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Small random perturbations
of infinite dimensional dynamical systems

and nucleation theory

M. CASSANDRO (*), E. OLIVIERI (**), P. PICCO

Centre de Physique Theorique (* * *), CNRS, Luminy, Case 907,
F 13288, Marseille, Cedex 9, France

Ann. Henri Poincaré,

Vol. 44, n° 4, 1986, Physique ’ eorique ’

ABSTRACT. 2014 We consider the stochastic differential equation :

where a is the standard space-time white noise and V is a double well
non symmetric potential. The equation without the white noise term (s=0)
exhibits several equilibria two of which are stable. We study, in the double
limit zero noise and thermodynamic limit (8 ~ 0, L -~ (0), the large
fluctuations and compute the transition probability between the two stable
equilibria (tunnelling). In this way we extend previous results of Faris and
Jona-Lasianio [1] who considered the symmetric problem in a fixed inter-
val [0,L]. The unique stationary measure associated to the stochastic
process described by our equation is strictly related to the Gibbs measure
for a ferromagnetic spin system subject to a Kac interaction. Our double
limit corresponds to the one considered by Lebowitz and Penrose in their
rigorous version of the mean field theory of the first order phase transitions.
The tunnelling between the two (non equivalent) equilibrium configura-
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tions is interpreted as the decay from the metastable to the stable state.
Our results are in qualitative agreement with the usual nucleation theory.

RESUME. 2014 On considere 1’equation differentielle stochastique

ou a est Ie bruit blanc standard dans l’espace temps et V un potentiel a
double puits non symetrique. L’equation sans Ie terme de bruit blanc

(8 = 0) possede plusieurs etats d’equilibre dont deux sont stables. Dans la
double limite du bruit nul et du volume infini (8 -~ 0, L -~ (0), on etudie
les grandes fluctuations et on calcule la probability de transition entre les
deux etats d’equilibre stables (effet tunnel). On etend ainsi des resultats
anterieurs de Faris et Jona-Lasinio [7] ] qui ont considere Ie probleme
symetrique dans un intervalle fixe [0,LJ. L’unique mesure stationnaire
associee au processus stochastique decrit par notre equation est reliee

de façon stricte a la mesure de Gibbs d’un systeme de spins ferromagne-
tiques avec une interaction de Kac. Notre double limite correspond a
celle consideree par Lebowitz et Penrose dans leur version rigoureuse de
la theorie du champ moyen pour les transitions de phase du premier ordre.
L’effet tunnel entre les deux configurations d’equilibre (non equivalentes)
est interprete comme Ie passage de l’état metastable a l’état stable. Nos
resultats sont en accord qualitatif avec la theorie usuelle de la nucleation.

SECTION I

INTRODUCTION

In this paper we study the large deviations for an infinite dimensional
dynamical system subject to small random perturbations.
The model that we consider is (formally) defined by the following sto-

chastic differential equation.

where the field u depends on the one-dimensional space variable x E [QJ L]
and on the time t ; M(jc,) satisfies Dirichlet boundary conditions :

Poincaré - Physique theorique
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a is the standard space time white noise, i. e. a is a Gaussian random field

with zero mean and covariance :

Obviously equations 1.1 and 1.2 do not make sense in their present form
and we refer to Section 2 where precise definitions will be given.

Eq. 1.1 describes a stochastic diffusion process whose trajectories are
made by continuous functions of time taking values in some space of
functions (profiles) of the space variable x ; it is obtained by adding a white
noise forcing term with intensity 8 to a deterministic non linear heat equa-
tion which is of gradient type : in fact eq. 1.1 can be written, for 8 = 0, as :

where

The function V(u) is called potential ; the functional S(u) is called stationary
action.
The typical example of the kind of potentials that we shall consider

is of the form V(M) = = Vh(u + a) where = VoM + hu and

Vo(u) is an even two well shaped function. The graph of V(u) is given in fig. 1.
The simplest physical interpretation of eq. 1.1 is that of an elastic string

moving in a very viscous noisy environment, submitted to a non symmetric
(h ~ 0) anharmonic potential and satisfying non zero boundary conditions

(a ~ 0).
Our model is very similar to the one considered in [1] ] by Faris and

Jona-Lasinio and, for the moment, the only difference is that our poten-
tial V(u) is non symmetric.

In [1 ], henceforth referred to as F.-J., the authors study the large devia-
tions giving explicit estimates to the probability of some tunelling events;
they show that for fixed L, in the limit 8 ~ 0 the analysis developed by
Ventzell and Freidlin for the finite dimensional case is still valid ; but, as

it was remarked in [1 ], the case where the interval [0,L] is replaced by
the full real line is not a trivial extension of the previous one and, probably,
it requires completely different considerations.

In the framework of the above mentioned physical interpretation, the
infinite volume (thermodynamic) limit should describe the motion of an

infinitely extended string but the interest of this limit can better be under-
stood if we consider another physical application of our equation, namely
the so called stochastic quantization. This method has been recently
proposed by Parisi and Wu [2] to study quantum field theory : the aim is
to obtain the probability distribution associated to a Euclidian quantum

Vol. 44, n° 4-1986.
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field theory in d dimensions as the limiting (stationary) distribution of a
diffusion process taking values on fields on a d-dimensional space.
The stationary measure for the stochastic process described by our

equation, whose formal density is given by exp [2014S(M)/~], is associated
to the quantum mechanical description of an anharmonic oscillator. This
description, of course, becomes complete only in the limit L -~ oo . In

this paper we assume that ~ = B(L) and study a joint thermodynamic
and zero noise limit.
We find that for ,B = exp [ - exp (cL) ], c &#x3E; 0, the basic features of the

F.-J. analysis still hold.
From a mathematical point of view, this provides some informations

about the « true » infinite volume limit, giving an estimate (upper bound)
for the dependence on L that still preserves the finite length and then the
finite dimensional picture.
From a physical point of view the relevance of the above mentioned

joint limit becomes clear in the framework of a third possible interpretation
of our equation 1.1 which constitutes the main motivation of the present
paper. It comes from the theory of metastability in statistical mechanics.

Let us say a few words about the phenomenon of metastability in the
case ’of ferromagnetic phase transitions at low temperature. If we add a
small positive magnetic field to a negatively spontaneously magnetized
spin system, then, in some particular experimental situations, the sys-
tem, instead of undergoing the right phase transition towards a stable
state with positive magnetization, still persists for a long (macroscopic)
time in an apparently equilibrium situation (called « metastable equili-
brium ») with negative magnetization, untill an external perturbation or a
spontaneous large fluctuation, which « nucleates » the new phase, starts
an ireversible process that leads the system to the correct stable equilibrium.
For more details on metastability and on its possible rigorous theory

we refer to the review papers [3] ] [4 ].
In a recent paper [5 ] a « pathwise approach » to metastability has

been proposed in a general context of stochastic dynamics. The Contact
Process, as well as the simple Curie Weiss mean field model, were studied
from this point of view. The dynamics of this last model is very similar
to the one described by an Ito one dimensional stochastic differential
equation where the drift is given by the derivative of a double wells potential
like our V(u).

Physically, u represents the magnetization, V(u) the canonical free energy,
h the external magnetic field (see [5] ] for more details).

In another paper [6] ] some generalizations to finite dimensional cases
were considered where, in order to perform the « pathwise approach »
program proposed in [J], a wide use of the fundamental works of Ventzell-
Freidlin was made [7] ] [8 ].

Annales de l’Institut Henri Poincard - Physique theorique
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We notice that the Curie Weiss theory in spite of its extreme simplicity
(only one variable, the total magnetization, is introduced to describe the
state of the system ; absence of any spatial structure) is completely
unacceptable from the point of view of statistical mechanics : in fact, since
in this theory the range of the interaction among the spins equals the
volume of the container, we get that the fundamental property of the free
energy that ensures the thermodynamic stability, namely the convexity,
is violated. And, even worse, it is this unphysical feature of the free energy
that provides the potential barrier (or better, the activation energy) neces-
sary to produce the metastable behaviour.

In the framework of equilibrium statistical mechanics a rigorous and
acceptable version of the mean field theory is now well known. It is based
on the introduction of the so called « Kac potentials » [9 ]. In the following
we shall describe how the Gibbs equilibrium measure of a simple one
dimensional model « a la Kac » can be related to the unique stationary
measure of the process described by eq. 1.1, giving rise to a dynamical
theory where all the above mentioned unpleasant and unphysical features
are absent.
The spatial structure of the model will play an important role : it will

be necessary to garantee the correctness of the theory but, at the same
time, it will produce a remarkable complication with respect to the naive
Curie-Weiss model.

