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Existence of the Time Evolution

for Schrodinger Operators
with Time Dependent Singular Potentials

Ulrich WÜLLER
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1000 Berlin 33, FR Germany
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Vol. 44, n° 2, 1986, Physique theorique

ABSTRACT. 2014 Let N particles move along fixed paths Yj(t) and cause
a time dependent potential. The quantum mechanical description for an
additional particle is given by the Schrodinger equation

For a class of trajectories the propagator is constructed for the Coulomb

potential v(x) _ 1 (x E and stronger singularities.
Ixl

RESUME. 2014 Soit N particules se deplagant sur des trajectoires fixees 
et produisant un potentiel dependant du temps. La description quantique
d’une particule supplementaire est donnee par 1’equation de Schrodinger

Pour une classe de trajectoires on construit Ie propagateur corres-
pondant au potentiel de Coulomb v(x) = 1/|x|(x E (R3) et a des potentiels
plus singuliers.
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156 U. WULLER

1. INTRODUCTION

There are several possibilities to describe a multi particle system. Often
all particles were treated quantum mechanically, which leads to a large
number of coordinates. The advantage thereby is a time independent and
self-adjoint Hamiltonian and consequently there are no problems to find
the unique time evolution for the system by using the functional calculus

In this paper contrarily only such systems are regarded which have N
classical and only one quantum mechanical partical, i. e. the first N should
move along fixed trajectories = 1, ... , N; and engender a time
dependent potential

which influences the motion of the last one. So the Schrodinger equation for
only one particle has to be solved, but with a time dependent Hamiltonian
(see [7L [2], [7~])

For this reason the time evolution 2014 if it exists 2014 is given by a familyof operators { U(t, s) }~, called propagator, through the formula

The following properties are satisfied, if the Hamiltonian is self-adjoint.
(1) U(t, s) is unitary and strongly continuous in t and s
(2) = I for all t

(3) U(t, s) = U(t, r) U(r, s) for all t, r and s
But the self-adjointness of H(t) for all t is not sufficient to show the existence
of the time evolution. One needs also some supplementary conditions
about the smoothness of H(t). Kato [4]- [7] was the first to formulate
conditions for the unique existence of solutions in the general case of
Banach spaces. Furthermore there are some results of Yosida [7J]-[77] ]
and Tanabe [12 ]. Using quadratic forms Simon [77] has obtained a wider
class of potentials for which he can solve the Schrodinger equation. But
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157TIME EVOLUTION FOR SCHRODINGER OPERATORS

singularities like those in Coulomb and Yukawa potentials for dimension
v = 3 are not included. So here potentials which have the form

will be treated, where is a suitable bounded function. The singular part

of the potential v(x) should be homogeneous of degree a  2},
so that it is possible to take time dependent scalars out of this term as a
coefficient. In particular the physically important Coulomb and Yukawa
forces are included.

2. RESULTS

First we forget about the quantum mechanical particle and look at the
N others. We assume that their trajectories are given by

Here should be the matrix of the rotation in a fixed plane with
angle ~p. Without loss of generality we later take the plane spanned by the
directions of the two first coordinates. The functions l(t) and have to be
twice continuously differentiable within the chosen set of times, which
can be taken as the whole real line or only as an interval. In addition we
consider only those times for which no collisions occur. If one examines
the permitted trajectories, it seems to be a strong restriction that and 
should by independent of j and the rotation is around a fixed axis. For N
greater than 2 it is really not the description of the general situation. But
if one has two classical particles, all systems are admitted; where no external
forces act on the particles. After separation of the free motion of the center
of mass it is of the form (2.1). In particular

is admissible in this sense. For example the whole model describes the transi-
tion of an electron from one proton to another, if the influence of the electron
on the nuclei of the hydrogen can by neglected. Now we state the main result.

