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ABSTRACT. - One considers the total cross-section for scattering by
a potential E for large coupling constants g and large wave
numbers k. The function q is supposed to behave as a homogeneous func-
tion of infinity. One shows that the total cross-
section is asymptotically equal to 61 (g/2k)" if k ~ ~, g/2k ~ oo, g  03B30k2
and the constant yo satisfies certain conditions. Here x = .

and the coefficient 03C31 is determined only by the asymptotics of q(x) at
infinity. Similar asymptotics is obtained for the forward scattering ampli-
tude. The proofs of these results rely on the so-called eikonal approxi-
mation for the wave function of the Schrodinger equation.

RESUME. - Qn considere la section efficace totale pour la diffusion

par un potentiel x E pour des grandes constantes de couplage g
et des grands nombres d’onde k. La fonction q est supposee se comporter
comme une fonction homogene de l’infini. On

montre que la section efficace totale est asymptotiquement egale a 61 (g/2k)"
oo, oo, g ~ yok2 et la constante yo satisfait certaines condi-

tions. Ici x = (m - 1)(a - 1) -1 et Ie coefficient 0’1 est determine seulement

(*) Permanent address: Leningrad Branch of Mathematical Institute (Lomi), Fon-
tanka 27, Leningrad, 191011 USSR.
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398 D. R. YAFAEV

par l’asymptotique de q(x) a l’infini. Un comportement asymptotique simi-
laire est obtenu pour 1’amplitude de diffusion vers l’avant. Les demonstra-
tions de ces resultats se basent sur 1’approximation eikonale pour la fonction
d’onde de 1’equation de Schrodinger.

1. INTRODUCTION

The total scattering cross-section is one of basic physical observables,
which describe classical or quantum scattering. A value of the total cross-
section, roughly speaking, shows, how strongly a potential perturbs the
motion of a free particle. In quantum mechanics the total cross-section
is finite if the potential is vanishing sufficiently quickly at infinity, whereas
in classical one its finiteness requires that the potential has compact support.

Let k, be the total scattering cross-section for the Schro-
dinger equation with a potential gq(x), x E Rm, m &#x3E; 2, at incident momentum

co E sm-1, k &#x3E; 0 (k2 is an energy of a particle); we set the mass of the
particle to be equal to 1/2, and the Planck constant to 1. Under the assump-
tion ( 1 )

where 2a &#x3E; m + 1, the value of 6 is finite. The behaviour of 7(D; k, gq)
for large coupling constants g and large wave numbers k is qualitatively
dependent on the relation between g and k. In case N := g(2k) -1 ~ 0,
the asymptotics of various scattering objects are described by perturba-
tion theory. Applied to the total cross-section, this gives the formula

The coefficient (for its explicit expression see, e. g., [1 ], where
the background is surveyed in a slightly more detailed way) is a certain
integral of q. In case N ~ oo the behaviour of k, gq) is very sensitive
to the fall-off of at infinity. For functions q with compact support

k, gq) converges under some assumptions [2] ] [3] to twice the classical
total cross-section. For general short-range q the classical total cross-
section in infinite so that the quantum one grows to infinity [4 ].
The main aim of the present paper is to find the asymptotics of 6(a~; k, gq)

as k  oo, N --&#x3E; oo for potentials with a power-like behaviour at infinity.
Omitting some technical assumptions, we formulate here the basic result
(Theorem 1). Let

(1) By C and c we denote different positive constants whose precise values are of no
importance to us.
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399THE EIKONAL APPROXIMATION FOR THE SCHRODINGER EQUATION

as |x| I ~ oo. In the region k ~ oo, N ~ oo, g  03B30k2, we show that

(the explicit expression for Ti is given by (3.5)). As far as yo is concerned,
in general we require its smallness. Nevertheless, yo may be arbitrary for
potentials, satisfying some repulsive condition. Note that the case

g = yk2 ~ oo corresponds to the so-called quasi-classical limit when
the Planck constant tends to zero and other parameters of the problem
are fixed. In our construction the restriction g  03B30k2 is demanded only
for the proof of an a-priori estimate uniform in g (Theorem 2) for the resolvent
of the Schrodinger operator. Once this estimate is proven, the restriction
g  yok2 can be omitted and our considerations go through in an essen-
tially larger region of (k, g) (see Theorem 1’). Together with the total cross-
section, we study the forward scattering amplitude. Its asymptotics is

given by the formula (3 . 4), similar to ( 1. 4).
Relations (1. 2) and (1. 4) are qualitatively different in two respects. Firstly,

by (1.2) as N ~ 0 the total cross-section is always vanishing as N2"
whereas by (1. 4) as N -~ oo the growth of (7(~; k, gq) is determined by the
fall-off of the potential at infinity. Secondly, as N -~ 0 the asymptotics
of the total cross-section depends on values of for all x E On the

contrary, as N ~ oo the asymptotics of 7(D; k, gq) is determined only
by the asymptotics of q(x) as x ~ I ~ oo . In the « critical » case N = const.,
~ -~ oo the total cross-section converges (see Theorems 4 and 5) to a
finite limit. As in the case N -~ 0, this limit depends on values of 
for all x E though formula (1.2) is violated.
The asymptotics (1. 4) was derived in the paper [5] ] by manipulation

with the asymptotics for large numbers (k and g fixed) of eigenvalues of
the scattering matrix. For central potentials (1.4) was
obtained earlier in the same manner in the book [6 ]. The arguments of [6] [5]
can be regarded only as heuristic. In a precise sense the conditions of the
validity of ( 1. 4) were analysed in [7] (the survey of these results is given
in [1 ]) on the example of central potentials (for m = 3). These condi-
tions depend on the fall-off of q(x) at infinity (and are broader for smaller a)
but include always the quasi-classical limit g = yk2. For non-central q(x)
and large N only sharp-order upper bounds for the total cross-section
were known [8] ] [9 ]. Moreover, in order to be estimated, the total cross-
section is averaged in [8 ] [9] over some small interval of k. This averaged
cross-section is estimated by CN" for q obeing (1.1), and by for q
having compact support in a ball of radius r, r ~ ro &#x3E; 0. These bounds
are proven in [8] [9] in a very large region~ ~ ko &#x3E; 0, g arbitrary. However,
as shown in [10 ], without averaging these bounds can be violated (for
k = ko, g  (0) even in a central case q(x) = q( ~ x ~ I).