Consider a finite interval A = [1,N] ] on the lattice Z, with N = ML,
M, L positive integers.
A spin r~ ranging from - oo to + oo is sitting on each site a of A. We

suppose given an a priori independent measure on each site : with

the properties :
u) is even

and

Let us remark that these conditions are the same as in [7~] where gene-
ralized Curie-Weiss was studied from a rigorous point of view.
The volume A is subdivided into L disjoint blocks Ai, ..., AL of length

I I == Ify = M, the Hamiltonian is given by :

Vol. 44, n° 4-1986.
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where Jo, J 1 and h are positive and in equation 1.5 we have chosen for
the sake of simplicity periodic boundary conditions on A. The Hamil-
tonian H describes a (not-strictly translationally invariant) interaction of
range M = l/y and strengh y.

Let us introduce the quantity

where

Ho is Hamiltonian 1.5 with h = 0 and N = L/y.
We define, in general, the canonical free energy for a continuous spin

magnetic system in the following way

where

Now consider the canonical free energy of our model for fixed L, and
call it In theorem A. 1 of Appendix A we show that, in the
so called Van der Waals [9 ] limit (y ~ 0, L ~ oo) followed by the limit
0 ~ 0, the function converges to a convex function of m
that turns out to be the convex envelop of the corresponding Curie-Weiss
free energy (L = 1). Moreover, we show that the limits y -~ 0, L ~ 00

can be interchanged and also taken simultaneously with arbitrary relative
velocity : namely, we can take y = y(L) with an arbitrary dependance y(L),
provided y(L) ~ 0 as L -~ oo .

In this way we extend to our case the well known result obtained by
Lebowitz and Penrose for translationally invariant Kac potentials [9 ].
Now for Land y fixed we can introduce the variables .

(average magnetization in the block AJ.
It follows from Appendix A that, for y small, the Gibbs measure associated

to our model is well approximated, for h ~ 0, by the following distribution

Annales de Henri Poincare - Physique ’ theorique ’
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where

and

In eq. 1. 9 we have assumed periodic boundary conditions but the modi-
fication to describe arbitrary boundary conditions is obvious. In particular
for mo = mL+ 1 = ~ by translating all the spin variables by - a we get :

Looking at the expression in eq. 1.9, one immediately realizes that the
stationary measure with formal density exp [ - is in fact, a conti-
nuous version of exp [ - ..., provided 03B3 = E2 : it suffices to
substitute the sum with the integral and the finite difference with the deri-
vative.
We remark that, as far as we know, no limit exists in which F(mL) reduces

to S(u) ; furthermore, the dynamics described by eq. 1.1 involves only
global variables and it is not even clear how to relate a discrete version of
eq. 1.1 to a Glauber-like microscopic dynamics involving the single spin
variables But it is reasonable to think that the discrete and the continuous
model share most of the physically relevant features, so that eq. 1.1 pro-
vides a qualitatively good description for the time evolution of the magne-
tization profile of a ferromagnetic Kac’s system.

Let us now briefly outline the time evolution of a system described by
eq. 1.1 to illustrate how nicely it fits with the phenomenological nucleation
theory. As we shall see in the next section, when the random noise is absent
(B = 0) there exists only two stable equilibria corresponding to two non
equivalent minima of the stationary action S(u). Apart from the effect of
the boundary conditions, these configurations are spatially homogeneous
(u(x) ~ const.). For one of them (the local minimum) the constant value
of the magnetization is antiparallel to the external magnetic field h (meta-
stable state), whereas for the other (the absolute minimum of S) it is parallel
(stable state). If at time t = 0 we are in the metastable state and switch on
the random noise keeping B very small, the magnetization profile starts
oscillating near the local minimum untill some very large fluctuation leads

Vol. 44, n° 4-1986.
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the system near to the absolute minimum. We evaluate the probability
of the occurence of the tunnelling in a given large interval of time : this
quantity is related to the mean transition time.
We get that the most probable mechanism of tunnelling is given by a

path going « up » against the gradient of S(u) and passing near a particular
saddle point of S.
The spatial structure of this saddle point is, in our case (h 7~ 0), charac-

terized by a very pecular profile (see fig. 2) : the magnetization has the
value typical of the metastable state all over L, except for a finite region
(practically independent from L) where the magnetization takes an opposite
value.

This region can be interpreted as the critical droplet and its formation
turns out to be necessary to allow the growth of the new stable phase all
over the volume. The position of this critical droplet is affected by the
choice of the boundary conditions ; in other words what we describe is
not the homogeneous nucleation but, rather, the nucleation in presence
of « defects ».

In section 2 we shall clarify this point ; now we only say that, meanwhile
from a static point of view all the relative velocities in the joint limit y ~ 0,
L -+ oo are equivalent (in the sense that they all produce the same limiting
convex free energy), from the dynamical point of view we expect very
different kind of behaviours and it is only when the strength of the noise
goes to zero sufficiently rapidly, with respect to the volume, that we are
able to avoid the phenomena of the true infinite volume situation. In this
last case, the large local fluctuation can take place everywhere in the space
and even a global description of the profile looses any meaning.
The organization of the paper will be the following:
In section 2 we give the basic definitions and properly define our stochas-

tic process via an integral equation. We further classify the critical points
of S(u) and state our main result in Theorem 2.1.

In section 3 we prove the theorem. The strategy is obvious : since for

any fixed L the situation is similar to the one already considered in F.-J.
what we have to do is to trace back the L dependence in all the F.-J. estimates
and adapt some arguments to our non symmetric case. 

a

It turns out that the main new estimate, that we need, concerns the time
needed by the deterministic flow, described by eq. 1.1 when B = 0, to reach
the neighborhood of a stable configuration starting from the vicinities
of the saddle point.

Section 4 is devoted to this estimate : we shall find an upper bound to
these times containing an explicit L-dependence.
Appendix A is devoted to the analysis of the previously defined statistical

mechanical model; appendix B contains the proof of some results concerning
the critical points of S(u).

l’Institut Henri Poincaré - Physique theorique
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SECTION 2

DEFINITIONS AND RESULTS

Let us start by saying that in this paper, our exposition will not be self-
contained : we shall rephrase several definitions and results of F.-J., when
we need their adaptation to our case, but we shall, often, quote the F.-J. paper
without reporting the arguments of proof.

In the sequel we shall use the following notations: ~| ~|p will denote
the Lp norm of a function of the space and time variables ; given a function f,
we set :

Moreover

We shall denote by I I ~p the Lp norm of a function of the space variable :

given u : [0,L] -~ ~

we set

and

Equation (1.1) that has been introduced at a formal level in the intro-
duction can be restated as an integral equation :

Where

(1) g is the integral operator that solves the initial value problem for the
heat equation with Dirichlet boundary conditions (D. b.. c.) on [0, L ].

The Kernel of g has the following expression 
.’

Vol. 44, n° 4-1986.
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Notice that for any positive t the operator g maps the space C(O, L)
of continuous functions on [0,L] ] into the space ~0(0, L) of continuous
functions on [0,L] with (D. b. c.) on 0, L.
(2) uo E ~0(0, L) is the initial datum
(3) G is the operator that solves the inhomogeneous heat equation with

zero initial condition.

is given by: t) = ds dyg(x,y,t - s) /(y, s).

(4) W, formally given by: W = Gx, (X = space-time standard white noise,
is the Gaussian process with covariance

with y, s) = y, t - s) ~o,co](~ - s).
One gets :

with

For more details, see F.-J.
We assume the following properties of the potential V. (See Fig. 1.)

III) There exists only three hyperbolic critical points such that

:of

IV) 3111 : i1? p  i?’1  such that

In Appendix A we show that, provided a further assumption is made
on ~(o-J defined in introduction (see point II of lemma A. 2), a particular
example can be found in the framework of mean field theory of ferromagne-
tism. In this case one gets :

Annales de ll’Institut Henri Poincaré - Physique ’ theorique ’
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where :

and vo(m) is an even function of m satisfying I) II) and a symmetric version
ofIID. Namely :

Property IV) is a consequence of the hypothesis b) of section 1 and is

satisfied for m = 0. Fig. 1.

The following properties of the Gaussian process Ware proved in F.-J.:

1) The random functions W(x, t) are Holder continuous with exponent
 1/4 with probability one.

2) They satisfy the boundary conditions W(O, t) = W(L, t) = 0 and
W(x, 0) = 0 with probability one.
Thus for any uo E CD(O, L) and any realization W E CD [ [0, L] ] x [0, T ] ]

(the space of continuous functions on [0,L] ] x [0,T] ] that satisfy D. b. c.
on 0 and L and zero initial condition) we try to find a unique solution to
eq. 2 .1.

Since the space ] x [0,T]] ] is of full measure with respect to
the Gaussian process W, in this way we correctly define the non-linear
(non Gaussian) random process u.
The following proposition summarizes the properties of the solution

of eq. 2 .1.

PROPOSITION 2.1.

1. VMoeCD(0,L), VT, ] x [0,T]] ] there exists a unique
solution u of eq. 2 .1 in COO [ [0, L ] x [0, T ] (the space of continuous real
functions on [0,L] ] x [0,T] with D. b. c. and uo initial condition).