THEOREM. 2014 Let t;2 ~ be a bounded function with bounded first

derivatives and Ov2 E + for some p E [2, oo) n ~ /v -, oo . Then
for v(x) = 1/J x Ja + v2(x) ~ ~
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158 U. WÜLLER

is self-adjoint on D(H(t)) = for all t if 0  a  min v , 2 2 and
is given as in (2.1). Moreover there exists a unique propagator U(t, s)

such that

, The statement of self-adjointness is a corollary of Theorem XIII 96 in [10 ],

since 1 |x|a is in Lp(Rv) | L~(Rv) with p = 2 for v ~ 3andpE (V -,- V) for v ~ 4.I x 1(% 2 a

The proof of the rest of this theorem is given in the next sections. Regarding
the uniqueness of the solution it is no restriction to take a compact time
interval [tl, t2 ]. The propagator corresponding to v2 - 0 will be obtained
with the time dependent transformation

L a generator of rotation, revolving and blowing up the space in accor-
dance with the motion of the N particles. The transformed equation has
a new Hamiltonian with a dependence on time, which is more appropriate
for finding a solution in spite of the problems of varying domains. After-
wards it is shown how to add the bounded perturbation v2. For the sake
of simplicity we take m = 1/2 from here on.

3. SOME SELF-ADJOINT OPERATORS -

In this section we introduce some self-adjoint operators, which are needed
for solving the transformed equation. The operator generating the rotation
in the two first coordinates is denoted by

which is the third component of the angular momentum, if we are in the
physical three dimensional space. Analogously we have for the dilatation
the symmetrized scalar product of position and momentum

Both operators are contained in the new (modified) Hamiltonian

which results from the transformation with W(t) (2 . 3). The only time depen-
Annales de I’Institut Poincaré - Physique theorique
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dence is in the real coefficients f (t), k(t) and h(t). The potential has changed to

Later we will see that the domain ofHM(t) depends on t. So the smoothness
of is given by means of an auxiliary operator valued function Hs(t)
with a constant domain

Since we only want to prove the self-adjointness of these operators for
any fixed t in this section, we will omit the time here for convenience.
The potential VM should be an operator bounded perturbation of the other
terms. So we first set its coefficient h equal to zero.

LEMMA. 2014 For all f , k the operator H o + f D + kL is essentially
self-adjoint on 

Proof 2014 We begin by showing the statement the Schwartz

space of functions of rapid decrease. The unitary group of L can be computed

Because the self-adjoint operator D generates the dilatation

we see that e - iSL commutes with e - ~tD for all sand t. With

we have a strongly continuous one parameter unitary group which leaves
invariant and is strongly continuously differentiable on the same

set. Thus the generator f D + kL is essentially self-adjoint on 
(Theorem VIII 10 in [8 ]). Since the Fourier transform of L generates the
same rotation in momentum space, the above argument works also for
the sum Ho + kL. For f ~ 0 we calculate on 

and we have shown the lemma for because

The only reason, why this proof doesn’t work with is that in
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160 U. WÜLLER

general (see [3 n. To complete the proof
we use the harmonic oscillator Hamiltonian Ho + x2, which has the domain
D(Ho + x2) = D(Ho) n D(x2) and is essentially self-adjoint on 
The following lemma shows that Ho + f D + kL is operator bounded
with respect to Ho + x2 and so is also a core for the first one.

LEMMA. Suppose 03C8 ~ C~0(Rv) and Then

Proof. 2014 By expanding the square of Ho + x2 = . (PJ + x2 in the
scalar product we get using the canonical
commutation relations

Applying the inequality |y|  I I s 0 I y|I in /R’ we can estimate

j= 1
v

and

We are finished with the proof since

Annales de l’Institut Henri Physique - theorique -
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LEMMA. - For all f, k E (F8, s = (v + 2) ( f 2 + k2 + 1) the operator
Ho + fD + kL+ sx2 is self-adjoint on D (Ho) and is a core.

Proof. 2014 We check on that

41n ~DSince the unitary transformation e does not change the operators D
and L or the domain of Ho + x2, the last lemma implies.

The coefficient max f |f L ! k } v + 2 is smaller than 1 and thus we can
apply the Kato-Rellich theorem. D 

-

The next step is the addition of the potential hVM. To avoid any relation
between the coefficients f, k and h, we will show that the operator bound of
VM is arbitrarily small.

LEMMA. 2014 For all f, the operators HM = Ho f D + kL + hVM
and HS = Ho + f D + kL + hVM + sx2 are self-adjoint on domains inde-
pendent of h.

Proof. 2014 Ho is operator bounded with respect to Ho + f D + kL + sx2.

