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ABSTRACT. - The notion of constrained lagrangian submanifold over
regular constraining variety was introduced implicitly by Dirac [9] ] in
his theory of generalized Hamiltonian dynamics. Following Dirac, many
authors [4] ] [77] ] [26 ] consider constrained lagrangian submanifolds as
the models for physical systems in classical mechanics and field theory.
Quite elementary examples from : variational calculus with bypassing
of obstacle [2 ]; geometrical approach to the thermodynamical phase tran-
sitions [16 ] ; Kashiwara, Kawai, Pham theory of holonomic systems [22 ],
show that the constrained lagrangian subsets over singular constraining
varieties play an important role in various theories of mathematical phy-
sics. The aim of this paper is to give a precise approach to constrained
lagrangian varieties and indicate their fundamental geometrical properties.
We show that our notion of constrained lagrangian variety, restricted to
the regular strata of constraint, reduces to the standard co-normal bundle
notion. The homogeneous lagrangian varieties as the constrained lagran-
gian varieties over discriminant varieties are investigated and classified.
Some immediate consequences of this classification for physical understan-
ding of classical systems are established, especially for equilibrium of
composite systems. The notion of Morse family on manifold with boundary
is introduced and a classification theorem for normal forms of regular
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2 S. JANECZKO

geometric interactions between holonomic components is proved. We
propose also a geometrical framework for the recognition problem in
the theory of constrained lagrangian varieties, some advantages of which
can be directly applied. ,

RESUME. - La notion de sous-variete lagrangienne contrainte au-dessus
d’une variete des contraintes reguliere a été introduite implicitement par
Dirac [9] ] dans sa theorie de la dynamique hamiltonienne generalisee.
A sa suite, de nombreux auteurs [4] ] [77] ] [26] ont considere des sous-
varietes lagrangiennes contraintes comme modeles de systemes physiques
en mecanique classique et en theorie des champs. Des exemples elemen-
taires : calcul des variations pour Ie contournement d’un obstacle [2 ] ;
approche geometrique des transitions de phase en thermodynamique [7~];
theorie de Kashiwara, Kawai et Pham de systemes holonomes [22 ],
montrent que les sous-ensembles lagrangiens contraints au-dessus ’ de

varietes des contraintes singulieres jouent un role important dans di verses
theories de la physique mathematique. Le but du present article est de
donner une approche precise des varietes lagrangiennes contraintes et

d’indiquer leurs proprietes geometriques fondamentales. On montre que
la notion de variete lagrangienne contrainte consideree ici, restreinte a la
strate reguliere des contraintes, se reduit a la notion standard de fibre
conormal. On étudie et on classe les varietes lagrangiennes homogenes,
comme varietes lagrangiennes contraintes au-dessus de varietes discrimi-
nantes. On établit quelques consequences immediates de cette classifi-

cation pour la comprehension physique de systemes classiques, en parti-
culier de l’équilibre de systemes composes. On introduit la notion de

famille de Morse sur une variete a bord et on demontre un theoreme de

classification pour les formes normales des interactions geometriques
regulieres entre composantes holonomes. On propose aussi, pour le pro-
bleme de reconnaissance dans la theorie des varietes lagrangiennes con-
traintes, un cadre geometrique dont certains avantages peuvent etre exploi-
tees directement.

1. INTRODUCTION

Let (M, c~) be a symplectic manifold. Let K ~ M be a submanifold
and let H : K -+ IR be a differentiable function. The set

which is called a generalized 0 Hamiltonian system in the symplectic manifold 0

Annales de Henri Poincare - Physique ’ theorique ’



3CONSTRAINED LAGRANGIAN SUBMANIFOLDS

(M, and was introduced by Dirac [9 ], is an example of a constrained
lagrangian submanifold in the symplectic space (TM, &#x26;)-the tangent bundle
with the canonical symplectic structure 5 = where {3 is the mor-
phism of fibre bundles; 03B2: TM -+ T*M, given by 03B2(u) = iu03C9 and 03C9M is the
standard symplectic form of the cotangent bundle T*M. The constrained
lagrangian submanifolds (c.1. s. for short) in some cotangent bundle,
say (T*Q, with a constraint K which is a submanifold of Q, were
studied comprehensively in [25 ]. Many mechanical systems having c. 1. s.
as a constitutive set were given in [26 ].

Let us give now an introductory example, namely : wave front evolution
as a partial motivation for investigations of c.1. s. with more general
constraints, possibly exhibiting singularities.