Vol. 44, n° 4-1986.



400 D. R. YAFAEV

Our proof of(l. 4) relies on the reduction of the problem to the « critical »
case N = const. The latter is investigated in section 4 with the help of
the so-called eikonal approximation, which, roughly, can be described as
follows. One constructs the formal asymptotic expansion for the wave
function of the Schrodinger E = gk - 2, as
~ -~ oo . The phase function of this expansion satisfies the eikonal equa-
tion = 1 - Eq(x) and coefficients of the amplitude satisfy transport
equations. Restricting ourselves to the principal term of this expansion,
we study only the eikonal equation. As B ~ 0 one can construct the formal
solution of the eikonal equation as a series in powers of B. It suffices to

take the first term of this series to obtain the eikonal asymptotics of the
wave function. This asymptotics is justified in Theorem 4 for smooth
functions q with compact support. The transition to the general case is
given in Theorem 5 by perturbation theory. In its turn, the asymptotics
of the wave function determines the asymptotics of the scattering ampli-
tude and of the total cross-section.
For the proof of (1.4) we study separately different regions of the confi-

guration space It appears that the asymptotics of the total cross-
section is determined by the region where |x| has an order ofNB v = (03B1-1)-1.
As N ~ 00 one can replace here by its asymptotics for x ~ I ~ oo.
Further, by scaling, the problem in this region is reduced to the case

N = const. Proofs, that regions oo and 0 do not

contribute to the asymptotics, require essentially different methods. The
first of these regions is treated by perturbation theory (one applies here
Theorem 5). The study of the second is somewhat similar to the upper
estimate of 0’( OJ; k, gq) for q, contained in a ball of a radius r. Since in

the latter case ~(a~; k, gq)  CV"’B it is natural to expect that in our
situation the contribution of the ball 0(N’’) is also bounded by

= 0(N"). The demonstration of this fact is a crucial point of
our proof. It is exactly at this step, where the restriction g  03B30k2 arises.
Technically all our considerations rely on a uniform bound for the resolvent
of the Schrodinger operator. We note that at all steps the forward scattering
amplitude is treated simultaneously with the total cross-section.

This paper is organized as follows. In section 2 we give precise defini-
tions of objects considered in the paper, and collect some necessary infor-
mation on stationary scattering theory. The main result is formulated
in section 3, Theorem 1. In Theorem 2 of the same section the bound

for the resolvent is obtained. As a corollary of this bound, in Theorem 3
of section 3 we give the sharp-order upper bounds for the total cross-
section and the forward scattering amplitude (without averaging over k).
The case N = const. is studied in section 4. Finally, in section 5 the contri-
bution of the domain x ~ 0 is estimated, all partial results are put
together and the proof of Theorem 1 is concluded.

Annales de l’Institut Henri Poincaré - Physique theorique



401THE EIKONAL APPROXIMATION FOR THE SCHRODINGER EQUATION

2. PRELIMINARIES

Here we collect some results, necessary below, of stationary scattering
theory for the Schrodinger operator. Essentially, this information is
contained in the literature (see, in particular, the book [77]) or can be
obtained by the combination of known methods.

Let V be a multiplication by a real function v(x), Ho = - d, H = Ho + V
be self-adjoint operators in the Hilbert space ~f = We always
assume that the condition (1.1), where at least a &#x3E; 1, holds. Let

R(k, E) _ (H ._ k2 - iE) -1, k &#x3E; 0, s&#x3E;0,

be resolvents of the free Hamiltonian Ho and of the Schrodinger ope-
rator H. By we denote a multiplication by the function + 

S &#x3E; 0 ; X~ = X~B All operator limits are understood in the paper in the
sense of norm-convergence. It is well known that for 2/3 &#x3E; 1 the opera-
tor-function has a limit as B ~ 0 and this limit is continuous
in k &#x3E; 0. Not being quite rigorous in notation, we set R(k) = R(k, + 0),
Ro(k) = Ro(k, + 0). Certainly, the operators R(k) and Ro(k) are correctly
defined in ~f only when multiplied by X~, 2/3 &#x3E; 1, at both sides. For

example, the resolvent identity

has an operator sense only after such a multiplication.
For the definition of the scattering matrix consider the operator

on the Schwartz set of u. Integrals in a variable x are always taken over
the whole space Note that Zo(k)Hou = If 2/3 &#x3E; 1, the ope-
rator is extended by continuity to a compact operator from ~f
to ~~ = and it is continuous in k &#x3E; 0. Now the scattering matrix
S(k) : A for the pair Ho, H and the value k2 of a spectral parameter
(an energy) can be defined by the relation

The formula (2 . 3) needs some explanation. Namely, for 1  2~ ~ a rewrite
(2 . 3) as

Then the R. H. S. is a combination of bounded operator and hence the

Vol. 44, n° 4-1986.
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last relation has a correct operator sense. It is implied below that all for-
mulae of the type (2 . 3) should be transformed to the form (2. 3i). By (2 . 31 )
the operator S(k) - I is compact and continuous in k &#x3E; 0. Moreover, in
virtue of (2.1) and of the identity

the operator S(k) is unitary. Note that from a point of view of abstract
operator theory a scattering matrix is defined only up to an unitary equi-
valence. The choice (2. 2) of the operator Zo(k) fix the standard representa-
tion of S(k), in terms of which the scattering amplitude and the total cross-
section are defined. Together with (2. 3), we need also an expression for
S(k) obtained in scattering theory with an identification  Namely, let J
be a multiplication by such a function ~ that 1-~ E and (2)

Clearly, (2 . 3) is a particular case of (2 . 6) for ~ = I. The relation (2 . 6)
can be derived similarly to (2 . 3) if one inserts ~ in a definition of wave
operators. Since in our case F - I is compact with respect to Ho, wave
operators and, hence, scattering matrices, corresponding to triples
{ Ho, H.I} and coincide with each other. In Appendix A
the coincidence of right-hand sides of (2 . 3) and (2 . 6) will be verified directly.