The relative Ho-bound of VM is zero, because for a  min -, 2 there
is some p E [2, oo) n (2 ’ ~) with VM E Lp(Rv) + (Theorem XIII 96

in [10 ]). Thus for all a &#x3E; 0 there exists a b &#x3E; 0 such that

Again the stated properties for HS follow from the Kato-Rellich theorem.
Regarding the other operator a little more work must be done. We have to
use that the potential VM is bounded outside a ball Ba. Therefore we choose
~p E with ~p(x) = 1 for x E Ba, ~p(x) = 0 for x  1100 = 1 and
~P(x) _ ~P( I x D. .

+ IIvM(1 - 

Using the first part of the proof we only have to show

The compact support of ~p can be utilized here to estimate

Vol. 44, n° 2-1986.



162 U. WÜLLER

Afterwards we want to eliminate the function by commuting it with
Ho + f D + kL and applying

The commutators [D,~] and [L,~] are bounded, but

Since is bounded it remains to estimate

We define ~(~):=~(2 "~) which implies = 1 on the support

of 03C6n and ~ ~ ~xj 03C6n~~ =2 " ~ ~xj 03C6~~ . Thus

The same procedure as above leads to

The coefficient t/J " is based on the fact that ~sx203C6n+1~~ ~ 22n. We
can employ the inequality (3.5) iteratively in estimating

The limit n -+ oo exists and shows (3 . 4) . 0
While D(HS) = D(Ho) n D(x2), we do not give the domain of HM. Evenfor k = h = 0 the domain D(Ho + f D) varies with the coupling constant f.For 0 the operator Ho + f D can be studied with the following unitarytransformation from to x For ~6~(M~the momentum space wave function given by Fourier transform should

be taken in polar coordinates to define

So we obtain the (Ho + /D)-space representation, i. e. under the trans-

Annales de l’lnstitut Henri Poincaré - Physique theorique
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formation -~ ~ a function of this operator becomes a multiplication
operator with this function of b. As a corollary we get that the spectrum
of Ho + f D is absolutely continuous on the whole real line.
Assume that for some f ~ 0 the domain of Ho + f D is equal to that

of Ho. One could conclude that D = - (Ho + f D - Ho) is defined on

D(Ho) and therefore operator bounded w.r.t. Ho. So for some small fl
one could apply the Kato-Rellich theorem to Ho and fiD. We could obtain
Ho + f1D as an operator defined on D(Ho) and bounded from below
since Ho &#x3E;_ 0, which is a contradiction to the result above. Indeed one can
prove for an arbitrary pair of different coupling constants that the corres-
ponding domains are not equal. The details can be found in [13 ].

4. SOLUTION OF THE EQUATION
WITH A HOMOGENEOUS POTENTIAL

After the self-adjointness problems are settled we turn to solutions of the
Schrodinger equation. First we want to treat

with continuously differentiable functions f, k and h. The following results
are contained in Theorems 4 . 4 .1 and 4 . 4 . 2 of Tanabe [12 ]. His formulation
is based upon two Banach spaces X and Y with the respective norms 11.11
and The space Y is densely contained in X and there is some constant
c with ~v~~c~v~Y for all v~Y. Furthermore he needs the following
assumptions.

i) {A(t)}t~[0,T] is a family of generators of strongly continuous semi-
groups in X, which is stable with stability constants M and {3.

ii) There exists a of isomorphic mappings from Y to X.
S(t) is strongly continuously differentiable on [0,T] ] as a function with
values in B(Y, X) (the set of all bounded operators from Y to X). There
exists a strongly continuous function B(t) with values in B(X, X), such that

iii) Y c D(A(t)) for each t E [0,T], so that A(t) E B(Y, X). The func-
tion A(t) of t is continuous in the norm of B(Y, X).
Under these conditions there exists a unique bounded-operator-valued

function U(t, s) E B(X, X) for 0  s  t  T having the properties
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a) U(t, s) is strongly continuous in s and t, U(s, s) = I and

d) U(t, s) Y c Y; U(t, s) is strongly continuous in Y.
e) For all v~Y and s E [0,T], U(t, s) v is continuously differentiable

with respect to t in [s, T ] ;