Vol. 44, n° 4-1986.
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II. The solution u depends continuously in the uniform norm on

and we have

for any pair u2 of solutions corresponding to Zi, Z2.
The constant K(T, L) is given by

DEFINITION 2.2. The previous proposition allows us to define the
continuous one to one map u = where u is the unique
solution to eq. 2.1.
For the proof we refer to F.-J. Here we only prove the L4 a priori estimate

which is the analog of Lemma 5.4 of F.-J. The result is contained in the
following :

PROPOSITION 2.3. - Let u be a solution of eq. 2.1:

Then 3 constants a &#x3E; 0, ~ &#x3E; 0 independent from Land T such that either

or

. From this Proposition and from Lemmas 5.5, 5.6, 5.8 and Proposi-
tion 5.7 of F.-J., it is easy to get the expression given by eq. 2.5.

Proof of Proposition 2.3. 2014 Let q = M 2014 Z.
We denote by (’,’) the scalar product in L2( [0, L ] x [0, T ]). It follows

from condition II) above on the potential that ~M &#x3E; 0 : if ~ &#x3E; M then

v.(m) &#x3E; _ 2 m3.
We h ave

where

We shall prove that the statement of the Lemma is true with oc, 6 such that

Annales de l’Institut Henri Poincare - Physique - theorique -
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For, if III Z 1114  1114 and (LT)1/4 1114 we get from eq. 2.6

that  V (u), u - Z ) &#x3E; 0.

In this way we get a contradiction with Lemma 5.3 of F.-J. and so

Proposition 2.3 is proved. -
Now we give some results concerning the equilibrium solutions of the

deterministic time evolution given by eq. 2.1 when B = 0. These stationary
solutions are the critical points of the stationary action :

S(u) is conventionally = + oo if u does not satisfy D. b. c., if it is not abso-
lutely continuous or if the integral is not convergent.

The critical points of S are the solutions of the Newton’s equation

d2u 2 = V’(u) with the conditions u(O) = u(L) = 0 2 . 8
dx

In Appendix B we shall prove the following :

PROPOSITION 2 . 4. Call m the real number such that = V (m _ ),
m-  m  m + (see Fig. 1 ).
We distinguish three cases :

In the case 1 there exists a unique critical point u* which is the absolute
minimum of S(u).

In the case 2 the critical points exhibit an oscillating behaviour. Calling I
the number of positive oscillations and J that of the negative ones we have :

i) 
ii) 3K1 &#x3E; 0 such that I + J ~ K1L
iii) 3Lo K2 &#x3E; 0 such that VL &#x3E; Lo to any I  K2L is associated

a unique pair of critical points

and to any pair I, J with I - J I = 1, I ~ K2L is associated a unique
critical point

Moreover : u01 is the absolute minimum, u10 is the only other (local)
minimum and all the other critical points are unstable.

Vol. 44, n° 4-1986.
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and are saddle points and have only one instability direction.
Finally

I n the case 3 for L sufficiently large, we have exactly three critical points
ua, M~ u~ where ua is a local minimum, ub is a saddle point with a unique
direction of instability, u~ is the absolute minimum and :

Proof - This proposition summarizes the most relevant points of
Appendix B. Namely Proposition B . 4, Lemma B . 5 and B . 6, Lemma B. 7,
Lemma B . 8 and Proposition B . 9.

In fig. 2 we represent, for large L, the critical points in the cases 1), 3)
and the first critical points in the case 2.

From now on, we shall consider only the case 2) : m &#x3E; 0 &#x3E; m _ . The
other two cases will be discussed in Remark 2.2 after the statement of
Theorem 2.1.
We call B(u01) and the basins of attraction of u01 and u10, respec-

tively, with respect to the deterministic gradient fiow described by eq. 1.1
when 8=0.

Annales de l’Institut Henri Poincaré - Physique theorique



357
INFINITE DIMENSIONAL DYNAMICAL SYSTEMS

For any sufficiently large L, we consider a neighbourhood Y of Moi
in the uniform topology satisfying:

1) Y is contained in a uniform ball centered at ~01 of radius

~m+ 2014 ) II
~20142014220142014- . r ~ l

2) Y contains a uniform ball centered at u01 of radius 03B8(L)=exp[-  2 L ]
where ~ is a suitable positive constant (see point II), III) of Th. 4.1).

3) Y C 

We define the « tunnelling event »

We define also

where Y is the closure of Y in the uniform topology.
The Sobolev Hi norm of a function f : [0, L ] -~ R is defined as

Now we are able to state our main result concerning the probability
of tunnelling. _

THEOREM 2.1. - 3Lo : VL &#x3E; Lo, V( &#x3E; 0 there exists a neighbourhood N
in the Sobolev Hi topology, whose radius depends only on (; there exists

such that

Vol. 44, n° 4-1986.
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d2u
such that we have:

Moreover it is possible to choose

where Cb c2, ~3 &#x3E; 0 depend only on ~.
Remark 2. l. 2014 It comes out from the proof of the above theorem given

in Section 3 that we can prove the lower bound in 2.9 even in the case
when the initial configuration uo is only supposed to belong to a neigh-
bourhood N of u10 in the uniform topology with S(uo) bounded from above
by some constant c.

Remark 2 . 2. 2014 It will be clear from the following Sections that a result,
completely analogous to theorem 2.1, is still true in the case 0  m- if
we substitute, respectively, and u01 with ua, ub and on the
other hand in the case %! ~ 0 we cannot have tunnelling phenomenon at
all (absence of metastability).
We recall that, in the magnetic interpretation these three cases correspond

to different boundary conditions (see eq.1.11). The case 0 &#x3E; m corresponds
to boundary conditions that favour the metastable phase with negative

, 

magnetization and so the fact that the configuration ub (saddle point)
contains a critical drop of positive magnetization, placed in the center of
the interval [0, L ], can be interpreted in the following way : the boundary
conditions repell the positively magnetized phase and so the most likely
position of the critical drop is as far as possible from the boundary.
The case m &#x3E; 0 &#x3E; m- corresponds to boundary conditions that attract

the positively magnetized phase and so the most likely position where
the critical drop is formed, during the tunnelling, turns out to be near
the boundary. 

"

In the case   0 the boundary conditions are so favourable to the
positively magnetized phase that we don’t have any other stable critical
point.
If we notice that m is the magnetization inside the critical droplet (in
the limit L -&#x3E; oo), it is easy to understand why a change in the sign of 
implies a qualitative change in the behaviour of the system.

In fact for m  0, it is the boundary itself that behaves like a critical
or overcritical droplet, driving the system directly to the stable state with
positive magnetization. 

’ 

’

l’Institut Henri Poincaré - Physique theorique
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SECTION 3

PROOF OF THEOREM 21

We first evaluate a lower bound to the probability of tunnelling 
following exactly the arguments of F.-J. Since A o is open d f E E!5 &#x3E; 0

such that

From Proposition 2 .1 and definition 2 . 2, we get :

Now we define the Gaussian action functional Io(f) as

and we set, conventionally, Io(f) = + oo if f does not satisfy the D. b. c.
or the condition f = 0 at t = 0.
The expression of Io(f) is formally given by

From Proposition 3.1 of F.-J. (see eq. 3.6 of F.-J.) we have

where

The formal expression of I(f) is given by

From the proof of Proposition 3.3 below it easily follows that

. 

so that if ~  ’ 
ð 
3 exp [ - K(L, T)T] it will certainly be true that
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Then the proof of the first part of eq. 2.9 is reduced to find B/( &#x3E; 0 a func-
tion in A ~ such that

provided T is larger than some To(L, Q.
To show 3.6 we construct four paths and then we piece them together

to form f The first one is constructed by linear interpolation from uo
to a point u 1 near u10 (see lemma 9 . 2 of F.-J.). The third path is again a
linear interpolation from a point u2 to a point u3 both near u11, we will
show that the contribution to I(f) coming from these two paths is small.
The second path is from ul to u2 and it follows the gradient ftow with
reversed velocity. Finally the fourth path is along the gradient flow from u3
to the vicinities of u01. The contribution to I(f) of this fourth path is zero
and so the main contribution will come from the second path.

, 

We shall show that we can choose the points u1, u2 and u3 with the
following conditions
1) II ui 112, II I ~2, i = 1, 2, 3 are bounded by CL where C is a positive

d2u
constant and S’(M)= - 2014- + V’(u).dx

II) The gradient flow starting at u3 reaches the neighbourhood of Moi
in a finite time T2.
The gradient 5ow with reversed velocity starting at u 1 reaches u2 in a

time Ti: _ _

III) T1 + T2 == T  exp(C1L) for some positive constant C 1.
We first show that in any uniform neighbourhood of the saddle point

u 11 - one can find points u2 and u 3 belonging respectively to the
basin of attraction of u 1 o and u01.

Consider the case when the potential V is symmetric (i. e. V(u) = V( - u)).
In the case considered in Appendix A this means a = 0 and h = 0.
Since u11 is the minimal saddle point it is certainly possible to find,

in any neighbourhood of u11 points in the basin of attraction of one stable
equilibrium ; because of the symmetry we find points in and also
points in 
We want to show that the same happens in the non symmetric case.