Let now 2a &#x3E; m + 1. Then the operator S(k) - I belongs to the Hil-
bert-Schmidt class and, consequently, is an integral operator. We denote
its kernel by ~’~(27r)’’"~/((D,Ct/;~), where a function /(~,~;~) is

In these terms the scattering amplitude F((~,co;~), corresponding to an
incident direction ú) and a scattering direction ~p, is introduced by the
relation

(A strange numerical coefficient appears here because traditionally F
is defined as a coefficient at an outgoing spherical wave-see (2.17)). Below
the function f is also called the scattering amplitude. In its turn, the scatter-
ing amplitude determines the total cross-section

for an incident direction 03C9 and a wave number k. Note that by unitarity

(2) Often we do not distinguish a notation of some function and of a multiplication
by this function.

l’Institut Henri Poincaré - Physique theorique



403THE EIKONAL APPROXIMATION FOR THE SCHRODINGER EQUATION

of S(k) the integrals over ~p of functions F(rp, co ; k) ~ 2 and F(cv, ~p ; k) ~ 2
are equal to each other. When averaged over (D, the total cross-section

(Sm - 1 is a surface of ~m-1) can be expressed in terms of the Hilbert-Schmidt
norm II I . ~2 of the operator S(k) - I :

Thus for 2oc &#x3E; m + 1 the value of is finite. We emphasize that in
contrast to the definitions of F(~ ~; k) and r(~; k) are not unitary
invariant.
We use now the definition (2.3) of S(k) to obtain a representation for

the scattering amplitude. Let be a plane wave cor-
responding to incident momentum Relations (2. 2) and (2. 3) show that
formally

where ( . , . ) stands for a scalar product in Jf. The precise meaning of (2 . 9)
should be clarified. Note that for 2/3 &#x3E; m a function k) belongs
to ~P and is continuous in ~f for ~m -1, k &#x3E; 0. If 2j8  2x - 1, an
operator is bounded and continuous in k &#x3E; 0. Thus for
m  2~3  2x 2014 1 the second summand in the R. H. S. of (2. 9)

k))
is correctly defined and continuous in cc~’ E ~’n -1 and k &#x3E; 0. The first
summand

has, obviously, these properties only for m  203B2  a. Therefore for a &#x3E; m

the scattering amplitude ~; k) is continuous in a~, o/ E &#x3E; 0
and is given by the formula (2.9). Quite similarly, (2.2) and (2.6) ensure
a more general representation

also used below. Since in (2. 5) and the second
summand in the R. H. S. of (2.10) is again continuous in cv’ E ~"’-1, k &#x3E; 0
for 2a &#x3E; ~+1, and the first summand, only for a &#x3E; m. So for a &#x3E; m the
forward scattering amplitude a~; k) is correctly defined and is conti-
nuous in cc~ E m-l, k &#x3E; 0. Moreover, in this case the so-called optical theo-
rem is known. It connects the total cross-section with the forward scattering
amplitude :

Vol. 44, n° 4-1986.



404 D. R. YAFAEV

The relation (2.11) is, of course, a corollary of unitarity of the operator S(k).
Now we give a generalization of (2 .11 ) to a case 2x &#x3E; 111 + 1.

LEMMA 1. - Let the condition (1.1 ) with 2x &#x3E; 111 + 1 hold. Then the
total cross-section f7(~: k) is continuous in (1) E ~", - 1. k &#x3E; 0 and

Proof Note
where K = f* f -J is a multiplica-

tion by a tunction Therefore

and hence Ci = 1&#x3E;1. Now unitarity of S(k) ensures that

In terms of kernels of operators C and 1&#x3E;2 this means that

for almost all (~, c!/) E S "’ -1 1 x ~m - 1. As was already noted, 1,
the R. H. S. and hence the L. H. S. of the last equality are, actually, conti-
nuous in E Sm-1 (and k &#x3E; 0). This permits to set here 03C9 = 03C9’, what

by definition (2.8) gives (2.12). D D
We need also a particular case of (2 .12), corresponding to = I :

Below it will be convenient to use a notion of a wave function ~(x; co, k).
For 2x &#x3E; m + 1 we define a wave function b the relation

where, as usual, k is a wave number and co is an incident direction. Clearly,
X~(~ - ~o) E ~ for 2~3 &#x3E; 1. The resolvent identity (2.1) implies the

Lippman-Schwinger equation

for k). In terms of ~(a~, k) the representation (2.9) takes a form

For (x &#x3E; m the wave function and the scattering amplitude can be defined
directly in terms of solutions of the Schrodinger equation

Annales de l’Institut Henri Poincaré - Physique theorique
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Namely, for every a~ E ~m-1 this equation has the unique solution ~(x; k)
with the asymptotics

m-l m-l

as |x| 1 ~ oo . Thus defined, the solution 03C8 and the coefficient F coincide
respectively with the wave function and the’scattering amplitude.

If necessary, the dependence of different objects on the potential is spe-
cified in the notation, e. g. R(k) = R(k, v), S(k) = S(k, v). On the contrary,
if not confusing, the dependence on some parameters, e. g. k, is often dropped
out of the notation. Below we need a connection between resolvents and

scattering matrices, corresponding to potentials and = 

p &#x3E; 0.

