales de l’Institut Henri Poincare - Physique " theorique "



139TRUNCATED GAMOW FUNCTIONS AND THE EXPONENTIAL DECAY LAW

We remark that z = r) (r ~ R~) coincides with the n’th iteration
term corresponding to (3 . 2). This and the stated continuity and analyticity
properties of z) (the same properties hold true for z), too) can
be proved by induction using Cauchy’s integral theorem. We refer to [7~] ]
Section 4B for more details. Consult also [7~] ] p. 339 and [15] ] p. 145.
The above properties of an analytic potential was first noted and utilized
in [4 ]. 00

We let for k E S, and z) = f~ ~n(k, z) be defined by (3 . 4).
Remark that 

n=0

due to the fact that Im ~(z~ -z)&#x3E;0. (3 . 5) holds true for (k, x NQ.
By induction we can prove that z) is continuous on this set and sepa-
rately analytic in k E S(T and z belonging to the interior of N (T’
Taking into account that f~ (k, r) is continuous in and analytic

in the interior, it is now clear that for r &#x3E; R6 fixed r) is analytic in
k S Furthermore the analogue of (3 . 2) for k E S(T (valid for k 
too) is as follows :

Estimates of r) G(r, y’) ~.

For we find using (3 . 5) :

Vol. 46, n° 2-1987.
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Introducing

we conclude that for all k E and r &#x3E; R~

Concerning G(r, r’) for r’ &#x3E; r &#x3E;_ R~ and k E we have

B

For and r ~ R~ we will solve (3.1) by iteration.
Each iteration term is denoted by r). We introduce

We find using (3 . 7) and (3 . 8) that I h~°~(k, r) I  1 and for ~&#x3E;1

Clearly, r) for k E ~ u (Sa n Ta) and r ~ Ra is a solution of (3.1).
Also for r ~ RQ fixed is continuous in and

analytic in the interior. Because of local uniform convergence cf. (3.9)
the same conclusion is valid for Taking into account also that

defined by (2.1) for k E C+, is continuous and analytic in the interior
(r &#x3E; 0 fixed), we conclude that r) for r ~ Ra fixed is analytic

in 

The Jost function.

We shall continue analytically from 

’ de Henri Poincaré - Physique theorique



141TRUNCATED GAMOW FUNCTIONS AND THE EXPONENTIAL DECAY LAW

We consider 
2014 r) for r &#x3E; RQ :

For k e !~~ u (S~ n TJ and r &#x3E; R~ we find differentiating (3 .1) and (3 . 6)
that

The calculation is justified by (3.7) and (3.9).

From (3.10) we get that 2014 r) (r &#x3E; RJ is continuous in T~)
~ d 

.

and analytic in the interior. Because fl(k, r) (r &#x3E; 0) is continuous in
~ d

~ E C+ and analytic in the interior, we conclude that 2014 r) for r &#x3E; R(1
fixed is analytic in C + U (S, n d 

~

Taking into account that r) and 03C6l(k, r) for r &#x3E;0 fixed are entire
ar

analytic we now have proved that the Jost function = r), r))
for r &#x3E; R(1 is analytic in C + u (S(1 n T~).

Asymptotic estimates of the Gamow function.

We consider a resonance ~o " ~ (that is a point S(1 (B T~ where
= 0) and the corresponding function To be used in Sec-

tion 4 we estimate the quantities |fl(k0, r)-eik0r | and I!... r)- ik0eik0r I(~ &#x3E; R(1): ~

By (3.5)

Using (3.1), (3.8), (3.9) and (3.11) we easily find that

By differentiating (3.6) and applying (3.5) we get that

Vol. 46, n° 2-1987.