In general we consider a one parameter family where ,u can represents
either h or a and Vo(u) is symmetric. ,

Call one of the two minimal saddle points of S(u) (we can suppose
! f.11  I in such a way that the two wells-shape of is preserved
and Proposition 2.4 still holds).

Consider the second differential of S(u)
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with u = u’î 1, + and D. b. c. and call the eigenfunction of this operator
associated to the only negative eigenvalue.
The following proposition is true :

PROPOSITION 3.1. There exists 5 &#x3E; 0 such that for any Ji : I  I
and for any L there exists 11 &#x3E; 0 such that if we can assume

that u2 = u i 1, + + 03B403C8 ~B(uu01) and u 3 = u i 1, + - 03B403C8 ~B(uu10) then the

same is true for ,u + O,u provided  ~.

Proof 2014 It is very easy to see that the functions: R ~ C1D(0, L) given
by u’î 1, +, uo 1, are continuous.
To see this property it is sufficient to look at the equation of Newton’s

type satisfied by the critical points of the action and remark that the

energy = - + is a continuous function of  (see
eq. B9, BI2). 2 dx
Now by definition of if 5 is sufficiently small we have

By the continuity of as a function of  (that immediately follows
from the previously discussed condnuity of as a function of ,u) we
have that if ~ is sufficiently small

Now u2 can be written as :

when 0 is orthogonal to ~~,+o~, in L~([0,L]) and necessarily 0.

We define for T : 0 ~ r ~ 1

then

for ~ sufficiently small. This implies that all the points of the segment defined
by eq. 3 .11 considered as starting points of the gradient flow corresponding
to  = 71 + O,u are all approaching when t ~ oo either or 

In particular this means that

belong to the same basin of attraction (for the gradient flow corresponding
to ,u == ~ + O,u).
Now since we know, by hypothesis, that u2 belongs to the basin of attrac-

tion, say of u i o with respect to the gradient flow corresponding
conclude the proof we have only to show that u2 E 

namely u2 belongs to the basin of attraction of u +0394  01 with respect to the
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gradient flow corresponding to ~u + D,u. In fact a completely analogous
argument can be applied to u3. To see that consider a
time T so large that the evoluted u~ at time T along the gradient flow
corresponding and starting at u2 is such that

Now it is easy to show along the same lines of the proof of Proposi-
tion 2.1 a continuity property of the dynamics (at fixed times) with respect
to  that ensures that if is the evoluted at time T of u2 with the dyna-
mics corresponding to  =  + then :

From the continuity in of the critical points and from 3.13 we get, ‘d~

for O,u sufficiently small.
By choosing ~ sufficiently small since is a local minimum of S we

conclude

and so

Now by iterating a sufficiently large (possibly depending on L) number
of times the argument of Proposition 3 .1 since the value of ð can be chosen
uniformely in /1 for I /11  I /10 I we get point II) above.
To show ,I) it is sufficient to remark that, in our construction u2 and u3

are bounded by a constant (of course ul satisfies the same property) and
that /~(x), being a solution of a Schrodinger equation with bounded poten-
tial, has a Sobolev H2-norm bounded by a constant.

Point III) is more difficult to prove.
Its proof will be the subject of the following section 4.
Now the contribution to 1(1) coming from the path against the flow

(from Ub to u2) is bounded by 2ðS(L) (see the proof of theorem 9.1 of F.-J.).
The contribution to 1(1) coming from the linear interpolation between
uo and ul and between u2 and u3 is bounded by ~ provided

as it follows from Lemma 9.2 of F.-J. This concluded the proof of
eq. 3 . 6. II
To get an upper bound to the probability of tunnelling, we have to

consider all the possible mechanisms of tunnelling. The proof will not
follow the topological arguments used in F.-J. but it will be based on the
concept of basin of attraction.
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The crucial property of the gradient fiow that we use is the fact that the
basins of attraction are disjoint and open in the uniform
topology (Theorem 8 . 4 of F.-J.). We start proving a preliminary result :

au a2u 
.

PROPOSITION 3 . 2. - If u( . , t) is regular, namely - and 2014~ are inat cbr

CD([0,L] ] x [0,T]) then 3ð such that V, &#x3E; 0 there exists an H 1 neigh-
bourhood N of u10 such that if uo E N the inequality

implies that

Pro_of. - For, consider a neighbourhood Y’ ~ Y, Y’ c such that

_

If a regular u belongs to ’

then I(u) &#x3E; 2LBS(L) - ~.
In fact if u(., T) E necessarily an instant T’  T exists such that

otherwise the trajectory u( . , t) would always belong to
the basin of attraction either of u10 or of u01 and this is impossible since
these basins are open.

If u is regular it follows (see eq. 10.4 of F.-J.) that

and since for any there exists an H1-neighbourhood N of u10 such that
for any u( . , 0) in N we have

then

We conclude that if

then u( . , T) fÎ: Y’ and so dist (u, &#x3E; ~.
We know by theorem 6.9 of F.-J. that if u is such that I(u)  + oo and

u( . , 0) is regular then 3 a sequence un of regular functions such that

i) un ~ u uniformly
ii) I(un) ~ I(u).
It is easy to extend the previous results, valid for regular u. It is sufficient

to consider the approximating sequence un ~ u, for n sufficiently large :

Now, since I(un)  20394S(L) - 03B6/2, un(., T) ~Y’, and so dist (un, Auo) &#x3E; 203B4
and since ~u - un~~ ~ 0 we get dist (u, &#x3E; 5. II
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If we define Ia = { u : I(u) ~ (X } we can say:

Now, using the continuous we get like in eq. 3.2:

E (EW, 1~’~~ ~) ~ ~ exp [ - K(LT)T ]) 3.19

To bound the r. h. s. of eq. 3.19, we need some probability estimate
on the gaussian process W that are contained in the following :

PROPOSITION 3. 3. &#x3E; 0, Vð &#x3E; 0, ( &#x3E; 0

if

Proof 2014 We follow the proof of Proposition 3.2 of F.-J. making the
estimates explicitely.
We first solve the eigenvalue problem associated to the covariance

operator r.
We can write

with the condition that any f in the domain of r -1 must satisfy f = 0
for t = 0, x = 0 and x = L,

It is easily seen that the eigenvalue problem

is solved by

with bnm, satisfying
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from eq. 3.26 we get that VT, L, n

we have

where the coefficients (W, are independent Gaussian random variables
with variance y"m.
We get 00 00

We set

For the variance r N of W~ we have

It is not difficult to estimate the double sums in the last side of eq. 3 . 31

by using the corresponding double integrals.
The result is

Now we have

By eq. 3.13 of F.-J. we get

provided

and by eq. 3.15 of F.-J. we get
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If  o 
’

we get the desired result and this is just condition 3 . 21 if we choose :

By eq. 3.19 and Proposition 3.3 we reduce the proof of the theorem to
the point III which will follow from theorem 4.1 below. -

SECTION 4

TIME ESTIMATE FOR THE GRADIENT FLOW

In this section we give an upper bound, with an explicit L-dependence,
to the time needed by the gradient flow to reach a given neighbourhood
of u01 starting from a neighbourhood of and to the time needed

by the flow with reversed velocity to reach a neighbourhood of 
starting from a neighbourhood of u10. In particular we shall prove point III
of the previous section. We only consider here the first case, the second
one being completely analogous. Moreover, nothing changes of course
with instead of u 11, + . We want to prove the following :
THEOREM 4.1. Let u(x, t) be a solution of :

with W(u) _ - V(u).
i) uo belongs to the unstable manifold ofMn,+ and to the basin of attrac-

tion of u01.
’

(such uo’s exist as we have seen in section 3).
Then such that VL &#x3E; Lo

where K, ,uo and a are suitable positive constants and
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Let us first explain the basic idea of the proof :
it is not difficult to see that if u satisfies eq. 4.1.

d
in particular - S(u*) = 0 iff u* is a critical point of S(u).

dt

We show that d dt S u . t cannot be too small unless u . t is near someWe show that - S(M(., t)) cannot be too small unless u(., t) is near some
critical point. dt 

)) (

More precisely, we shall prove that under the hypotheses of Theorem 4.1
the inequality

implies, for a sufficiently large :

where u* is one of the critical points u11.+, u11,-, u01, u10 and

Let BJ(u) = { u -  03B8}. If we can exclude a priori that

u(., t) E BJ(Ull, +) U Be(um,-) V B103B8(u01) U Be(W o) dt E [0, T03B8]
then necessarely

and so inequality 4.2 follows.
Before stating the main preliminary result of this section, namely Pro-

position 4.2, let us introduce another way to look at our equation 4.1.
First of all, it is known (see for instance theorem 3 . 5.2 of reference 12)

that if uo belongs to the Sobolev space Hi then W &#x3E; 0 the same is true

for 
~(..~) 

n r . 
au 

.

for 
2014~2014. 