Let Q be a configuration space (n-dimensional smooth manifold) for
some optical system (cf. [14 ]). Let Vo be a l-codimensional normally oriented
submanifold of Q. We shall consider a c. 1. s. T*Q (see (2.1)) as an
initial wave front (usually the submanifold Vo together with a choice
of a positively oriented co-normal element ç(x) E at every point
of Vo is taken as an initial wave front [14 ]). The evolution of the wave
front is determined by a one-parameter family of symplectic relations
(a symplectic relation is a certain lagrangian submanifold of the product
of two symplectic manifolds, see also [4 ])

such that the wave front at time t is given as an image of the initial wave front

Let us recall that the image of the subset F c Pi with respect to the sym-
plectic relation R ~ (Pi x P2,7~(D2 - where Pi x P2 -+ P~
are the respective canonical projections, is the set R(F) == { /?2 ~ P2 ; there
exists p1 ~ F such that (p1, p2) ~ R}. Infinitesemally Rt can be given by
a homogeneous Hamilton function H on T*Q - 0 (since the positive
reals operate on T*Q - 0 by multiplication in the fibres we can write
H(Âç) = ÂH( ç) for all ~, &#x3E; 0, ~ E T*Q - 0), so Rt is defined by the flow

obtained by integrating the corresponding Hamiltonian field XH. We see
that, for such flows, the mapping TtQ o Rt : Lyo -+ Q does not depend on
v E Lvo n T*xQ, so we get a map -+ Rt|v0(x), the so-called

ray map at time t (see [14 ]), which maps Vo onto Vt. We know that usually
at some times t1 the ray map will have rank  dim Q - 1 and in these
points Vtl has singularities (see Fig. 1 below) and is a lagrangian
submanifold defined over a singular constraint Vtl (see § 2). If we consider,
by extension the germ of LVt at the singular point in the zero section of T*Q

Vol. 46, n° 1-1987.



4 S. JANECZKO

then this germ itself is singular. The purpose of this paper is to make pre-
cise the notion of c. l. s. over singular constraints and to study their geo-
metrical properties in some applications.
One of the motivations for our investigations comes from the ther-

modynamics of phase transitions where the space of coexistence states
(coexistence of phases) turns out to be a c. 1. s. over a singular constraint
which represents a possibly very complicated phase diagram (cf. [7d] ] [17 ]).
The next important theory providing examples of singular lagrangian

varieties (and c.l. s.) is the theory of linear differential systems (see [22] ]
[7~] ] [19 ]). A linear differential system is a left coherent Dx-module, say M,
where Dx is the sheaf of differential operators of finite order with holo-
morphic coefficients on a smooth complex analytic manifold (X, 
Remember that the characteristic variety of a differential operator

P = (a section of Dx in local coordinates) of order ~ is
~Mt

the hypersurface V(P) of the cotangent bundle T*X defined by the prin-

cipal symbol 6(P) = which is a homogeneous function in

Annales de l’Institut Henri Poincaré - Physique theorique



5CONSTRAINED LAGRANGIAN SUBMANIFOLDS

coordinates ç = (ç 1, ..., ~). For the module of type Dx/I (where I is
a left ideal of finite type in Dx) the characteristic variety V of the sys-
tem Dx/I is defined by the principal symbols 6(Pl), ..., r(Pp) of the gene-
rators Pi,...,PpOfI. The definition of the characteristic variety of a general
differential system M can be found in [22 ]. It appears that the characteristic
variety of a system M is an involutive subspace of T*X (cf. [21 ]).
For maximally overdetermined systems (called holonomic systems)
dim V = dim X and V is a homogeneous lagrangian subset of T*X. Sin-
gularities of characteristic varieties for holonomic systems have a spe-
cial meaning as corresponding to the correct generalization of integrable
connections (cf. [27] ] [22 ]). One kind of singular system, for which the
characteristic variety V is a so-called regular analytic interaction, was
considered in [2~] ] [19 ]. As a main example of such systems one can take
the following system

In this paper we give the classification of normal forms of characteristic
(lagrangian) varieties for such systems.

In Section 2 we introduce the notion of constrained lagrangian subma-
nifold over singular constraint and describe the geometrical properties
of such objects.

In Section 3 we show how to characterize the germs of homogeneous
lagrangian varieties by the special blowing-up mappings and so-called
prehomogeneous lagrangian submanifolds. The local structure of such
varieties is investigated. The special case of such varieties in generalized
Hamiltonian systems is considered and the corresponding normal forms
are indicated. 

’

The work in Section 4 is the direct generalization of the notion of homo-
geneous lagrangian variety by means of the methods of composite systems,
introduced in geometrical foundations of classical physics. While the

facts obtained in this section may be of some interest in their own right it
seems to us that the geometrical methods used to formulate them have
independent physical interest. Here, in terms of constrained lagrangian
varieties, we give the new formulation of the Gibbs phase rule and indicate
the geometrical structure of the spaces of coexistence states. As an addi-
tional example of c. 1. s. we give this one which appears in open swallowtail
construction by symplectic triads.