142 E. SKIBSTED

We use the estimate in the equation (3.10) and find that

We introduce 81 and E2 by the equations (r &#x3E; R~)

Now we can rewrite (3.12) and (3.13) as follows :

In an analogous way we introduce for k E !RB {0} and r &#x3E; R~. the quan-
tities 83 and E4:

Using (2 .1 ) it is easy to prove that

For R &#x3E; R(1 we introduce 8 = 8(R) defined to be the largest of

and

where (recalling the definitions of k) and 

(the path y is given in Diagram 1 )

and

The B choice» k ~ = a2-1~2 is to some extent arbitrary. For k satisfying
! k ~ &#x3E; x2’ ~~, ! R)  s(R) (i = 1, ..., 4) cf. (3.15) and (3 .17).

de Poincaré - Physique theorique



143TRUNCATED GAMOW FUNCTIONS AND THE EXPONENTIAL DECAY LAW

4. THE MATHEMATICAL RESULTS

Throughout this section we fix an l-wave resonance ko = a - We

find certain bounds in terms of ko, t and ~ (defined by (3 .18)). ~ and 03B2 03B1 are
considered to be small compared with 1. Ei (i = 1, ... , 4) defined by (3.14)
and (3.16) are utilized.

LEMMA 4.1. 2014 For R &#x3E; R, we have that (E~ = i = 1, 2)

Proof. 2014 We integrate (2 . 6) and use that is regular at r = 0.

LEMMA 4.2. 2014 We consider k &#x3E; 0 and R &#x3E; Let

and

Then

Vol. 46, n° 2-1987.
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Proof 2014 By integrating (2. 7) and using the known boundary condition
at r = 0 we obtain

We use (2 . 2) in the following calculation :

Now the Lemma easily follows from (2 . 4), (4 .1 ) and (4 . 2).

LEMMA 4. 3. 2014 Let R &#x3E; RQ be given. Introducing Pa where 5 = a2-1~2
(defined by (2. 5)) we have the estimate (8 = 

REMARK 4.4. 2014 The term O1(E2) can be given explicitly, see (4.9).
Proof 2014 Let d &#x3E; 0 be given. We define functions and gR as follows :

and

It is easily verified 0 that gR E 
’ 

and 0 that (Ht - = BPR’

Annales de l’Institut Henri Poincare - Physique ’ theorique 
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Hence

An application of the spectral theorem now provides the identity

From (4.3) we obtain, applying £ the spectral theorem again, the following 
£

inequality _ ._ .. _ , ..a.... ~~ ~~

To estimate the right-hand side we observe that

and

Using (4 . 4) together with the expressions (4 . 5) and (4 . 6) we now find that

Calculating the integral on the right-hand side of (4.7) we finally 
obtain

from 4. 7 and 4. 8) that

Hence, taking d = 2a -1,

The proof of the Lemma is complete.

Vol. 46, n° 2-1987.
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We fix R 1 &#x3E; R~ in the remaining part of this Section. By E and E~(i = 1, ... , 4) we shall from now on always understand E(R 1 ) and s ? R1),respectively. "

LEMMA 4 . 5. - Introducing R2=R2M=2~+R,, t &#x3E; 0, and

we have the estimate (Pa given as in Lemma 4.3)

REMARK 4.6. - The terms O2(E2) and 03(E2) can be given explicitlyby adding bounds at (4.14), (4.15), (4.16) and (4.18).
Proof. - We let ~’i = R2), i = 1, ... , 4.
By Lemma 4.2 we have for k &#x3E; 5 that

where

Annales de l’Institut Henri Poincaré - Physique theorique
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and

We will utilize the estimate

For this purpose the following two inequalities and one equation are
useful :

~ 

r" 
~ ~

T~2201420142~2 ~ ~ ~ (apply the Cauchy theorem). (4.13)
Jo 4p

T~ ~~J ~: Using (4.8) and (4.12) we easily obtain

The same estimate holds for

The term c : By using (4 . 8), (4.11), (4.12) and (4.13) we find

The term d : By inserting k2 - ko = 2a(k - a) + (k - a)2 + 03B22 + i0393/2
and (ko - k)2a = - 2x(A; - x) - we find that

Vol. 46, n° 2-1987.
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Now we fix C, D&#x3E;0, define and 
and proceed, using that sin2 x ~ min {~~, 1} for all x &#x3E; 0, as follows :

We take C = ¿ and D = 03B13/403B21/4 and obtain

To estimate ’ ~ dk k2 |k2 - k2|2 |d|2 suitably we utilize (4. 8), (4.11),
Jj k - ko

(4.12) and 0 (4.17) and 0 find that

Annales de Henri Poincare - Physique theorique .