In particular 2014 
is an absolutely continuous function of x

in [0, L ]. The above hypothesis is verified in our case because of iii).
Now, for any t &#x3E; 0, the solution of eq. 4.1 must satisfy the inomogeneous

boundary problem :
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where is nothing but the continuous function 201420142014 
. It is natural

3~
to expect, when is small, the solutions of eq. 4 . 5 to be near to the solu-
tions of the corresponding equation with g = 0. But since eq. 4. 5 corres-
ponds to a boundary value and not to an initial value problem the compa-
rison between the two equations is not immediate. Our result is contained
in the following :

PROPOSITION 4. 2. - There exists positive constants Lo, (xo such that
for L &#x3E; Lo, a &#x3E; ao if g(x) is a real continuous function on [0, L] with

then the solutions of the boundary problem with forced term

that satisfy S(u)  S(u 11 ) are such that

The proof of Proposition 4. 2 will be postponed at the end of this section.

Proof of theorem 4. l. From the previous discussion it is clear that,
to get the theorem, it is sufficient to prove that if L is large enough the
solution of equation 4.1 cannot enter in the balls

and for t E [0, TO(L)].

By Proposition B. 8 of Appendix B it is possible to choose a such

that if ~,o is the minimal eigenvalue (negative) of and 20 is the
minimal eigenvalue (positive) of S"(Mio) then exp 

It is immediate to see that, for some constant K : 
’

Moreover, since () = exp [ - 3/2,uL ] with ~ &#x3E; ~ S(uo) - S(u 11 ,-)-! ~,o ( e2/2
for L sufficiently large and = S(u 11, + ) we get

and since S is decreasing along the gradient flow cannot be
reached.
On the other hand for some constant K
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and

moreover

therefore it is easy to check that if 03C3 &#x3E; exp [ - f1 L 2 ] then

for L sufficiently large.
If we start from any point of the gradient flow will never reach

the set { M - u10 112 = 03C3}; consequently since, for (7 sufficiently small,
in the interior of the ball {M:~M-Mio!!2~~} there are no critical point
other than u10, we conclude that, for L sufficiently large:

and so by hypothesis i ) cannot be reached by the solution of eq. 4.1
II

In the sequel we shall give some lemmas from which Proposition 4. 2 will
be deduced.
We start by noticing that, like in the case of the critical points of S(u)

treated in Appendix B, we can see eq. 4. 7 as Newton’s equation of motion
for a particle of mass 1 with potential energy W(u) and a forcing term g(x).

In this interpretation x is a time variable and Dirichlet boundary con-
ditions say that the particle returns to the origin at time L.
From our hypothesis on the potential it follows that W is strictly

decreasing on [ and strictly increasing on ] mo, m + [ so that we
can define the local inverse functions of W

LEMMA 4 . 3. Let u be a solution of eq. 4 . 7 that satisfies S( u)  S( u 11) if

and

then, there exists a constant ~3 such that
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Proof 2014 By differentating E(x) and using eq. 4.7 we get

therefore by Schwarz inequality

Since

and W is bounded above, there exists a constant 03B2 &#x3E; 0 such that

from which we get the result. tt
It is proved in Appendix B that the only possible solutions of

eq. 4. 7 with g = 0 correspond to some particular values EIJ of the energy

E = - (2014 ) + W(u) which, in that case, is a conserved quantity, (the

integers I and J count the number of extrema of u).
Now from the previous Lemma we know that the solutions of eq. 4.7

with 03B3 ~ 0 but small in the L2 norm are such that [0, L ], E(x) is in
a narrow band in the plane u, W(u) of width 

Since the typical distances between the energy levels Eu is exp ( - const L),

we choose 03B4 = 03B84 03B2L exp [ - 2xL]; conditions 
on a will be specified later.

Consider now the initial value problem

L ~
with e == ::t 1 and 

o ! 2dx  BL exp [ - 2ocL].
Given a solution u(x) of the inhomogeneous boundary problem 4.7

we can find an Eo and an E = ± 1 such that M’(0)=s[2(Eo-W(0))]~~.
Therefore this solution of eq. 4.7 solves also the inhomogeneous initial
value problem 4.12. Let us now sketch the basic ideas for the proof of
Proposition 4.2.
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We shall prove that, under the hypotheses of Proposition 4.2, the pos-
sible values of Eo must be very near or Eo 1 so that by continuous
dependence on initial conditions we get that the possible solutions of
eq. 4 . 7 have to be very near to one of the critical points 
or u01 in the C 1 topology. To get the above restrictions on Eo we first
exclude the number of oscillations of the forced motion described by eq. 4 .12
to be too high. Then we show that for a sufficiently large the times needed
to come back to the origin by the forced motion and by the conservative
motion with g = 0 and same initial condition are very near for any Eo
far enough from W(m _ ) and W(m + ). Consequently we can replace the non
conservative return times with the conservative ones within a small error.

Finally by evaluating the variation of the conservative return times with
the energy we can conclude that even for the non conservative forced

motion it is impossible to satisfy D. b. c. unless the center of the corres-
ponding band of energy lies very near some level Eu. The case when Eo
is near W(m - ) or W(m + ) is treated separately and it is shown that the return
time is so large that even with only one oscillation it is impossible to satisfy
D. b. c. Let i = 1, 2, 3, 4, be the intervals

where ~E = exp [ - (XL].

LEMMA 4. 3. There exists an Lo such that if L ~ Lo and Eo E r 1 u r3
then, if uE is a solution of equation, 4.12 which satisfies also D. b. c.

uE(0) = = 0 there exist two integers I, J such that

Proof We consider first the case E E r 1.

Let uE b e a solution of 4. 12; , since ~ is continuous and
dx

due,- can change sign only ifE(x) - W(uE(x)) = 0. Therefore uE starts at x = 0
dx duwith a given sign of du~ which is unchanged as long as W; l(Eo- 

dx
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If + with E(x) - W(~,M) ~ 0,

du~ dx can change sign in an a priori complicated way but if for some x*,
u(x*)~]W1(E0 - AE), W-1+(E0 - AE)[.witl not change sign until

+ 

Using

and eq. 4.10, we get

du
On each subinterval of [0, L ] where the sign of is unchanged we can

dx

perform the change of variable x = x(u) in the integral on the right hand
side of 4.16.

Using

it is not difficult to see that if I(resp. J) is the number ofsubintervals of [0, L]
where M, is negative (resp. positive), then by forgetting the contribution in

rL (du)2Jo 
which comes from the x’s such that

for B = + 1 and B = - 1, we get

which leads to 4.14.
The case E E r3 is much simpler since I = 0 and J = 1 is obviously

the only possibility compatible with the return to the origin at time L.
Let us define

and

Annales de Henri Poincaré - Physique ’ theorique ’



373INFINITE DIMENSIONAL DYNAMICAL SYSTEMS

LEMMA 4 . 4. - Under the hypothesis of lemma 4 . 3, for any 11 :
011  W(m _ ) - W(O) if S(uE)  S(u 11 ) then, for L large enough

Proof - It follows from equation B . 38 of Appendix B that

For 0  ~  W(m _ ) - W(O), if uE satisfies equation 4.12, D. b. c.
and Eo  W(m _ ) - ~ we get :

Since we know from eq. B . 22 of Appendix B that

and furthermore S _ (E 11 ) + S+(E11) is bounded by a constant uniformely
in L, we conclude that for L sufficiently large, the inequality S(Mj  S( u 11)
implies : Eo &#x3E; W(m _ ) - ~.
Now we choose ~ = ~ in such a way that in the set [W(m_)-~, W(m_ ) ]

the quantity T+(E) + T_(E) defined in eq. B.11 of Appendix B is strictly
increasing with E (this is always possible as it is shown in Appendix B)
and we set r1 = r1 n 

LEMMA 4. 5. Under the hypotheses of Lemma 4. 3 if L is large enough
and  S(ul l) then the only possibilities for the pair (I, J) are (1,1),
( 1, 0) and (0,1).

Proof 2014 We have only to consider the case Eo E r1 since, as we have
seen, for E0 E r3 we have (I, J) = (0,1) and so the result is proved and for
EoEr1Br1: S(u£) &#x3E; S(u 11 ) in contradiction with the hypothesis.
Now let I and J be strictly bigger than 1; from the inequality 4.14 we get :

First of all, from eq. 4.18, 4.19 and B . 9 we have

Now we distinguish two cases. If Eo - LBE &#x3E; E11 from eq. B . 26 we get
(Eo -  exp [ - constL] ] and so for L sufficiently large,

since S+(Eo - AE) - S:t:(E11) ~ 0 and
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we get a contradiction with the hypothesis S(Mj  S(Mn) by choosing L
sufficiently large.