In Section 5 we prove the classification theorem for generic pairs of the
so-called regular geometric interactions and by the generalization of the
standard notion of Morse family, we write their polynomial normal forms.
In Section 6 the recognition problem for germs of constrained lagrangian
varieties is formulated and some basic results are established.

Vol. 46, n° 1-1987.



6 S. JANECZKO

2. LAGRANGIAN VARIETIES
OVER SINGULAR CONSTRAINTS

Let Q be a smooth manifold and L ~ T*Q be a lagrangian submanifold
of its cotangent bundle (for the basic definitions see [1 ]). c K ~ Q,
where K is a submanifold of Q and TTp is the cotangent bundle projection,
then L is called a constrained lagrangian submanifold (c.!. s. for short)
of T*Q (cf. [77] ] [25 D. In this paper we generalize the notion of c. l. s.
by allowing K to have singularities. At first we generalize the notion of
lagrangian submanifold itself by passing to the purely local objects.

DEFINITION 2.1. - Let N be (the germ of) a subset of T*Q endowed

with a stratification into smooth submanifolds, say N = U Ni. N is
, iEI

called a lagrangian subset of T*Q if every stratum Ni is an isotropic sub-
manifold of (T*Q, (Dp) and dim Ni = dim Q for the non-empty maximal
strata of N.

Let N be a semialgebraic subset of T*Q (see [11 ]). Then N is a lagrangian
subset of (T*Q, if and only if the maximal strata of some Whitney
stratification of N are lagrangian (for the necessary basics of real algebraic
geometry see e. g. [77] ] [6] ] [27]).
As we know ( [25 ], Proposition 3 .1), any c. l. s. L over a nonsingular

constraint K ~ Q can be described, using a smooth function F on K, in
the following way

Now we generalize this notion by taking more general constraints K.

PROPOSITION 2 . 2. - Let K be a semi algebraic subset of Q and F :

Q -+ IR a smooth function. Let {Kni}i~I be maximal strata of some Whitney
stratification of K. The set

where

lim where y ~ Kni}
’ 

is a lagrangian subset of (T*Q, úJQ). 
1

Poincaré - Physique théorique



7CONSTRAINED LAGRANGIAN SUBMANIFOLDS

Proo,f: The canonical strata of defined as in (2.1) are

lagrangian (cf. [25 ], Proposition 3.1). It is easy to check that the stratum

Ly,F = ~ p E T*Q ; y = E Y, p E ~ + c LK,F is contained
in Ly,F. which is lagrangian. Here the submanifold Y is a stratum of

K - U So the stratum LÝ,F, as a submanifold of Ly,F, is isotropic
iEI

in (T*Q, 
REMARK 2 . 3. - i ) The function F appearing in (2 . 2) can be taken,

in the more general situation, to be smooth only on the individual strata
of K. This is the case for the singular homogeneous lagrangian sets intro-
duced in the next sections.

ii) We easily see that, in a neighbourhood of any point of K, LK,F can
be described in the following form

for some smooth functions 

Moreover, if q E K - sing K we can take,

in a neighbourhood 0 where { are 
" defining § functions for the germ

(K, q ).

EXAMPLE 2 . 4. - Let Q = [R2 and o let K be " defined o by one " of the equation

or

In both cases 0 is an isolated singular point of K, but the dimensions
of the respective singular fibres T~ [R2 for these two cases, are
different (no matter what F is), namely

thus LK,F is described by the equations

Vol. 46, n° 1-1987.



8 S. JANECZKO

if (x, y) = 0 (cf. Fig. 1).
b) In this case we have V~o, = {(1,1), (-1,1)}, so we can write

and for (x, y) E K, (x, y) 7~ 0 we have the standard representation for-
mula (2. 3) (see e. g. Fig. 2).

It is also very easy to see that the initial data for the wave front evolu-
tion (as in the Introduction) in a neighbourhood of a singular point of
a wave front form a singular constrained lagrangian subset as introduced
in Proposition 2. 2.

3. GERMS
OF HOMOGENEOUS LAGRANGIAN VARIETIES

Let X, X be open subsets of (~p+ 1 containing zero. We consider the
following map

Annales de Henri Poincaré - Physique theorique



9CONSTRAINED LAGRANGIAN SUBMANIFOLDS

(the i can be interpreted as densities, or one can look at x as a chart in a
blowing-up construction).