In our application the Banach space X is given as but Y must be
chosen appropriately. We will see that

is a suitable choice. Regarding (4.1) we have to take

The self-adjointness of HM(t) for all t is stronger than i), so that the defini-
tion of a stable family can be omited here. From the preceding section it
is clear that Y c D(HM(t)). Since D, Land VM are bounded operators from
Y to X, we get using the smoothness of f, k and h that HM(t) is continuous
in the norm. Hence the condition iii) is satisfied. Finally the family of opera-
tors S(t) has to be defined. For that reason we have introduced the self-
adjoint operator which has the domain D(Ho + x2). It is evident that

gives an isomorphic mapping from Y to X for all t (bounded with bounded
inverse). The time dependence of S(t) (see (3 .1 ), (3 . 3)) is contained in the
coefficients /(~), k(t), and s(t), which are continuously differentiable.
Thus S(t) is differentiable even in the norm of B(Y, X). We have to check,
whether [S(t), is bounded from Y to X (compare with (4 . 2)). Suppose
03C6 E and 03C8 E L2(Rv). With the definitions (3 .1), (3 . 3) we can compute

where B(t) _ ~ 4s(t) D + (HS(t) + i)-1 is a bounded-operator-
valued function of t, which is continuous in the norm of B(X, X). (Tanabe
has proved that is continuous in the norm of B(X, Y) under the assump-
tions). If 03C8 E D(HM(t)), then the above equality gives

Annales de Henri Physique , theorique ,
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Since Cü(IRV) is a core for Hs(t) one has HM(t) (Hs(t)+ D (Hs(t)).
Similarly the latter implies 03C8 E D(HM(t)). For those 03C8 we get

It is not hard to extend the result of Tanabe in the case of self adj oint
operators in Hilbert spaces. One obtains a unitary propagator for all
s, tE [0,T] and a)-e) holds correspondingly for all times. We will denote
this propagator for A(t) as in (4. 3) by { UM(t, s) 
The next step to prove the main theorem of the second section is to use

the unitary transformation W(t) (see (2 . 3)). We consider the time dependent
potential without the bounded part v2, which is a multiplication operator
with the function

where denotes a permitted family of trajectories, i, e. 
E ~) and l(t) # 0 for all t in an interval [tl, t2 ]. We assume l(t) &#x3E; 0,

because otherwise we turn to l (t) = 2014 and yj = 2014 Yj.
By using the explicit construction of the groups generated by D and L

we can compute on Y

At this point, where the time dependence has to be separated, we
crucially use the homogeneity of the potential. In the same way we get

Thus, to compensate the factor ~2 1 t ’ we introduce the following trans-
formation of the time 

1 (t)

which is a diffeomorphism from [ti, t2 ] to [0, T ]; T := t2 t1 dr. We candefine J’i’M

It is an additional advantage of the set Y = D(Ho) n D(x2) that it is left

Vol. 44, n° 2-1986.
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invariant by W(t). Hence " we have " no problems to differentiate " 
for all and 0 

We have used that UM(g(t),g(s)) maps Y into Y by property d). For the
twice continuously differentiable functions land 03C6 we choose the diffe-

rentiable functions f, k and h on [0, T] by

( g -1 denotes the inverse function of g). With (4 . 6) and (4 . 7)

In the next theorem we will summarize some characteristics of this

propagator. We will denote the self-adjoint operator Ho + Vt(t) on D(Ho)
byH,(t).

THEOREM. 2014 There exists an unique operator valued function s)
(defined by (4 . 8) for all t, s E ] with the following properties

a) s) is unitary and strongly continuous in  and t, U 1 (s, s) = I.

b) s) = r) U 1 (r, s) for all s, E [t 1, t2 ] ; in particular
[U,(~)r=U,(~).

a
c) as 

= i s) for t, s E and t/J E Y.

d) U 1 (t, s) [Y] == is strongly continuous in Y.
a

e) - U 1 (t, s) ~ _ - i H 1 (t) for t, s E [t 1, t2 and t/J E Y.
at

Proof. 2014 Since H 1 (t) is a symmetric operator on Y for all t, every solution

Annales de l’Institut Henri Poincaré - Physique theorique
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= 2014 is norm preserving. Thus the difference of two
~ 