If Eo - ¿BE  E11 (but Eo &#x3E; W(m _ ) - ~ so that T(E) = T+ (E) + T _ (E)
is increasing in E), we have

and so

from which for L sufficiently large we get again a contradiction. II
For a given B, if ~ is the solution of 4 .12 let us now define the non conser-

vative times

if E0~03931 we can also define

6

call TE the sum of the previous times : TE = I 
i=1

LEMMA 4 . 6. 2014 If DE = 82 exp [ - 03B1L] then, there exists a constant K
such that for any ~ = :t 1

if Eo E r1 we also have :

where

Proof 2014 We consider first the case E E rl.
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Calling I(Eo, AE) the previous integral, by a simple change of variable we
get

By Lagrange theorem one has

therefore if_203B2  oc/2, by 4.26 and 4.27, using that T_(E) is increasing
with E in I-’1 we get

Now from lemmas B . 2 and B . 3 we get

and

On the other hand, by lemmas B.2 and B . 3 of Appendix B one has

We give an upper bound on and we consider only T~2 ~, the
other cases are similar.

Let us first consider the two vectors

where u is the solution of the initial value problem
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u is the solution of the same differential equation with g = 0 and same
initial conditions. If we call

and U and U satisfy the following integral equations:

For x = (x1, x2)~R2 let = |x1| + 
We set

with

By Schwarz inequality, the last integral is less than and so from
Gronwall’s inequality we get

We choose (X &#x3E; K.
Now if L is large enough let us define

then from 4 . 3 8 we get

this implies T~2~  xl.
Since u is a conservative motion we have
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As before, one gets

therefore from 4.31, 4.32 and 4.41 we get the result.

LEMMA 4. 7. 2014 If L is large enough, there exists a constant K such that
if Eo E r 1 u r 3
but

where y is such that

then the solution uE of the initial value problem 4.12 which satisfies

S(uE)  S(u 11 ) cannot satisfy D. b. c.

Let f 1" f 3 be the subsets of rl, F3 where 4.42 is true ~

with :

From eq. B. 27, for L sufficiently large we have :

for some constant (K). Therefore from the first inequality in 4.43 the
are disjoint.

If Eo E fp), by lemma B.2 and B.3 we get

for some constant Kl if L is large enough.
Therefore by lemma 4.6 for L large enough we get

T,  L. Since + T~2) + T~3)  T,, M, cannot satisfy D. b. c. at jc = 0

and x = L with (I,J) = (1,1), (0,1) or (1,0) and since by lemma 4.4 all
other values for (I, J) are excluded this concludes the proof in the case
E E îBl).
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By similar argument, if y  x/2 - 2(3 - K/2 and L is large enough,
one gets : 

i

and the lemma is proved. II

LEMMA 4. 8. There exists a constant K such that if L is large enough,

03B2 &#x3E; K, (x/2 - 2/3 - K/2 &#x3E; 0 and E0~03932 ~ r4, then the solution of 4.12
cannot satisfy Dirichlet boundary conditions.

Proof - For Eo E r2.
If B = - 1 it is not difficult to check that if a &#x3E; /3 then

as in the proof of lemma B. 1, we get

T(1)  K103B21L for some constant K 1.

If E = + 1 and oc/2 - 2/? - K /2 &#x3E; 0 we get

For Ho E r4 we have

By choosing K = max , ---; the lemma is proved. II
K1 K1

Proof of Proposition 4 2. In order to satisfy all the previous conditions
we choose /3 = a/8, y = a/8 + K/2 - K/4 with a &#x3E; max (4K, 4K + 2K).

It is clear from lemma 4. 7 and 4.8 that, if we consider any real value
of Eo such that

then the corresponding solution of the initial value problem 4.12 with
S(Mj  S(u 11 ) cannot satisfy D. b. c. on [0,L].
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We define now, as in the proof of lemma 4 . 6 two vectors :

where uE is the solution of equation 4.12 and uIJ,~IJ is the solution of the
analogous conservative equation with g = 0 and initial conditions :

If Eo and B satisfy one of the following conditions :

from Gronwall’s inequality we get :

where K is defined in lemma 4.6.
Therefore, since y  a, the right hand side of 4.51 does not exceed

8 exp [ - (y - K)L] ] and, choosing (xo = - K, we end the proof of pro-
position 4.2. II 

4
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APPENDIX A

In this appendix we study the system introduced in section 1 and described by the Hamil-
tonianl.5.
The finite volume Gibbs equilibrium measure is

where

If we introduce the variables

the Gibbs equilibrium measure expressed in terms of the block magnetizations becomes

where

and is the measure induced on R by the application -+ ¿ 0". i. e. :

with

and

THEOREM A.1. - For the partition function defined by eq. 1. 6 with Ho given
by eq. 1. 5 when h = 0 and p satisfying conditions a), b), c) of section 1:

where Vo(m) is defined by
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with

Proof. - The strategy of the proof is that of properly bounding y In and then

show that the lower and the upper bound tend to the same value in the limit considered
in eq. A. 8. These bounds will require estimate of the Curie-Weiss free energy

by Theorem B .1 of [10 we have:

where I(m) is defined in eq. A 10.
The quantity in square bracket in A 12 is well known.
In fact (see for instance [10 ]) such that

if /3  ~i~ Vo(m) is a convex function of m that attains its minimum at m = 0 ;
if j8 &#x3E; /~ ~ Vo(m) has three extrema and two of them ( ± m*(~3)) are equal minima;
if 03B2 &#x3E; 03B2c and h ~ 0 has at most three extrema but only one of them m*(h, 03B2) is

the absolute minimum.

Let us consider the 03B2 &#x3E; 03B2c first.

calling

since

we get

on the other hand we have :

since the interaction energy among blocks is always positive.
If we remark that A 12 is a consequence of large deviation theory it is easy to convince

ourself that

therefore

VoL44,n" 4-1986.
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and therefore, since m* is the value of m for which Vo(m) is minimum we have also

since

we get

Let us introduce the « translated » measure

where fo is such that

We remark that such a to exists bB convexity argument.
Therefore since

we get

where we have used A. 12 and the fact that .

which follows from A. 20 and from the analogous of A. 15 with ~~ 7~ 0. Using A. 20 to

compute the sup { ... ; ] in A . 22 we get

Now
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Bv Tchebytchev exponential inequality we can get

therefore

From A . 23 and A . 26 we get

since if m0|t &#x3E; m* the right hand side of A. 27 is convex (see [10 ]) this concludes the proof
for 03B2 &#x3E; For the case /3  03B2c the proof goes along the same lines of part b.
Our previous results are consistent with the probability distribution that for y and L

finite reads :

with

where

We conclude this appendix by giving some properties of the function that we have

assumed for the continuous version of this model namely condition I) II) III) and IV) of
section 2.

LEMMA A. 2. - Under the hypothesis a) b) c) for the measure the following properties
hold for the function Vh(m) given by eq. A. 30.

1. &#x3E; 0 and h finite V,,(m) E C ‘ ( - x, + x);
II. if we further assume oc exp [ - a03C34] we have also that &#x3E; 0 and h finite

V’h(m) ~ m3 ;
III. such that and h sufficiently small Vh(m) = 0 has three solutions m+,

m _, mo where m + and m- correspond to minima and mo to a maximum ;
IV. sign V"’(m) = sign (m).
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Proof. - From A. 30 and A. 10 it follows that

where

from A . 34 we also get

where the strict inequality in A. 35 comes from the non singular nature of and the strict

inequality in A. 36 is a consequence of the properties b) and c) of /)(o-) (see section 1).
Furthermore, assuming that 03C1(03C3) ~ exp [2014a03C34] by explicit calculation, it is possible to get :

In conclusion :

Property I follows from A. 33 and A. 35.
Property II from A. 31 and A. 37.
Property IV from A. 34, A. 35, A. 36.

To obtain property III we remark that the eq.

coupled with A. 31 is the selfconsistency eq. of the Curie-Weiss model and, as it is well

known, (see for instance [10 ]) ~/3~ : and h sufficiently small property III holds.
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APPENDIX B

In this appendix, we will prove some results concerning the equilibrium solutions of the
deterministic time evolution given by eq. 2.1 when ê = 0.

These stationary solutions are the critical points of the stationary action

with D. b. c. on [0, L ], where W(M) = 2014 V(u) i. e. the solutions of the boundary value
problem :

If we interpret x as a time variable, eq. B. 2 becomes the Newton’s equation for a particle
of mass one moving in the potential + W(u) and the solution of eq. B. 2 satisfying the con-
ditions B. 3 are the trajectories that pass through the origin at times 0 and L.
When t/ is a solution of eq. B . 2, the energy

is a conserved quantity and in our case, (boundary conditions B . 3) we will have

W(m+) &#x3E; E &#x3E; W(0).
Fig. B.l shows the three possibilities that can arise and that are discussed in Proposi-

tion 2 . 2.
We will start with some preliminary considerations and Lemmas. We will consider

first the case 2 of fig. B. 1 and the results for case 1 and 3 will be briefly summarized at
the end of this section.