DEFINITION 3.1. A germ of a lagrangian submanifold (L, (jco, 0)) ~ T*X
generated by a smooth function-germ F(x) = is called

a regular, prehomogeneous lagrangian submanifold.

PROPOSITION 3.2. - Let 0. Then (T*XCL), (0; aco, 0)) is the germ
of the smooth homogeneous lagrangian sub manifold given by the following
equations

If xo = 0 then (T*X(L),O) is the germ of the singular lagrangian subset
described by the following equations

Proof 2014 We see that T*X can be written in the following from

Now taking

and substituting into the equations for T*x we obtain immediately the
equations (3.1) and (3.2).

REMARK 3.3. A germ of a homogeneous lagrangian submanifold
is generated with respect to the canonical special symplectic structure of
T*X, by the germ at 0) #- 0 of a generating function of the form

Vol. 46, n° 1-1987.



10 S. JANECZKO

The singular germ (T*X(L),O) has no generating function with respect
to T*X. However with respect to the special symplectic structure a :
T*X -+ T*Y; a : ( y, x) -~ (x, y) its generating family can be written in
the following form

Everywere, except zero, the germ of!F is the germ of a Morse family (see [28]).

COROLLARY 3 . 4. Let (L, p) be the germ of a homogeneous lagrangian
submanifold (h. t. s. for short) in T*X. There exists a special symplectic
structure oc’ on T*X, which is equivalent to a (see Remark 3.3) and such
that the generating family for the h. 1. s. germ (a’(L), has the form (3 . 3)
(equivalence of special symplectic structures means composition with
symplectomorphisms preserving the fibre structure T*Y -+ Y). Thus
with respect to some special symplectic structure a : T*X -+ T*X, which
respects the canonical action of the positive reals on the fibres of T*X,
the h. 1. s. (L, p) can be written in the form :

for some pre-h. I. s. L ~ (T*X, 
We see that to (the germ of) any hi s. in T*X we can associate the

following map germ (cf. [22 ])

Let us denote by CF the set of critical points of F and by OF c (~p + 1 the
set of critical values of F (the discriminant of F). Then we have immediately

PROPOSITION 3. 5. - Any germ of a h. 1. s. in T*X, has the structure
of a germ of a co-normal bundle (def. see e. g. [22 ])

with respect to an appropriate special symplectic structure or T*X ---t T*Y
on T*X.

REMARK 3.6. - In the classical thermodynamics of phase transitions
the singular germ (T*XCL),O) has an important meaning (the point when

Annales de l’Institut Henri Poincaré - Physique theorique



11CONSTRAINED LAGRANGIAN SUBMANIFOLDS

the new coexisting phase appears [16 ]). It is easily seen that this germ
has two components

which are lagrangian and intersect along Ap.
It turns out that the homogeneous generalized Hamiltonian systems

(introduced in § 1) provide the examples of simple Darboux normal forms.
In what follows we will engage in the local analysis of such systems.

Let (S, cv) be a symplectic manifold. Let D c (T*S, be a h. l. s. (also
singular in the previous sense). The corresponding generalized Hamilto-
nian system D’ c is defined (cf. [9 ] [25 ]) by the morphism of
fibre spaces ~: TS -+ T*S, i. e. co = and D’ = {3-1(D). We also D
will call the generalized Hamiltonian system.

PROPOSITION 3 . 7. - Normal forms for the generic germs of generalized
Hamiltonian systems defined over a smooth hypersurface, the cusp variety
and the swallowtail variety are generated by the following generating families.

Hypersurface

cusp

swallowtail

n

where (S, cv) is endowed with the Darboux form dpt /B dqi = cc~.
f=i

Proof Let D be a germ of homogeneous generalized Hamiltonian
system. For the generic D by diffeomorphic change of variables in S we
can reduce the corresponding mapgerm (3.4) to one of the standard nor-
mal forms (see [77] ] [29 ]). For the first three stable Whitney maps, by
the standard method of reduction of parameters (so-called stable equi-
valence [29 ]), we obtain the three normal forms for the corresponding
Vol. 46, n° 1-1987.



12 S. JANECZKO

generating families as in Proposition 3.7. However by such procedure
the symplectic form co is not longer in Darboux form. So we have to ask
for the normal form of 03C9 with respect to the group of diffeomorphisms of S
preserving the respective constraining varieties (hypersurface, generalized
cusp and generalized swallowtail [3 ]). Here we can apply the following
known result of Arnold ( [3 ], Theorem 1 and Theorem 2, in the smooth
case proved by Melrose) : ð2 = { (q~ p) E S ;

}, 03 = { (~)eS; has a root of order ~2},
is one of the constraining hypersurfaces mentioned in the proposition,
then generically the symplectic form OJ can be reduced to the Darboux
normal form by a diffeomorphism preserving the respective constraining
variety 0~. So we obtain mutually the symplectic structure OJ and generalized
Hamiltonian system D in the desired normal form.

n

REMARK 3 . 8. - D’ c TS, ) is a Hamiltonian dyna-

mical system. Let us assume that n = 2 then the one-parameter families
of integral curves of D’ form the lagrangian varieties appearing in the
variational problem of bypassing of obstacle. In the these varieties
are called open swallowtails [3] ] [2] (see Fig. 3).