LEMMA 2. - For a &#x3E; 1

Moreover, for 2(X &#x3E; m + 1

Proof. Let be an unitary operator of dilations : 
Then and hence

This ensures (2.18). According to the definition (2 . 3) for the proof of (2.19)
one should additionally take into account that, by (2 . 2), = 

Now, (2.20) is a reformulation of (2.19) in terms of kernels of operators
S - I. Finally, (2 . 21) is a direct consequence of (2.20) and of the defini-
tion (2. 8). 0

Let us compare scattering amplitudes for two different potentials v
and v 1, obeying (1. l)Teach. To that end we introduce the scattering matrix
IV N

S(k) = S(k; v, v1) for the pair H1 = Ho + V1, H = Ho + V. The suitable repre-
sentation for S(k) is defined by the operator

the operator Yt  ~Gl is compact and continuous in k &#x3E; 0.
The mapping diagonalizes the operator H1: An

explicit expression for will be given immediately in a general form,
corresponding to scattering with an identification. Namely, let f be again

Vol. 44, n° 4-1986.
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a multiplication by ~, and Then, similarly
to(2.6), -- -- -- --

The chain rule for wave operators, combined with stationary formulae
for wave and scattering operators, shows that

Of course, the equality (2.24) may be proven also by direct calculations,
using the resolvent identity

and (2.4) (see Appendix B).
Let now 2ex &#x3E; ~+1 and 8 &#x3E; 0, as 00.

By (2.22), (2.23) the operator t~i) - I is integral and its kernel

is continuous in ~ ~&#x3E;0.

Explicitly,

where ~(cv, k, v 1 ) _ [I - R(k, v 1 )Vl ] ~o(a~, k) is the wave function for the

potential In terms of scattering amplitudes (2 . 24) reads

(almost all o/) E ~’n -1 x ~m -1 ). Now we apply the Schwartz inequality
to the last integral and take into account that

Similarly to (2.11), this equality is a corollary of unitarity of S(k). Thus (2 . 27)
ensures that for almost all (a~, cv’) E ~’n - I x ~m -1

In case a &#x3E; m, when both amplitudes and /(~co v 1 ) are
continuous in c~, cv’ E ~m-1, the bound (2 . 28) is extended to all co, ~/ E ~m-1.
To perform such an extension for 2oc &#x3E; m + 1, the L. H. S. of (2. 28) should
be regularized. To that end note that by (2 . 9)

Annales de l’Institut Henri Poincaré - Physique theorique
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In the R. H. S. of (2. 29), which we denote temporarily by all

three summands are continuous functions of co, Thus (2 . 28)
holds for all ~, E ~m -1 if the L. H. S. of (2 . 28) is replaced by A(co, o/)!.
In particular, A(co, and, hence Im are bounded by the R. H. S.
of (2 . 28) at 03C9 = Notice now that 03C80(03C9))=0 and
therefore, by (2 .13), 2 Im OJ) = ~(~; v) - It follows that .

I o’((~; /(, t;)2014o’(co; ~ t~i) ~ I
~2r/(~~;~;~ri)~+2[27(co;~~)Im/(~~;~;~~)]~. (2 . 30)

We formulate the obtained results.

LEMMA 3. - Let potentials vl and v satisfy the condition (1.1),
s&#x3E;0, as x ~ 1 ~ oo, and let the amplitude

6~’; k ; v, be defined by the relation (2 . 26). Then, if a &#x3E; m, the

bound (2 . 28) holds for all co, OJ’ E ~m-1. If 2a &#x3E; m + 1, the bound (2 . 30)
holds for 

3. THE MAIN THEOREM.

UPPER BOUNDS FOR THE RESOLVENT
AND FOR THE TOTAL CROSS-SECTION

The aim of the present paper is to find the asymptotics of the forward
scattering amplitude gq) and of the total cross-section k, gq)
in case ~ -~ oo, N:=g(2~)’~ -~ oo. Besides the condition (1. 3), we
suppose that is twice differentiable with respect to a radial variable x ~ I
and ... _ . ,

We assume additionally that g  03B30k2 where a constant yo obeys

Thus, yo is an arbitrary fixed number if a potential |x|03B2q(x) is repulsive
for some ~e(0,2]. In a general case (3 . 2) requires that yo is small with
respect to a size of q.
For a given incident direction denote by 1~w a plane, ortho-

gonal to and let sm-2 03C9 be a unit sphere in the plane Aw. For 03C6 E Sm-203C9 set

Now we give a precise formulation of our main result (*).

(*) See also note added in proof.

Vol. 44, n° 4-1986.
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THEOREM 1. - Assume that has the asymptotics (1.3) with
l&#x3E;Ec(~m-1) and that the condition (3.1) holds. Let k  oo, N -~ oo,
g ~ yok2, where yo satisfies the estimate (3 . 2). Then for a &#x3E; m the forward
scattering amplitude has the asymptotics

For 2a &#x3E; m + 1 the total cross-section has the asymptotics

As was noted in the Introduction, by the proof of Theorem 1 we need
uniform in g a-priori bound for the resolvent R(k, gq) of the operator - 

THEOREM 2. Let conditions (3.1), (3.2) be fulfilled. Then for

and ever &#x3E; 1 /2 the bound

holds. A constant C in (3.6) depends only on numbers ao, yo and on the
value of (3 .1).

Proof 2014 By the equality (2.18) with p = k-1, (3 . 6) is equivalent to the
bound

where " 

The proof of (3 . 7) is based * on the commutator method * of E. Mourre " [13]
(see " also o the article " [7~]). Set

Then i[Ho,A] =2Hoand

for any (3 E (0,2]. If 0 for some ~3 E (0,2], then the R. H. S. of (3 . 8)
is larger than ~iH for this j8. If Q~ &#x3E; 0 for all ~e(0,2], choose /3 so that

Annales de l’Institut Henri Poincaré - Physique theorique
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03B30Q03B2  1. This is possible in virtue of (3.2). Let now p E 03C6(03BB) = 1
for [1 - cr, 1 + ~] ] and ~p(~,) = 0 for ~ [1 - 2(7, 1 + 26 ]. Take
6  2-1 min {1, 1 - Then (3 . 8) ensures that

with c not dependent on k &#x3E; 0 and y  yo-
Below we shall prove that the bound (3.7) is a corollary of the inequa-

lity (3 . 9). Compared to the original proof of [13 ] we should keep track
of the dependence of (3 . 7) on the parameter a. This requires some techni-
cal modifications. Besides, we should make sure that all estimates are
uniform in k &#x3E; 0 and y  yo, which is essentially standard. Not restricting
generality, by the proof of (3 . 7) we can take /3 E (1/2,1 ]. Set B = i [H, A ],
M = Ge = (H - i~M - 1 - All estimates below will be
uniform in  &#x3E; 0. Let be a multiplication by the function