Given a real number E E [W(0),W(~-)], under our hypothesis on W (see fig. B .1),
there exists two periodic solutions of the initial value problem

with E = + 1 and s = - 1, each corresponding to a given value of 8.
On the other hand, for E E ] W(m-), W(m+) [ only the solution of the initial value pro-

blem B . 5 and B . 6 with E = + 1, returns to the origin in a finite time.
Under our hypothesis (see fig. B .1), W is strictly decreasing on (m _, mo) and strictly

increasing on (mo, m+), therefore we can define local inverse of W -

given Ee[W(0),W(~)], if
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we define

that is the time for a particle which satisfies eq. B. 2 and has energy E to go from x to y.
Consider for sake of definitness the case E - W(7M) ~ 0 and call:

The period of a periodic solution of eq. B. 2 will be

where
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(the modifications required for the case E - W(m)  0 or more generally for the case
m  0 are obvious and they imply only a different way of splitting the times T+ and T-.

Given a real number L, that in our problem can be arbitrary large, two integer I, J with

I - J ~ 1 and su E - 1, + 1 such that

but ~IJ = + 1 or - 1, then, if Eu is such that

the solution uIJ,Ei, of the initial value problem B. 5, B. 6 with E = Eu and 8 = 8u is a solution
of the boundary value problem B . 2, B . 3.

On the other hand for a given L, if u is a solution of the boundary value problem B. 2, B. 3,

it is clear that the value of 
- gives a pair (8, E) such that B. 6 is satisfied, D. b. c. givesdx x=o

the two integers I, J such that B 12 is satisfied. To discuss the solutions of equation B 10
we will give first some properties of the various times ’t", which are crucial to our analysis.

LEMMA B .1. - It is possible to find a constant 5 &#x3E; 0 such that if W(m-) - E &#x3E; 8 then

for some constants Ki = K,(5), ! i = 1, 2, 3. For W(m+) - E  8 the analogous of B.13
and B.14 holds.

Proof. - We study 1: _(E), the proof for 1: +(E) is similar. Let us first choose 8 &#x3E; 0 such

that for W(m-) - E  8 it also follows that m - &#x3E; 5 where m is the only inflec-
tion point in the interval (m _, mo), then

Using Taylor formula and also property IV of V(m) that controls the sign of W"’, if we
notice that m &#x3E; mo, we get

and also

for some a &#x3E; 0 for + 5/2  m and B .13 follows.
The arguments to get B 14 are very similar.
To get B .15 it is sufficient to notice that for W(m-) - E  5 the r. h. s. of eq. B . 9,

when the integration intervals are those prescribed by the definitions of ’to, im and T+
in eq. B.10, is always finite and bounded uniformely on E.
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The following lemma is an adaptation of a result of Loud [77] (see also Chafee and
Infante [/2]).

LEMMA B . 2. 2014 T±(E) is differentiable on its domain (W(0),W(~±)) and

Moreover there exist two constants Ki, K2 such that

if - E is small enough.

Proof 2014We consider T-(E), the other cases are similar. If we perform the change of
variable W(u) _ [E - W( - mo) y2 + W( - in the integral expression of T-(E) we get

Differentiating with respect to E, setting u = W =1((E - W(mo)) y2 + we get

Calling G(u) the term in square bracket in B . 23, it is not difficult to see that

Since, by property IV, G’(u)  0 we get G(u) &#x3E; G(mo) &#x3E; 0 from which we deduce B 19.
Moreover we also get

from which, by Lagrange theorem, we get B. 20. Using property IV and Lagrange theorem
in B . 23 it is not difficult to prove B . 21.

LEMMA B . 3. - If E - W(m) ~ p &#x3E; 0 there exists a constant C(p) such that

Proof - We consider only im, the proof for ’to is similar.

From the definition of im we get

and . therefore " since E - W(m) &#x3E; p &#x3E; 0 B . 26 0 follows.
The following proposition is the main result of this section.
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PROPOSITION B . 4. - There exists Ki such that only for I  K1L the equation B.12
has solution for any L.
There exists a constant K2 such that if I  K2L, J  K2L then if L is large enough,

equation B .12 has only one solution Eu, moreover

If LjI is large enough then

for some constants K3 and K4’
If AE, is the difference between two consecutive terms in B. 28 then if L/I is large enough

L i J

For a given L, large enough, if Ejj is a solution with I &#x3E; K2L then I, J cannot belong
to any interval 

Proof - Under our hypothesis ( W" (mo) , ~ 0). There exists a constant K 1, independant
from L such that

from which we get the first assertion.
From lemma B .1, B . 2, B . 3 there exists E*  W(m - ) such that if E c [E~,W(~-)] ]

then T_(E) is strictly increasing, moreover there exists an E* E [W(0),E~]:

Similarly there exists E* such that, if E E [E*, W(m+)], T+(E) is strictly increasing and

E* N &#x3E; E* such that _

Therefore if L~ max(2T+(E*), 2T_(E*)), there exists one solution of B.12 for IJ=(10), (01), (11).
Let K2  (T(E*))-1 then if 1 ~ I,J ~ K2L and L large enough we get

since for E = E* one gets 2IT+(E*) + 2JT_(E*)  Land 2IT+(E) + 2JT_(E) is strictly
increasing if E &#x3E; E* there exists only one EIJ such that B .12 is true.

Using the fact that T+ + T- is increasing if E &#x3E; E* and that

we get also En &#x3E; and similarly all other inequality given in B . 28. B . 29, B . 30 are

a direct consequence of equations B .13, B .14, B .15 in Lemma B. 1.
B . 32 is a direct consequence of B . 29.

We prove B. 31 in the case AEI = En - Eij+i. The other cases are proved with easy
modification of the same argument.

Using B. 12 for two pairs (1,1), (I, I + 1) one gets
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From B. 20 and B. 29 we have, if L/I is large enough, that

for some constant Kb C3, K.
Since 2lT-(E~+2)  Land T+(E~+2) ~ C for some constant C we get B . 31.

To prove the last statement of the proposition it is sufficient to prove that if I, J &#x3E; K2L
then Eu  for I, J, F, J’  KZL with the properties that no other solutions
of B .12 belongs to the interval.
Assume EIJ ~ [Eyy, if Eu = EIJ since T+ + T- is a bijection, I must be equal

to I which is absurd. By the same argument we can assume EIJ  Eu  Ey’j’ therefore
if L is sufficiently large

which is absurd since

Evaluation of the action

We want to evaluate the value of the action S(u) associated to the stationary solution

J __ .. , ,. ,

that is the critical values of this functional.

Using energy conservation we get

and a simple change of variable leads to

where

It is not difficult to see that S± (E) are increasing functions of E and that T±(E).
ME

I+J&#x3E;2
LEMMA B . 5. 2014 There exists a Lo such that VL &#x3E; 0, V(I, J) : 

~I-J~1

Proof. - By definition we have

In the case E 11 - Eu &#x3E; where a is a constant independent of L, the proof is

straightforward since S+(E) and S-(E) are positive and for L going to infinity are uniformely
bounded, meanwhile the last term in B. 40 goes to infinity.
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Let us discuss the case when Eu ~ W(w-). By Lagrange theorem we get

If we remark that L = T +(E11) + T_(E11), then by Proposition B. 4, if L is large enough,
we get that the r. h. s. of B . 41 does not exceed (En - Eu)L and therefore the left hand
side of B.40 will be larger than (I - l)S-(Eu) + (J - l)S+(Eu) a quantity which is strictly
positive for any L and I + J &#x3E; 2.

AB 6.

Proof - Using equation B . 38 we get

By Proposition B . 4, eq. B . 29 : E10 - E11  const exp - ] therefore the two
last terms in the r. h. s. side of the previous equation go to zero and E 11 and E10 ~ W(m - ).
On the other hand, by equation B . 38 we get also

By definition of S- and S + the first term in the right hand side of the previous equation
goes to zero when L goes to infinity and, using equation B . 29-B . 30, we get the result.

Stability properties of the critical points

The stability properties of a solution u* of the boundary value problem

follow from the dimensionality of the subspace ®(u*) of L2(0, L) spanned by the eigen-
vectors corresponding to the negative eigenvalues of the self adjoint operator:

with D. b. c. on [0, L]. In this part, we will give the exact dimension of moreover

we will give also lower bounds on the first eigenvalues of and which are

positive and upper bound on the first eigenvalue of which is negative. These
bounds depend on L and are needed in section 3. Let us remark that the exact dimensionality
of was given in J.-F. [1 ], Laetsch [14 ], Berestycki by using convexity hypo-

thesis, namely - W’(u)  W"(u) that are not true in our case. The constructive approach
u

of Chafee, Infante [72] together with the fact that L can be arbitrarily large allow us to
solve these problems.

PROPOSITION B. 7. - If L is large enough, then for any critical point corresponding to I, J
such that I, J ~ K2L where K2 is defined in Proposition B.4 one has:
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Remark. - The restriction on I in Proposition B. 7 is for technical reasons, let us remark
this in section 3, we need only results for 0 ~ I ~ 1.