4. COMPOSITE HOMOGENEOUS SYSTEMS

A simple generalization of the preceding notions, useful in describing
the space of coexistence states in classical phase transitions (cf. [16] ] [17 ]),
can be carried out by considering the following control map,

Annales de Henri Poincaré - Physique theorique



13CONSTRAINED LAGRANGIAN SUB MANIFOLDS

Now the prehomogeneous composite lagrangian submanifold

is generated by the function

for some smooth function /: X -+ IR. The corresponding homogeneous
lagrangian subset is obtained as an image 
A closed, composite homogeneous system is defined to be a pair D),

where Lk is a prehomogeneous composite lagrangian submanifold and D is a
~

coisotropic submanifold of defined by an equation

The motivation for this terminology comes from the geometrical for-
malism of classical thermodynamics (cf. [76] ] [25 ]), namely we have.

COROLLARY 4.1. - The space of equilibrium states 8 for a thermodyna-
mical closed system has the form

where 1 = n D), T*~(D)/~ is a canonical symplectic manifold asso-
ciated to the coisotropic submanifold T*)((D) c T*X (cf. [4 ]) and 03C0 is
its characteristic projection.

Suppose given a germ of a homogeneous lagrangian subset in T*X (§ 3)
such that the corresponding map-germ F is stable (cf. [77]). We can para-
metrize the set of critical points of F by (x 1, ..., Xp) = ac. Thus we have
a mapping

We define :

Vol. 46, n° 1-1987.



14 S. JANECZKO

(the r-fold points in the source of g),

PROPOSITION 4.2. - For any stable homogeneous lagrangian subset
in T*X, there exists v E N such that for every ~ ~ v we have

(4.6) 

Proof. - Let us Then for we can write the equations

In the case 0, the equations (a), ({3) can be rewritten in the form

For stable F and a sufficiently small neighbourhood of zero U ,

max { # = dimR Ep/J(f) = s  oo , (cf. [6] ] [11 ]) ,
yeU

Annales de Henri Poincaré - Physique theorique



15CONSTRAINED LAGRANGIAN SUB MANIFOLDS

where ~p is the ring of germs at zero of smooth functions IRP -+ [R, and J(/)
is its Jacobi ideal (generated by the germs of the first-order partial deriva-
tives of f ). Thus obviously we can take v = s  p + 1.

Let us define

Then it is obvious, on the basis of equations (y) that if y E r~ then
n is an i-dimensional vector subspace of It is easily

seen that for the smooth stratum h1 we have

and this completes the proof.
The co-normal bundle over a semialgebraic set considered in § 3 (see [27] ]

[22 ]) is not a constrained lagrangian subset in our sense. These two notions
coincide only on the nonsingular strata of the constraint. The aim of this
paper is to provide a direct motivation for the use of the symplectic geome-
trical notions even though they exhibit singularities.
Let us consider a closed system (e. g. in physics, a system with a fixed

number of particles or moles [16 ]). The corresponding equilibrium state
space is defined in Corollary 4.1. On the basis of this corollary and Pro-
position 4 . 2 we have.

COROLLARY 4 . 3. - i ) where L1, L2 are lagrangian
submanifolds in T*Y’ defined as follows

Here ~f is the projection ~ .... Yp) -+ 
..., Yp) and the

function G does not necessary extend to a smooth function on Y’.
ii) If r is a smooth submanifold of Y then L 1 and L2 intersect regularly

(cf. [20 ]) (along the so-called binodal curve in the two dimensional case [17 ],
see Fig. 4, in the simpler case).

iii) B = is a full bifurcation diagram for F (see
e. g. [J]).

iv) Gibbs phase rule [2~]:
The number of coexisting phases v ~ dim n 

This is a symplectic version of the catastrophe-theoretic formulation
of the Gibbs phase rule

Vol.46,~1-1987.



16 S. JANECZKO

(introduced in [24 ], p. 663). In our terms the analog of this inequality is
the following

To be more precise we can formulate the following.

PROPOSITION 4 . 4. L2 is a constrained lagrangian subset over K = 

(the phase diagram [17 ]) with a generating function

where K 3 y -+ X( y) is given by an isomorphism g on the smooth connected
components of M.