149TRUNCATED GAMOW FUNCTIONS AND THE EXPONENTIAL DECAY LAW

Combining (4.10). (4. 14)~ (4.15). (4.16) and (4.18) we finally obtain

The Lemma is proved.
Our main result is as follows..

THEOREM 4.7. 2014 Let R2 = R2(t) = 2at + Ri, t ~ 0. Then

where (E = E(R 1 ), and J(t) given as in Lemma 4 . 5)

REMARK 4.8. 2014 The terms 01(82), O2(82), 03(82) and 04(82) can be
given explicitly, cf. Remarks 4.4, 4.6 and the proof of Theorem 4. 7 to be
given below.

Proof 2014 We use that

The first term is estimated as in Lemma 4 . 5, the second as follows :

Vol. 46, n° 2-1987.
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(Lemma 4 . 3 ; we remark that the bound in Lemma 4 . 3 is monotone increas-
ing in the variable e)

(Lemma 4.1 and (4. 8))

We have finished the proof.
Theorem 4. 7 almost immediately implies the following Corollaries 4.9

and 4.10, which concern two different B measures of decay ».

where

Pro of.

Cauchy-Schwarz’ inequality and Theorem 4. 7 now complete the proof.

where

Proof.

The first term is equal to fRl ~ ~ 2. As before we can now complete
the proof using Cauchy-Schwarz’ inequality and Theorem 4.7.

Annales de l’Institut Henri Poincare - Physique theorique
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5 . APPLICATION TO 03B1-DECAY

The usual simplified model describing a-decay concerns only s-waves.
For higher angular momentum numbers (~ &#x3E;_ 1) tunneling is expected to
be very slow due to the ~(~ + 

Within the framework of the a-decay model we now present a proof
of the validity of the exponential law for some time-interval.
We let R 1- be the radius of detection, and assume ko is a resonance and

that fRl is the a-particle state at time t = 0. The probability Pt that the
a-particle is detected during the time-interval (0, t) is calculated using
Corollary 4.10 ( y(t, E) is given there) :

If for some  large » time-interval (0, t0), |y(t, ~)| is B small » compared
with 1, then (5.1) is precisely the law of exponential decay.
The data in the first two rows in the following Table have been taken

from [77].

In the evaluation of t:) we ’ can use - r/E instead of the quantity -.

Also 0 we ’ remark that if s = ~(Ri)  10 -1 - and - 
03B1 03B2 

&#x3E; th &#x3E; 1, K(t, s) is
given (approximately) by 

Using (5 . 2) we easily find that I is smaller than 0,2 or 0,01 for
t E (0, to), where t00393 are given as follows:

Vol. 46, n° 2-1987.
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To illustrate the mathematical results in the case ~ &#x3E;_ 1 we will now
make the physically probably wrong hypothesis that the data in Table 1
represent l-wave resonances 1. We detect at a distance ofR1 = 1 m
and assume that V(r) = 0 for r &#x3E; R 1. Because of this assumption we can
calculate ~ = F,(R 1). The following estimate holds true :

Using (5 . 3) and data from Table 1 we find that 8  + 1)10-1 s.
From Table 1 we can now conclude that ~  10-1 (03B2 03B1)1/4, ’ if t  70 is

W
assumed. Hence in this case, (5.2) and the statements of Table 2 hold true.
If l is large ( &#x3E; 70) the ~-dependence of K(t, 8) is visible (or predominant :
K(t, 8) ~ 144 8~), and the numbers in Table 2 must be replaced by smaller
numbers. We remark that in the case « ~ large » the error estimate [20, Theo-
rem 4 . 7 together with (6.2)] is typically much better than the one of Theo-
rem 4 . 7.
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