Then

We shall establish the bound

with a constant C not depending on E &#x3E; 0 &#x3E; 0, k &#x3E; 0, y  yo neither).
In particular, as E ~ 0, ~u -~ 0 (3.12) implies the bound (3.7).
We need some facts from papers [7~] ] [14 ]. Note firstly that according

to (3 . 8), (3.1) B = 2Ho + Y1, where Y1 = y) is bounded uniformly
in k &#x3E; 0, y ~ ye- Similarly, computing the second commutator, we find that

where again by (3.1) the operator Y2 = Y2(k, y) is bounded uniformly
in k &#x3E; 0, 03B3  03B30. It follows that commutators [I&#x3E;, A] and [M, A] are also
uniformly bounded. The basic estimate (3 . 9) is used only to obtain the bound

Together with ~ ~ C, this shows that

In its turn, (3.13) and the second estimate (3.14) provide that

Vol. 44, n° 4-1986.



410 D. R. YAFAEV

Now we can show that the operator FE(a) = KE(a)GEKE(a) satisfies the
differential inequality

Let us estimate separately the summands in the R. H. S. of the expression

The bound (3.16) for norms of first two summands is a direct corollary of
(3 .11 ), (3 .15). To estimate the last term, we compute

The contribution to K~ dG~ d~ Kt: of the first summand in the R. H. S.
of (3.17) dB

is estimated + 8-1/211 F£(a) 111/2 according to (3.10), (3.14), (3.15).
The second summand in the R. H. S. of (3 .17) is treated quite similarly.
In the next term we expand the commutator. Then

which is bounded by the R. H. S. of (3 .16) according to (3.10), (3.11), (3.15).
Finally, in virtue of bounds ~( [M, A] C and (3.15)

Since by (3.10), (3.14)

this term is again bounded by the R. H. S. of (3 .16). Putting all these inequa-
lities together, we conclude the proof of (3.16).

It remains to prove that the bound (3.12) is a corollary of (3.16), (3.18).
The simplest way of doing it is to introduce a new operator-function
FS(a) = Then (3.18) reads
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and after substitution F = (3.16) provides the inequality

By (3.20) an estimate !! 0  p ~ 1, ensures that

After integration this leads to a bound !) 
1/2-p/2 if 2j8  p + 1,

or to a C if 2/3 &#x3E; p + 1. Thus, starting from (3.19),
with the help of (3.20) we arrive in a finite number of steps to the bound

II C. This is equivalent to (3.12). D
Comments and remarks.

1) Since it is not assumed that ~ 0 as x ~ I ~ oo in Theorem 2,
it can be applied to a multiparticle problem.

2) The bound (3.6) is valid for long-range potentials. In this case it is,
perhaps, new even for a fixed g.

3) The bound (3 . 6) is sharp, even for a fixed g, as far as dependence on k
and s is concerned.

4) If (3 . 7) holds for some fixed a (and arbitrary /3 &#x3E; 1/2), the L. H. S.
of (3 . 7) is automatically bounded by for all a  ao &#x3E; 0 and

arbitrary G &#x3E; 0. This would have given us the bound of the L. H. S. of (3 . 6)
by k-1 +Esl - 2~+E. However, it is important for us to have the precise result.

5) The bound (3.6) for s = 1, g = yk2 and functions q with compact
supports was established earlier in papers [7~] [76]. Compared to [15] ] [16]
we have very broad conditions on the behaviour of q(x) at infinity. On the
other hand, the so-called non-trapping condition, imposed in [7~] ] [16 ],
is less restrictive than our assumptions on the coupling constant. Note
also that in contrast to [7~] ] [76] our proof is rather standard from a point
of view of scattering theory.

6) J. M. Combes communicated to the author that a bound, similar
to (3 . 6), can be obtained also with the help of R. Lavine’s technique instead
of that of E. Mourre.

As was mentioned in the Introduction, the restriction g  03B30k2 is required
in Theorem 1 only for the proof of the bound (3.6). Once this bound is
established, the asymptotics (3.4), (3 . 5) are valid in an essentially broader

region of parameters k and g. Namely, the following conditional assertion
is true.

THEOREM 1’. - Let have the asymptotics (1. 3) 
Assume that in some region J~ of parameters (k, g) the bound (3.6) holds
true for all 03B2 &#x3E; 1/2, sk  a0 &#x3E; 0. Then the asymptotics (3.4) (if a &#x3E; m)
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and (3.5) (if 2x &#x3E; m + 1) are valid as N ~ oo, ~ oo, (k, 
If at least one of the conditions N --&#x3E; 00 or ---+- oo is not fulfilled,

the asymptotics (3.4), (3.5) are surely violated. On the other hand for
nonnegative central potentials (and m = 3) (3.4), (3.5) are valid in the
whole region N -~ oo, gk°‘ - 2 ~ oo . This result is obtained in [7] bypassing
the bound of the resolvent. Conditions N ~ oo, ~ oo permit an
arbitrary rapid growth of g with respect to k as k  oo (or k fixed).
Moreover, the case ~ -~ oo, k --~ 0 is not also totally excluded. Note that
for k fixed, g  oo the bound, similar to (3 . 6), was proven in [70] for
repulsive potentials.
As a corollary of Theorem 2, we shall deduce now sharp upper bounds

for the forward scattering amplitude and for the total cross-section. Results
of the following theorem are not used by the proof of Theorem 1 but the
method of its proof is applied in section 5 in a more complicated situation.
Besides, this theorem is, perhaps, of some interest for its own sake. Set
~r = { x E r }; by xr we denote its characteristic function.