Proof. 2014 Immediate on the basis of the elementary properties of discri-
minant varieties (see e. g. [5 ] [24 ]) and Legendre transformation of genera-
ting functions (cf. [25 ]).

REMARK 4. 5. - At every point of the phase diagram K for L2 we can
write

where g(x) = = ... = x’ when i ~7. and ~,~ are Morse

parameters (cf. [28 ]). Hence taking the basis vectors

Annales de l’Institut Henri Poincare - Physique ’ theorique ’



17CONSTRAINED LAGRANGIAN SUBMANIFOLDS

we obtain the Clapeyron-Clausius formula in completely general form :

if

which can be written also in the form appearing in handbooks

We give now the example of c. l. s. appearing in the variational pro-
blem of bypassing of obstacle in Euclidean space. In [2] (p. 45) the following
notion was introduced.

DEFINITION 4. 6. - A symplectic triad in the symplectic manifold (P, cc~)
is the triplet (H, L, 1) which consists of a smooth hypersurface H in P and
of a lagrangian manifold L ~ P tangent to H with first order tangency
along a lagrangian manifold hypersurface 1.

Let U be a domain on the hypersurface (obstacle) in Let us consider
a geodesic flow y on U with the given initial front. We consider the distance
along the geodesics of U, to the initial front as a function s : U -+ IR,
such that (Os)2 = 1 on U. Let us consider a smooth extension of s, say
s : IRn -+ [R. Thus we can define :

and hypersurface H :

PROPOSITION 4. 7. - The triplet is the symplectic
triad. It generates the variety of rays tangent to the geodesics of our geo-
desic flow y on U.

Proof 2014 We see that Lv,s (cf. (2.1)) forms the set of all extensions of
the 1-forms ds from U to the whole ambient space. Thus the hypersurface
1 = H n Lv,s c Lv,s consists all extensions of ds which are vanishing on
the fibres of normal bundle to U (because = 1) (see also [2 ], p. 45).
The first order tangency of Lv,s to H is easily seen.
The new class of singular lagrangian sets, so-called open swallowtails

(cf. [3 ]) is provided by this kind of symplectic triads, namely the lagrangian
variety generated by the triad is the image of 1, say 7r(), in the canonical
symplectic manifold of characteristics of H.

Vol. 46, n° 1-1987.



18 S. JANECZKO

Hierarchy of the generic singularities provided by the symplectic triads
is determined by the mutual positions of the flow y and the line of asympto-
tic points on the obstacle surface U. Let us fix n = 3. If the source point,
say xo E U, of the germ of geodesic flow (y, xo) is outside of the line of
asymptotic points on U then has no singularities. If (y, xo) is trans-
versal to the line of asymptotic points at xo then the corresponding germ
of has the cusp structure (described conveniently in the appropriate
space of polynomials [2 ]) i. e. is the product of the usual cusp singularity
and Euclidean space. If y is not transversal in xo to the mentioned line of

asymptotic points (which happens generically in isolated points of this
line) then has a structure of open swallowtail (introduced in [3 ]),
as in Fig. 3.

5. ON REGULAR GEOMETRIC INTERACTIONS
BETWEEN HOLONOMIC COMPONENTS

In this section we consider all of the previously introduced objects in
the complex analytic category. We will study another example of a sin-
gular lagrangian subset which appeared in the microlocal analysis of diffe-
rential systems (cf. [18 ] [22]).
On the basis of § 3 we see that every homogeneous lagrangian subset

of T*Y can be described locally by the following generating family (see
Remark 3.3)

Thus we can use the formalism of generating families (see [28 ] [29 ]) to
classify normal forms for the regularly intersecting homogeneous lagrangian
(holonomic [27] ] [22] ] [19 ]) components.
We say the pair (Ll’ L2) of h. l. s. is a regular geometric interaction

(intersection [20 ]) if L 1 n L2 is a submanifold of L2 of codimension 1

and for every point x E L 1 n L2 we have

Let G : (A x Y, 0) -~ C be an analytic function-germ. Let Ao c A be
a hypersurface of A, 0 ~ A0. We can choose an appropriate coordinate
system on A such that

As we know from the standard theory of generating families for lagrangian
submanifolds (see e. g. [28 ]), the minimal number m of parameters for
which all singularities of the described lagrangian submanifold can be
generated in this way is greater than or equal to p (see [28 ]). However
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if we also allow an arbitrary hypersurface Ao c A as an eventual parameter
space, we have to increase the minimal dimension of A to p + 1.