Proof of Proposition B. 7. - Let us first consider u* = u10. Let u(x, vo) be the solution
of the initial value problem

u
It is not difficult to see that Z1(x) = 2014(x, vo) is the solution of the second order linearequation ’ ’

with initial condition g(0) = 0, g’(0) = 1.
On the other hand, if we consider u10(x) as the restriction to [0, L] of a periodic solution

of B . 5, B . 6, it is not difficult to see that

is also a solution of B . 45. Moreover, it is easy to check that

Since Zl and Z2 are two solutions of the same equation B . 45 and Zi 7~ ;’Z2 for V2 E [?,
by the theorem on separation of zeroes [7d] there must exist only one x* in ] L/2, L+T+(Eio) [
such that = 0, moreover since Zi(0) = 0, Zi(0) = 1 we have ZiM &#x3E; 0 if 0  x  x*.
Assume that x* &#x3E; L then Z1(x) is the eigenvector corresponding to the eigenvalue 0 of
the self adjoint operator

with Dirichlet boundary condition on [0, x* ].
By the theorem on oscillation properties of eigenvector [7~] this is the first eigenvector,

from the quadratic form inequality

it follows [17] that the first eigenvalue of is strictly positive and therefore

dimD(Mio)=0.
Now to prove that x* &#x3E; L it is sufficient, since &#x3E; 0 if 0  x  x*, to show that

Zl(L) &#x3E; 0 uniformly with respect to L.

If
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dx
therefore, since - = 0 we gettherefore, since dex dr0 = 0 we get

Let us remark that in B.48,  O. ro  0 therefore Z}(.B)&#x3E;0, since

by construction = 0 we get

dT _
by lemma B . 2, B . 3 and Proposition B . 4 

dE (E 10) &#x3E; KT _ (E 10) 
= KL &#x3E; 0 therefore

using B . 20 and E 10 = 1 vo + W(0), there exist two constants Lo, K such that if L &#x3E; Lo,
KL. 2 

. 

d-
The case u* = uo is similar with the following modification: we define Z2 = du01 dx

where U01(X) is the solution of d2 f dx2 - W’(f) = 0 with inital condition j(O) dx
f’(0) _ + [2(Eo 1 - W(0)) P/2 where W = W on [m _, + 00] but on ] - oo, m _ [ W is
equal to a COO modification of W such that the newtonian motion is periodic and the time .

interval with uo 1(x) negative, is bounded uniformaly with respect to L. 2:1 is defined by B 44
but with vo &#x3E; 0 and such that E01 1 = 1/2vo + W(0). We consider the case u* = ui 1, -.

Let ~2 be du 11’ , it is not difficult to check that ~2(T -(Ell» = ~2(2T -(Ell) + T +(E11» = 0
dx

and ~2(x) &#x3E; 0 if T_(E11)  x  2T -(E1d + T+(E11).
. d2

Therefore, since ~2(x) is solution of - 
dx2 

+ - W" (ui l, _) = 0 ; zero is the first eigen-

value and 2(x) is the first eigenvector corresponding to the operator

withD.b.c.on[T_(En),2T.(En)+T+(En)].
It follows from the quadratic form inequality

that the first eigenvalue " of S"(u 11, _ ) is strictly negative. .

.. au
Let Zi(;c) = vo) where ’ u(x, vo) is the solution of B . 44, but here " vo  0 and . such

that Ell = v20 + W(0). In this case Z,(.v) is solution of the differential equation

with initial condition /(0) = 0, f’(0) = 1. Using the theorem on separation of zeroes,
since ~2(x), extended to [0, + 2T+(E11) satisfies the same differential equation,
there exists one and only one zero of ~, say x*, between T_(E1d, + T+(E11)  L.

Moreover since ~(0) = 0, HO) = 1, L1(x) is negative for x*  x  2T_(E11) + T+(E11).
If we can prove that L1(L)  0, uniformly with respect to L, using again the theorem
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on separation of zeroes we get that there exists a zero of ~1(x), say x**, which belongs to
] L. L + T-(E,, [, therefore ~t(.v) is the second eigenvalue of the operator

with Dirichlet boundary condition on (0, x**), zero is the corresponding second eigenvalue.
It follows from the quadratic form inequality

that the second eigenvalue of is strictly positive.
We prove now 2,(L)  0 uniformly in L. It is not difficult to check that if

then

therefore differentiating with respect to we get

Since, when jc -~ L, = goes to zero, by lemma B . 2, B . 3 and Proposi-
tion B .4, we get ~i(L) ~ 2014 KL for some constant K, independent on L.

The general case u* = is treated with the very same arguments and
it is left to the reader.

PROPOSITION B . 8. - Calling Ào the lowest eigenvalue of S"(u*), the following inequa-
lities hold.

For u* = u10 or u01

1

where A, Band ,u are constant independent from L.

Proof - We start considering the two equations

If we perform the so called Pfrufer transformations
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we get the following eq. for the 

The following are standard properties of the (}(x)"s [/6] ]

if ~,o is the lowest eigenvalue of eq. B . 55 or B . 56.
Calling 0(x) = 91(x) - e2(x), substracting B . 60 from B . 59 and formally solving the

non homogeneous linear differential equation of first order

where

we get

If we remark that f (91, (}2, x) ~  where ~ is a constant independent from L

To evaluate we recall that

where

From eq. B . 48, for v* = and the similar relations for the other cases we will have:

Since 3/X &#x3E; 0 : Eu - W(0) &#x3E; a, uniformely in L, from B . 65 and B . 67 the bounds B . 53
and B . 54 will follow.

PROPOSITION B. 9. - if fn &#x3E; 0 there exists a unique critical point u which is the absolute
minimum of S(u).

If 0 ~ m _ there exists, for L sufficiently large, three critical points up, ub, M~:
up is a local minimum, M~, is a saddle point with a unique direction of instability, Me is the

absolute minimum and

Proof. - The case m &#x3E; 0 is obvious (see fig. 1. B). For the case m _ &#x3E; 0 the proof follows
the very same line of the proof of Proposition B. 4 and it is left to the reader.

Vol. 44, n° 4-1986.



396 M. CASSANDRO, E. OLIVIERI AND P. PICCO

[1] W. G. FARIS and G. JONA-LASINIO, Large fluctuations for a non linear heat equation
with noise. J. Phys. A : Math. Gen., t. 15, 1982, p. 3025-3055.

[2] G. PARISI and Y. S. Wu, Scienta Sinica, t. 24, 1981, p. 483-496.
[3] J. L. LEBOWITZ and O. PENROSE, Toward a rigorous molecular theory of metastability.

In Fluctuation Phenomena. Studies in Statistical Mechanics, edited by J. L. Lebowitz
and E. W. Montroll. Amsterdam, North Holland, 1979.

[4] J. SEWEL, Stability Equilibrium and Metastability in Statistical Mechanics. Phys.
Rep., t. 57, 1980, p. 307.

[5] M. CASSANDRO, A. GALVES, E. OLIVIERI and M. E. VARES, Metastability behaviour
of Stochastic Dynamics: a pathwise approach. J. Stat. Phys., t. 35, 1984, p. 603-634.

[6] A. GALVES, E. OLIVIERI and M. E. VARES, Metastability for a class of dynamical
systems subject to small random perturbations. Preprint I. H. E. S. Octobre 1984.

[7] A. D. WENTZEL and M. L. FREIDLIN, On small random perturbations of dynamical
systems, Russian Math. Survey, t. 25, 1, 1970, p. 1-55. Some problems concerning
stability under small random perturbations. Theory of Probability and Appl.,
t. 17, 2, 1972, p. 269-283.

[8] M. L. FREIDLIN and A. D. WENTZEL, Random perturbations of dynamical system.
Springer Verlag. New-York, Berlin, Heidelberg, Tokyo, 1984.

[9] C. L. THOMPSON, Mathematical statistical mechanics. Princeton University, Press 1972.
[10] T. H. EISELE and R. S. ELLIS, Symmetry breaking and random waves for magnetic

systems on a circle. Wahrscheinlichkeitstheorie Verw. Geb., t. 63, 1983, p 297-348.

[11] W. S. LOUD, Periodic Solution of x" + cx’ + g(x) = ~f(t). Memoirs of the American
Mathematical Society, n° 31, 1959.

[12] N. CHAFEE and E. INFANTE, A bifurcation problem for a non linear parabolic equation.
J. Applicable Anal., t. 4, 1974, p. 17-37.

[13] D. HENRY, Geometric theory of Semilinear Parabolic equation. Lecture notes in
Math., n° 840, Springer Verlag, Berlin, Heidelbérg, New York, 1981.

[14] T. LAETSCH, Critical solutions of autonomous non linear boundary value problems.
Indiana University. Math. Journal, t. 24, n° 7, 1975, p. 651-658.

[15] H. BERESTYCKI, Le nombre de solutions de certains problèmes semi-linéaires ellip-
tiques. J. of Functional Analysis, t. 40, 1981, p. 1-29.

[16] E. A. CODDINGTON and N. LEVINSON, Theory of ordinary differential equations.
Mc Grawhill, New York, Toronto, London, 1955.

[17] R. COURANT and D. HILBERT, Methods of Methematical Physics. t. 1. Intersciences,
New York, 1953.

( M anuscrit Ie 5 août 1985)

Annales de l’Institut Henri Poincaré - Physique theorique