THEOREM 3. - Let q satisfy the condition (3.1) and let g  03B30k2 with yo
obeying (3 . 2). If supp q c Tr and rk  ao &#x3E; 0, then -

If q satisfies the bound ( 1.1 ) and ao &#x3E; 0, then

Constants C in (3.21), (3.22) are common for all q, obeying (3.1) uni-
formly. In (3.23), (3.24) constants C are common for all q, obeying uni-
formly (3.1) and (1.1).

Proof - We start from the representation (2.10) for the scattering
amplitude. Let J = fr be a multiplication by where 

r~(x) = 0 for 1 and ~(jc) = 1 for 2. Then (cf. (2 . 5))

Consider firstly potentials with compact supports when 
Since k) ~ = 1. ! = k, (3 . 25) ensures that
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and, similarly,

Further, since x2rTr = Tn

by (3 . 6) and (3 . 27). Thus, according to (3 . 26), (3 . 28), the modulus of (2.10)
does not exceed Relations (2 . 7), (2 .11 ) provide now (3 . 21 ), (3 . 22).

Consider potentials satisfying (1.1). In this case the operator Tr contains
an additional summand and hence

Here and below we suppose that rk &#x3E; ao &#x3E; 0. Let 1  2~3  2oc - m.

Clearly,

The bound (3.6) ensures now that

Combining (3.29), (3.30) we find that

Set r = N~°‘ -1 ~ -1. Then the R. H. S. of (3 . 31 ) equals Crm -1 - CN ". As for
potentials with compact supports, this gives bounds (3 . 23), (3 . 24) for a &#x3E; m.

To obtain (3.24) for 2a &#x3E; m + 1, one should apply (3 . 30) to (2.13). D

REMARK 1. - For potentials with supp q ~ Tr the proof of Theorem 3
can be reduced to a special case r = 1. To that end, one should use rela-
tions (2.20), (2.21) and the invariance of (3.1) with respect to dilation
~ -~ r- lx.

REMARK 2. - The proof of Theorem 3 establishes, actually, bounds
of the scattering amplitude by suitable norms of the resolvent. In case
supp q c Tr such bound has a form
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In case of potentials, satisfying (1.1) with 11 &#x3E; m,

Similar bounds hold, of course, for the total cross-section; there the factor
m- 1

k 2 should be omitted and R(k, gq) can be replaced by R(k, gq)- R(k, gq)*.
In particular, estimates (3 . 21 )-(3 . 24) are valid whenever (3 . 6) is true.

4. THE MODEL PROBLEM

In this section we shall find asymptotics of the wave function, of the
scattering amplitude and of the total cross-section in the « critical » case
when ~ -~ oo, N = const. We choose coordinates (Z, b) in IRm so that
Z-axes is directed along b is a set of (m -1) variables in a plane Aw,
orthogonal to cv. Then x = b + 03C9Z H (Z, b), bE By ~b and Ob we denote

. the gradient and the Laplace operator in variables b. Set

Since the incident direction cv is fixed, the notation of dependence of
different objects on co is often omitted. We treat firstly potentials with
compact supports.

THEOREM 4. - Let where an integer (m + 
k &#x3E; ko &#x3E; 0. r is an arbitrary fixed number. Then

If 2~3 &#x3E; m, then

Proof. - Our first goal is to derive an expression in terms
of an error
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. arising when 03C8 is inserted into the Schrodinger equation. Note that by a
direct differentiation

Consider also an error

corresponding to 03C8 in the Lippman-Schwinger equation (2.15). The

difference ~ - ~ can be easily expressed in terms of w. Actually, comparing
(2.15) and (4.9) we see that w =(I+gRo?) (~ - ~). Applying the operator

and taking into account the resolvent identity we arrive at the

expression

Now we should find a connection between functions w and w. Let

supp q c lrr and ~(x) =1 for ro &#x3E; r. Since = q
(4.7) and the free equation (ð + k2)~o = 0 ensure that 

.

Recall that Ro(k) is an integral operator with a kernel

where is the Hankel function of the first kind and an order s. Denote

by Go(k, 0 an integral operator with a kernel

Integrating twice by parts in an integral Ro(k)~(0 + k2)(i~ - ~ro) and taking
into account the relation + x’ ; ~)= -5(~-~), we find that

Insert now this expression into (4.11). Combined together, (4. 9) and (4.11)
show that

Comparing (4.10), (4.13) and using (2 .1 ) we receive, finally, - the convenient

representation
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Now we able to prove the bound (4.4). Choose rl so that supp , c T~.
Then (4.14) ensures that

By (3.6) the factors ~~rR~r1~ and ~ ~rRq~ are bounded by Ck -1. Moreover,
by (4.8) ~w II ~ C. Thus the first summand in the R. H. S. of (4 .15) does
not exceed Ck -1. To obtain the same bound for the second summand, it
remains to check that ~Go(0(~~~o)!!~C~. We shall prove a
somewhat stronger inequality

Since supp B7( c where r  ro  rl, the integral (4.16)
is restricted to Tr0,r1 which is disjoint by a positive distance from For

~ 2014 ~ ~ c &#x3E; 0 the Hankel function in the definition of Ro can be replaced
by its asymptotic expansion at infinity. This implies that the kernel (4.12)
admits a representation 

m-1

where for all multiindices p

Insert now the representation (4.17) into (4.16). For the summand, cor-
responding to u 1 (x, x’ ; k), the bound by Ck-1 is an immediate conse-

quence of (4.18). Thus (4.16) is reduced to the inequality

where

Since and N ~ No, the function u(x, x’; k) satisfies the first

inequality (4.18) for all 0 ~ p ~ I ~ Po. Note that the second factor in (4.20)
is different from zero only in the region consisting of points x’ of
the form x’ = y + with y ~ Tr and t 0; thus, IIr(co) is a union of the
ball Tr and of its « shadow » for the direction 03C9 of incoming plane wave.
So the integration in (4.19) is, actually, restricted to n It is
clear that
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Now with the help of the identity

we integrate po times by parts in (4.19). Namely, applying this identity po
times and using the first estimate (4.18) for u and (4.21) for ~ we find
that the integral in (4.19) does not exceed 203C10  m + 1. This concludes
the proof of (4.19) and, hence, of the bound (4.4).
The asymptotics (4. 5) is a corollary of (4.4). Actually, by (2.16)