DEFINITION 5.1. - A function-germ G : (A x Y, 0) -+ C is called a
Morse family on the manifold A with boundary Ao if in appropriate coordi-
nates on A and Y we have

and

where

PROPOSITION 5 . 2. - Let G : (A x Y, 0) -+ C be a Morse family on a
manifold with boundary. Then the pair (Ll’ L2) generated by

respectively is a regular geometric interaction.

Proof. 2014 Taking into account the condition 2014 0 ~ 0, we can directlyf g ( )~ ~ y

build up the corresponding analytic, nondegenerate (see [27]) map-germ
on manifold Cp+1  Cp with the boundary {03BB1 = 0}.

The corresponding characteristic variety (see [20] ] [21 ]) of this mapping
forms a regular geometric interaction. The corresponding components
of this variety are generated in the standard way by the families ~B, ~ 2
mentioned in the proposition.
By [20 [21] ] we have a direct correspondence between generating families

on manifolds with boundary and the corresponding mappings associated
to the holonomic components of an interaction. Hence after straightforward
calculations we obtain immediately.

PROPOSITION 5.3. - For a germ of a regular geometric interaction
(Ll’ L2) in T*Y there exists a Morse family ~ on a manifold with boundary
generating the pair (Li, L2).

All properties of regularly interacting pairs can be formulated in the
language of Morse families on manifolds with boundary, which is especially
convenient in the classification of their local normal forms. Following [20]
[29] we introduce the notion of equivalence of Morse families.
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DEFINITION 5.4. Let ÂQ, ~) - Y)~ ~ 2(Y~ Ào, ~) - ~OG2(~.~ Y)
be Morse families for the two geometric interactions. We say that g-l
and F2 are equivalent iff there exists an isomorphism

preserving Ao x ~p + 1 and such that

where 0153 E  yo, y1, ..., yp~Op+1, (Op+ 1 is the ring of holomorphic function-
germs on and  ..., Yp)~~ 1 is the ideal generated by yo,
Y1, ..., yp).

PROPOSITION 5 . 5. - Let n  5. For a generic set of regularly interacting
pairs (Vi, V2) of lagrangian submanifolds of T*C" we can reduce the cor-
responding generating family F in a neighbourhood of any point of V1 n V2,
using the equivalence and a defined above standard reduction of parameters,
to one of the following normal forms :

n = 3, additionally

n = 4, additionally

n = 5, additionally

Proof (an outline). Following [15] [23] we can carry out the classifi-
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cation of analytic function-germs on manifolds with boundary and can
immediately obtain their universal unfoldings. Hence we obtain the classifi-
cation of the corresponding normal forms for bundle codimension  4

(if c is a codimension of the germ and m its modality then bundle codimen-
sion b = c - m [23 ]), namely

Applying analogous arguments as for the classification of ordinary
lagrangian mappings (see [29 ], Theorems 5, 6, 7), after straightforward
calculations we obtain the classification list of Proposition 5.5.

REMARK 5.6. The next important notion in the investigation of
Gauss-Manin systems corresponding to regular geometric interactions
(cf. [20] ] [21 ]) is the notion of an universal unfolding of such a system or
equivalently the notion of unfoldings of regular geometric interactions.
First we have to introduce unfoldings of lagrangian submanifolds. Let
L c (P, a~) be a lagrangian submanifold; an unfolding of L is a triplet
((P, &#x26;), Pz, L), where (P, c~) is a symplectic manifold, Pz is a fibre bundle
with base space Z whose fibres are coisotropic submanifolds of (P, 5)
and L c (P, c5) is a lagrangian submanifold such that

for an initial point Zo E Z of the unfolding. Extending this notion to regularly
intersecting pairs L2), Li c T*Y, and using our approach by Morse
families on manifolds with boundary we can give the classification of more
degenerate intersecting pairs. By specializing the above notion we obtain
exactly the notion of unfoldings of interacting holonomic components
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introduced in [20 ]. The classification of normal forms for the corres-

ponding universal unfoldings can be carried out by adapting Wassermann’s
results [27 ]. We shall leave this for a forthcoming paper.

6. THE LOCAL CLASSIFICATION
OF CONSTRAINED LAGRANGIAN VARIETIES,

THE RECOGNITION PROBLEM

In this section we consider only the c. I. s. in (T*X, which are deter-
mined by pairs (G, f ), where G : (X, 0) -+ 0) is a map-germ repre-
senting the constraint K = G-1(O) and f : (X, 0) -+ IR is a function-germ
generating the corresponding c.1. s.