-

solutions Ui(t, and which is also a solution, has norm

It is sufficient for the uniqueness of U1(t, s) to ta 03C8 in the dense set Y.
The properties a) and b) are obvious by the definition and the proof of c) is
similar to that of e) which we have done above. The equality in d)
is a direct consequence of UM(t, s) Y c Y, s) Y = UM(s, t) Y c Y

For any operator M, which is bounded in and leaves Y invariant, 
,

one can define My = (Ho + X2 + i) M (Ho + x2 + as a closed opera-
tor on By the closed graph theorem My is bounded. Thus M is
bounded as an operator from Y to Y. Employing this to W-1(t), UM(g(t), g(s))
and W(s) we get the property d), if we can show that the three operators
are strongly continuous in Y. For UM(g(t), g(s)) we refer to the theorem of
Tanabe, which has provided the propagator. Suppose ~ E Y, then

Therefore {ei03BBD}03BB and are strongly continuous groups in Y.
Hence W -1(t) and W(s) are strongly continuous in Y. D

5. THE BOUNDED PERTURBATION
OF THE POTENTIAL

In the preceding sections we have solved the Schrodinger equation with
the Hamiltonian

We now consider the operator H(t) = Hl(t) + V2(t) with some appro-
priate bounded multiplication operator V2(t) for all t. The interaction

representation allows the treatment of this perturbation. For this we fix
some to E [t 1, t2] and define

Suppose there exists a satisfying

Vol. 44, n° 2-1986.
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Then we apply the time evolution to) again and get

If we formally differentiate this transformed propagator, we obtain

The next theorem gives some conditions guaranteeing the existence of
U(t, s) and its derivative.

THEOREM. - ~ V2(t) be a family of bounded functions from [R"
to R with 

’

i) V2(t) [D(Ho)] = D(Ho) for all t
ii) V2(t) is strongly continuous in t as a multiplication operator in L2(f~’’).
iii) for all 03C8 E Y the function t ~ [Ho, V2(t)] 03C8 is continuous in L2(Rv).
Then there exists a unitary strongly continuous propagator U(t, s),

which satisfies U(t, s) : Y -+ Y, and U(t, s) t/1 is continuously differentiable
in for all 03C8 ~ Y with

Proof 2014 Since = the operator V(t) defined in (5.1)
is self-adjoint and bounded on Moreover by continuity of V2(t)
(condition ii)) and of s) in the strong topology of bounded operators
in the operator V(t) is also strongly continuous in Thus
we can define

This propagator is unitary, strongly continuous and it satisfies (5.2).
A solution constructed in this manner is called a Dyson expansion (see
Theorem X 69 in [9 ]). Because we want to differentiate defined
in (5 . 3) for 03C8 E Y, we have to verify U(t, s) s) 03C8 E Y. The propagator

s leaves Y invariant, thus it remains to show

By the hypothesis i) and the fact, that the domain D(x2) is obviously
left invariant by the multiplication operator V2(t), it follows for 03C8 E Y that

E Y. Hence V(t) also maps Y into Y. Now we can try to regard (5 . 5)

l’Institut Poincaré - Physique theorique
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as a definition in the Hilbert space Y. E Y and (Ho + x2) ~,
then

is continuous in L2(~V) by the assumptions. Thus V2(t) and consequently
V(t) is strongly continuous in Y. The sum in (5 . 5) converges on Y as well.
This yields (5.6). D
As an application of this theorem we will examine the case

so that the full Hamiltonian H(t) has the form (2.2). The following lemma
completes the proof of the main theorem of Section 2.

LEMMA. Suppose v2 : [RV -~ ~ is bounded and

(The derivations are taken in the sence of distributions). Then V2 (t) defined
in (5. 7) satisfies the conditions i)-iii) of the preceding theorem.