It remains to notice that according to (4.1), (4.2)

To prove the last relation (4.6), we use the bound

which is valid in virtue of (2.14), (3.6) for N ~ &#x3E; 0 and all

/3’ &#x3E; m/2. By the definition (4.1) the same bound is valid also for gq).
Applying these two bounds for 2~3 &#x3E; 2/3’ &#x3E; m we find that

uniformly ko &#x3E; O.N ~ No. The relation (4 . 6) is a direct corollary
of (4.4), (4. 22). D
Now we shall generalize Theorem 4 to potentials with non-compact

supports. Simultaneously, we shall consider functions ~, depending on
some additional parameter p. This is necessary for applications in section 5.
As a preliminary, we shall establish that the wave function, the scattering
amplitude and the total cross-section are continuous uniformly in

k &#x3E; ko &#x3E; 0, N ~ No as q changes in the metrics corresponding to (1.1).
LEMME 4. - Let q satisfy conditions (1.1) and (3.1). Assume that

Then uniformly ko &#x3E; 0, N ~ N

Proof Let us show firstly that
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uniformly in &#x3E; 0, N ~ No. We start from the resolvent identity
(see (2. 25))

where (1 + I x ~ )2~ [q~’°~(x) - q(x) ]. The estimate (3 . 6) (for s = 1),
the conditions (4.23) and N ~ No ensure that

Thus, (4 . 28) can be considered as an equation for with a
small given operator and hence

Using (4.28) once more and applying (4.29), (4.30) we arrive at (4.27).
Combined together, relations (4.23), (4.27) show that definitions (2.14)
of ~r(c~, k, gq~p~), (2 . 9) of and the representation (2.13)
for admit taking a limit as p --~ oo. Moreover, this limit
is uniform ko &#x3E; 0, N ~ No. D
Note that under the assumption (4.23) all objects (4.1)-(4.3) are also

continuous as p -~ oo, i. e.

uniformly in &#x3E; 0, N ~ No. Let us check, for example, (4.31).
Using the inequality ! 1 ~ ! we find that

The integral here is finite, and the second factor tends to zero, as p  oo.

THEOREM 5. - Let for a family the condition (4. 23) hold. Assume
that a function q in (4.23) is continuous and satisfies assumptions (1.1)
and (3 .1 ). Then for N  No, 2oc &#x3E; m + 1, 203B11 &#x3E; m + 1

If, moreover, a &#x3E; m, &#x3E; m, then
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Proof Consider a sequence qn E such that the difference qn - q
satisfies (4 . 23) (for every exl  x). For fixed nand k  oo, N ~ No the

asymptotics of ~r(a~, k, 6(co; k, and M; ~ are given by
Theorem 4. Apply now Lemma 4 and relations (4 . 31)-(4 . 33) to the sequence
qn. This proves formulae (4 . 34)-(4 . 36) for the case q~P~ = q. To treat the
general case, one should use once more Lemma 4. D

In the following section we shall need also the following auxiliary
assertion.

LEMMA 5. - Under the assumptions of Theorem 5 for all r &#x3E; 0

Proo.f: The bound (4.37) is a direct corollary of (4.34) and of the
obvious equality I = Crm/2. For the proof of (4 . 38) we apply
an elementary estimate

to the function ~r(x; In virtue of (4. 37), when multiplied
by k - 2, the second summand in the R. H. S. of (4. 39) tends to zero as k  oo,

p ~ oo . On the other hand, it follows from the Schrodinger equation that

Now (4. 39) shows that

To conclude the proof of (4. 38), it remains to use (4. 37) once more. D

5. THE PROOF OF THE MAIN THEOREM.

THE ASYMPTOTICS OF THE SCATTERING AMPLITUDE

AND OF THE TOTAL CROSS-SECTION

In this section we shall complete the proof of Theorem 1. All scattering
amplitudes will be considered at the diagonal cc~ = So the dependence
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of amplitudes on 03C9 = and of cross-sections on 03C9 is often dropped out
of notation. It is convenient to perform at first a scale transformation
.~ -~ where 1 

= N. Then, by formulae (2 . 20), (2 . 21 )

with

Clearly, g1 = 2k1 ~ ~ as k ~ ~, N ~ oo. Thus our problem is reduced
to a similar one for the case k 1 -~ oo, N 1 = 1 but for the family of func-
tions ~, depending on the additional parameter p. The restriction N -&#x3E; oo,

g  03B30k2 implies that p ~ oo, 203C103B1  yokl. Since, as 03C1 ~ oo, the family
infinitely grows for small x I, results of section 4 can not be applied

to the problem (5.1), (5 . 2) directly.
To use these results, we make a cut-off by zero in a neighbourhood of

x = 0. Namely, let r~a E = 0 for x ~  a and = 1 for

&#x3E; 2a. Instead of we consider previously an auxiliary potential
For fixed a &#x3E; 0 this potential satisfies assumptions of Theorem 5.

Actually, set = ~r~(jc). The function is, obviously,
continuous and obeys conditions ( 1.1 ) and (3 .1 ). Moreover, by ( 1. 3)

Theorem 5 ensures now that for N 1 = 1 and fixed a &#x3E; 0

We shall show, further, that relations (5.3), (5.4) hold true without a
cutt-off function ifpis subject to the condition 2p"  yokl, i. e.

as gl - 2/ci -~ oo, p  00 and 2p" ~ yokl. To go over from (5 . 3) to (5 . 5),
we notice first of all that .