Let H be the group of germs of diffeomorphisms h : (X, 0) -&#x3E; (X, 0),
S the group of invertible (m + 1) x (m + 1) matrices M = over ~(X)
(i. e. with entries which are smooth function germs on X) such that

= 0 (i = 1, ..., m), = 1. We define the group

and the action

where B = x is the maximal ideal of the local ring ~n)

and we think here of F E B as a column vector /GB J.
DEFINITION 6.1. - Let Fl = (G1, 11), F2 = (G2, f2) represent the two

c. l. s. say LF2. We say that LF2 are equivalent iff Fl and F2 are
in the same ~-orbit of the action /~ i. e. for some (h, M) E ~, (h, M). F2 .
We know that the above equivalence implies the symplectic equivalence

of LF1 and LF2 by symplectic lifting of the diffeomorphism h : X -+ X.
In analogy to the complex case [8 and using the standard constructions
in [11] ] we can introduce the tangent space at the map F = (G, f ) to its orbit
TF = + G&#x3E;m+1, where J(F) is the En-submodule of 
generated by (i = 1, ... , n). So we can define

codim F = cod LF = dimR B/TF
if this is finite.

Let F have finite codimension, and let F : X Rm+1 be a k-para-
meter unfolding of F (for the definitions see [11] ] [27 ]), then for the universal
and stable unfoldings in this case we have the standard result.

PROPOSITION 6.2. - Let F be a k-parameter unfolding of F. F is a
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universal unfolding of F if and only if TG, ..., - together

span ~~ 1. A universal unfolding is locally stable and the minimal number
of its parameters is the codimension of F.

Proof The universality of such unfoldings is immediate on the basis
of standard results in [77] ] [12 ]. The local stability of F follows from [7~] ]
(Proposition 2.2). We must only consider the G(n, k)-stability problem
with G the group of matrices defined in (6 .1 ).

EXAMPLE 6.3.. Let us take F = (G(x, y), f(x, y)) = + y2). The
tangent space to the orbit of F is following

We can easily see that TF is exactely equal to x = B, in fact
it is enough to show that the corresponding map defined by the following
equality

namely

has a maximal rank. But it is easy to check that it is so. Hence for this

germ of c.1. s. we have
cod LF = 0.

We can also show that the considered germ is simple according to our
equivalence relation (cf. [8 ]).
A more complete approach to the recognition problem for c.1. s. can be

done by using the notion of generating families defined over constraints.
Thus, in the general case, a germ of c.l. s. is defined by a pair E = (G, f ),
where G : 0) -+ is as above and f : X x A -+ IR is the cor-

responding generating family over a constraint K = G - 1(0) c X. This
generating-family approach is not so direct and close to the standard one
(cf. [28 ]) as it was before for generating functions only.

In analogy to Definition 6.1, we define the corresponding equivalence
notion for generating families. We define the group

and the action

where B = MnEmn x M2n+k, H is the group of germs of diffeomorphisms
:(Rn+k, 0) ~ (IRn+ B 0), for some diffeo-
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-+ (Rn, 0) and S is the group of invertible (m+1)  (m+1)
matrices

with smooth entries. We think here of E E B as an element of

DEFINITION 6.4. - Let LE2 be c. l. s. determined by El and E2
respectively. We say that LE2 are equivalent iff are in the

same ~-orbit of the ;u-action, i. e. for some ( h, M) E ~,

REMARK 6 . 5. 2014 On a smooth stratum of K, LE is defined by the following
standard generating family

This provides some justification for the notion introduced above of a
generating family over a constraint.

In analogy to the standard tangent space of a map-germ (cf. J~7]) we
define the following tangent space for a map-germ E = (G, f ) E B.

where

This space has a standard interpretation in terms of orbits for the equi-
valence relation defined above.
We say that E (as well as LE) have finite codimension if dimR B/TE is

finite. If this is so we define cod E = dimR B/TE. One can check (cf. [7 ])
that E has finite codimension if and only if
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and

Using standard procedures one can write down the classification of
normal forms for generating families over constraints (cf. [13 ]). The com-
plete classification in the case of small codimensions will be left to a forth-
coming paper.
Our group of equivalences is a subgroup of the group of contact equi-

valences (cf. [77] ] [7]). It is easy to check the following.

PROPOSITION 6.6. - The group g is a geometric subgroup (according
to Damon [7]) of the contact group.
Hence we can apply the methods of [7] and construct the corresponding

unfolding theory. Let and set Br = x . We say
that E E Br is an unfolding of E E B if E = E. We write

PROPOSITION 6 . 7. - Let E E Br be an r-parameter unfolding of E E B
and let E have finite codimension. Then E is versal if and only if

The proof of this basic unfolding theorem follows in the traditional way
from the standard theory of unfoldings (see e. g. [7] ] [72] ] [77]).
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