Proof 2014 Fix some ~ E D(Ho), i. e. E (in the sence of distri-
butions). Then and we can consider the distribution

By the assumptions A(t~) E L 2(~v) if and only if (Ai~) ~ ~ L2(~V); more-
over there exist two functions M E and W E with M + W = 

Since 1/1 E D(Ho), by Theorem IX 28 in [9], 1/1 E n L2(Rv) for q = 2p
~ - 2

( ~ q E 2, 201420142014 ) for v ~ 4 and 1 = ~ only if v ~ 3 ). Therefore the Höl-
der inequality (Theorem III 1 in [8]) shows that and

So v2 as a multiplication operator maps D(Ho) into D(Ho). Regarding

Vol. 44, n° 2-1986.
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we get the same for VZ (t) and have proved i). With the representation (5 . 9)
of V2 (t) we get immediately also the condition ii). For the condition iii)

v

we compute with (5.8) that v 2 ~ - - u - w - 2i , a v 2 P k andtherefore ¿ ~xk
k=1

Since (Ho + i)-1 maps into and the multiplication operator
with the function u maps into the operator u(Ho + i)-1 is
bounded in and thus [Ho, is continuous. D
We remark that in the proof of this lemma we do not need any restric-

tions for the trajectories except for their continuity. It is obviously
sufficient, if v2 E but we have chosen this weaker condition to
include

where f E C2((0, 00), [R) with f, f ’ and f " bounded on (0, 00). For v &#x3E;_ 3
one can show that the derivatives of v2 as defined in (5.10) meet the require-
ments of the lemma. Therefore we also have proven the existence of the
time evolution in the case of the Yukawa potential

ACKNOWLEDGMENTS

I am indebted to Prof. Dr. V. Enss for his constant encouragement,
for valuable suggestions and discussions.

Annales de l’Institut Henri Poincaré - Physique theorique



171TIME EVOLUTION FOR SCHRODINGER OPERATORS

[1] J. B. DELOS, Theory of electronic transitions in slow atomic collisions. Rev. Mod.

Phys., t. 53, 1981, p. 287-357.

[2] G. A. HAGEDORN, An analog of the RAGE Theorem for the impact parameter approxi-
mation to three particle scattering. Ann. Inst. H. Poincaré, t. A 38, 1983, p. 59-68.

[3] G. C. HEGERFELD, Remarks on causality, localization and spreading of wave packets.
Phys. Rev. D., t. 22, 1980, p. 377-384.

[4] T. KATO, Integration of the equation of evolution in a Banach space. J. Math. Soc.
Japan, t. 5, 1953, p. 208-234. 

[5] T. KATO, On linear differential equations in Banach spaces. Comm. Pure Appl. Math.,
t. 9, 1956, p. 479-486. 

[6] T. KATO, Linear evolution equations of hyperbolic type. J. Fac. Sci. Univ. Tokyo,
Sec. 1, t. 17, 1970, p. 241-258.

[7] T. KATO, Linear evolution equations of hyperbolic type. II. J. Math. Soc. Japan,
t. 25, 1973, 648-666.

[8] M. REED, B. SIMON, Methods of modern mathematical physics. I. Functional analysis.
New York, Academic Press, 1972.

[9] M. REED, B. SIMON, Methods of modern mathematical physics. II. Fourier analysis,
self-adjointness, New York, Academic Press, 1975.

[10] M. REED, B. SIMON, Methods of modern mathematical physics. IV. Analysis of operators,
New York, Academic Press, 1978.

[11] B. SIMON, Quantum Mechanicsfor Hamiltonians defined as Quadratic Forms, Princeton
University Press, 1971.

[12] H. TANABE, Equations of Evolution, Pitman, 1979.
[13] U. WÜLLER, Existenz von Propagatoren für Schrödinger Operatoren mit zeitabhängigen

singulären Potentialen, Diplomarbeit, Ruhr-Universität Bochum, 1984.
[14] K. YAJIMA, A multi-channel scattering theory for some time dependent hamiltonians,

Charge transfer problem. Comm. Math. Phys., t. 75, 1980, p. 153-178.

[15] K. YOSIDA, On the integration of the equation of evolution. J. Fac. Sci. Univ. Tokyo,
Sec. 1, t. 9, 1963, p. 397-402.

[16] K. YOSIDA, Time dependent evolution equations in a locally compact space. Math.
Ann., t. 162, 1966, p. 83-86.

[17] K. YOSIDA, Functional Analysis, Berlin, Heidelberg, New York, Springer, 2nd. ed.,
1968.

(Manuscrit reçu le 15 juillet 1985)

Vol. 44, n° 2-1986.