Actually, according to the definition (4.2)
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Since b) = 1 for 2a and all Z E [R, the integration over variable b
in (5 . 8) is restricted to a ball 2a. Consequently the R. H. S. of (5 . 8)
does not exceed what proves (5 . 7). To take off r~a in the L. H. S.
of (5 . 3), it suffices to check that as gi=2~i -~00,~-~00, 2p~ ~ yokl

with Ea ~ 0 as a  0. Actually,

~ 

where upper limits are taken for ~i=2~i -~00,~-~00, and
fixed a. In the R. H. S. of (5.10) the first and the third summands tend to zero
as a  0 in virtue of (5 . 9) and (5.7). The second summand is zero by (5 . 3).
Since the L. H. S. of (5.10) does not depend on a, it also equals zero. This
proves (5. 5). Similarly to (5. 7), it can be verified ~ 

as a  0, 2x &#x3E; m + 1. Thus, by the above arguments to justify the tran-
sition from (5 . 4) to (5 . 6), it suffices to check that as ~i=2~ -~ 00, P  00,

with ~a ~ 0 o.
For the proof of (5.9), (5.11) consider the scattering amplitude /(~i; ~, !;i),

where ~ = = Recall that  is defined by (2.26), where
we choose F = Fa to be a multiplication by such a function that

ij(x) = 0 for !~!~2 and ij(x) = 1 for !~c~3. Then
= ~(~’~) and 

.

We shall show that

as 2~i -~ oo, p --~ oo, yokl. Once (5.13) is verified, relations
(5 . 9) and (5.11) follow from inequalities (2 . 28) and (2 . 30) correspondingly.
Actually, by (5.4), (5.13)

as g 1 = 2k1 ~ oo, 03C1 ~ oo, 03B30k1 and a fixed. Since C,
m-l

the R. H. S. here is bounded by Ca 2 . Inequalities (2. 28), (2. 30) ensure
m-l

now (5.9), (5.11) with Thus, the demonstration of (5.9),
(5.11) is reduced to that of (5.13). -

The proof of (5 .13) is, essentially, similar to the estimate of the scattering
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amplitude in Theorem 3 for potentials with compact supports. By (2 . 26),
(5.12)

The necessary bound for the resolvent R( ~ 1, g 1 c~~’’~) follows from (3 . 6).
Actually, applying (2.18) we find that

We emphasize that the restriction yokl is required only for a validity
of (5 .15). It is sufficient for us to have a corollary of (5 .15) when x ~ + a) - ~
is replaced by a characteristic function Taking here an upper limit
as g 1 = 2k 1 ~ oo, 03C1 ~ co, 03B30k1 and a fixed we find that

Recall, further, that for fixed a the family satisfies assumptions of
Theorem 5 and, thus, for functions the bounds (4. 37), (4.38)
hold. Now we take in (5.14) an upper limit as g 1 = 2~ -~ oo, p ~ oo,
2~ ~ yokl, a fixed. By (4. 37), (4. 38), (5.16) two summands in the R. H. S.
of (5.14), not containing ~~3a~03C8(k1,v1)~, vanish in such a limit. The sur-

viving two summands are bounded by am -1. This concludes the proof
of (5.13) and, hence, of (5.5), (5.6).

It remains to make sure that (5.5), (5.6) are equivalent to (3.4), (3.5).
By (5.1), (5 . 2) and (2 . 7) in terms of initial objects a~; k, gq), k, gq)
relations (5. 5), (5. 6) can be rewritten as

where x = (m - 1)(a - 1) -1 and limits are taken for k  oo, N ~ oo,
g  yok2. Let us compute now coefficients and 

By definition (4 . 2), choosing spherical coordinates in we find that
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The substitution Z == b ~ ctg () shows that

where the coefficient Q is defined by (3 . 3). The integral over b can be
expressed in terms of the r-function :

It follows that

Now the equivalence between (5 .17) and (3 . 4) becomes apparent. A similar
calculation shows that

r

Thus, (5.18) is equivalent to (3.5). This concludes, finally, the proof of
Theorem 1.
The considerations above prove also Theorem 1’. Note in this connection

that the condition N -~ oo was used to replace q(x) by its asymptotics
in (5 . 3), (5 . 4). The assumption -~ oo is required for the para-

meter k 1, k ~ -1 - (see (5 . 2)), to tend to infinity, which is necessary
for the application of Theorem 5.
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APPENDIX

A) Let us give a direct proof of a coincidence of the righthand sides of (2. 3) and (2.6).
It suffices to prove that

Let K = I - ~ be a multiplication by a function 1 T = HK - KHo
and the proof of (A .1) is split up into verifications of two similar equalities

We check, for example, (A. 2). Since Zo(k)Hou = k2Zo(k)u and (H - k2)R(k, E),
it is sufficient to show that

Recall now that for 2/3 &#x3E; 1 the operator is bounded and the operator E)X~
has a limit as 8 --+ 0. By the expression (2. 5) for T, the operator Zo(k)KR(k, e)Zo(A:)* also
has a limit as 8 --+ 0. This certainly implies (A. 4) and, hence, (A. 2). The equality (A. 3)
can be proven in exactly the same manner. Combining (A. 2) and (A. 3) together we get (A .1).

B) We shall give here a direct proof of the equality (2. 24). For the operator S(k) = S(k; v, v~)
we use the expression (2 . 23) with ~=1 and T=H-Hi=V-Vi=:V. Similarly to A),
one can verify with the help of the relation that the R. H. S. of (2.23)
does not depend on ~. By the proof of (2 . 24) we omit k and set for brevity R = R(v), R1= R(vl),
B = V - VRV, Bi=Vi-ViRiVi, B = V - VRV. In this notation the equality (2 . 24) reads

We insert here the definition (2.22) of the operator Zl and neglect operators Zo and Z~
on the left and on the right. Thus for the proof of (B .1) it suffices to check that

Note now that by (2.4) and (2.1)

and by the resolvent identity (2.25)

Therefore (B. 2) is equivalent to

The last equality is again a direct consequence of (2 . 25). This proves (B. 1) and hence (2 . 24).

Note added in proof. After this work was submitted for publication it was proven

by the author that when averaged over some small interval of k the asymptotics (3.4)
(for a &#x3E; m) and (3 . 5) (for 2a &#x3E; m + 1) hold true in the whole region N -+ oo, -+ oo.
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