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ABSTRACT. - It is shown that the conformally invariant scalar wave
equation on a general Petrov type-N space-time satisfies Huygens’ prin-
ciple if and only if the space-time is conformally related to an exact plane
wave space-time. Some related intermediate results on the validity of
Huygens’ principle for Maxwell’s equations and for Weyl’s equation are
also given.

RESUME. - On demontre que 1’equation invariante conforme des ondes
scalaires sur un espace-temps general de type N de Petrov satisfait au
principe d’Huygens si et seulement si l’espace-temps est conforme a l’espace-
temps des ondes planes. On donne aussi quelques resultats partiels de
nature analogue sur la validite du principe d’Huygens pour les equations
de Maxwell et pour 1’equation de Weyl.
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116 J. CARMINATI AND R. G. MCLENAGHAN

1. INTRODUCTION

We consider the general second order linear, homogeneous, hyperbolic
partial differential equation for an unknown function u of n independent
variables. Such an equation may be expressed in coordinate invariant form as

where gab are the contravariant components of the metric tensor on the
underlying n-dimensional Lorentzian space Vn, and « , » and « ; » denote
respectively the partial derivative and the covariant derivative with respect
to the Levi-Civita connection. The coefficients A a, and C and the
space Vn are assumed to be of class C°°.

Cauchy’s problem for the equation ( 1.1 ) is the problem of determining
a solution which assumes given values of u and its normal derivative on a
given space-like (n - 1) dimensional submanifold S. These values are

called Cauchy data. Local existence and uniqueness of the solution has been
proved by Hadamard [7~] who introduced the concept of the fundamental
solution. Alternate solutions have been presented by Mathison [20 ],
Sobolev [32 ], Bruhat [3 ], Douglis [8 ], and Friedlander [10 ]. The global
theory of Cauchy’s problem has been developed by Leray [19 ]. The consi-
derations of the present paper will be purely local.
Of particular importance in Cauchy’s problem is the domain of depen-

dence of the solution. In this regard Hadamard has shown that for any
xo E Vn sufficiently close to S, u(xo) depends only on the Cauchy data in
the interior of the intersection of the past null conoid with Sand
on the intersection itself. The equation (1.1) is said to satisfy Huygens’
principle (in the strict sense) if and only if for every Cauchy problem and
for every xo E Vn, the solution depends only on the data in an arbitrarily
small neighbourhood of S n C-(xo). Such an equation is called a Huygens’
differential equation. Hadamard posed the problem, as yet unsolved, of
determining up to equivalence all the Huygens’ differential equations.
He showed that in order that (1.1) satisfy Huygens’ principle it is necessary
that n 2 4, and be even. Furthermore he established that a necessary
and sufficient condition for a Huygens’ differential equation is the vanishing
of the logarithmic term in the elementary solution. He then suggested that
one should attempt to show that every such an equation is equivalent
to one of the ordinary wave equations that may be obtained from

(1.1) by setting diag (1, - 1, ... , - 1), Aa = C = 0, and n = 2m,
m = 2, 3, ..., which satisfy Huygens’ principle [6 ]. This is often referred
to as « Hadamard’s conjecture » in the literature. We recall that two equa-
tions of the form (1.1) are equivalent if and only if one may be transformed
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117AN EXPLICIT DETERMINATION OF THE PETROV TYPE N SPACE-TIMES

into the other by any of the following trivial transformations which preserve
the Huygens’ character of the equation :

a) a general coordinate transformation;
b) multiplication of the equation (1.1) by the function exp ( - 2~(x)),

which induces a conformal transformation of the metric :

c) replacement of the unknown function by ~,u, where ~,(x) is a non-

vanishing function.
Hadamard’s conjecture has been proved in the case n = 4, gab constant

by Mathisson [21 ], Hadamard [16 ], and Asgeirson [1 ]. However, it has
been disproved in general by Stellmacher [33] ] [34] ] who gave counter-
examples for n = 6, 8, ... and Gunther [72] ] who provided a family of
counter examples in the physically interesting case n = 4, with C = 0,
based on the plane wave space-time [29] whose metric may be written as [9]

ds2 = 2dv[du + (D(v)z2 + + e(v)zz)dv] - 2dzdz, (1. 3)
where D and e are arbitrary functions. These are the only known Huygens’
differential equations not equivalent to the ordinary 4-dimensional wave
equation.

In their attempts to solve Hadamard’s problem workers [77] ] [77] ] [22]
[35] ] [2~] ] have derived the following series of necessary conditions that
must be satisfied by the coefficients of a Huygens’ differential equation :

In the above conditions

Vol. 44, n° 2-1986.



118 J. CARMINATI AND R. G. MCLENAGHAN

where Rabcd denotes the Riemann curvature tensor corresponding to the
metric gab, Rab := gcdRcQbd the Ricci tensor and R := gabRab the curvature
scalar, our sign conventions being the same as those in [24 ]. The nota-
tion TS( ) denotes the trace-free symmetric part of the enclosed ten-
sor [22 ]. It is important to note that the above necessary conditions are
invariant under the trivial transformations.
The Conditions I and III were used by Mathisson to prove Hadamard’s

conjecture in the case gab constant. One of us [22] ] used Conditions I,
III, and V to show that the Eq. (1.1) on a space-time conformal to a space-
time satisfying Rab = 0 (empty space-time) is a Huygens’ equation only
if it is equivalent to the wave equation on the plane wave space-time with
metric (1.3). This result combined with that of Gunther previously men-
tioned solves Hadamard’s problem in this case. However, the Conditions I
to V are not sufficient to characterize the Huygens’ differential equations
in the general case. This conclusion follows from the fact that the confor-
mally invariant wave equation

on the generalized plane wave space-time of McLenaghan and Leroy [2.?]
with metric

where a, D, e, and F are arbitrary functions, satisfies Conditions III and V
[25 ], but does not satisfy the following additional necessary condition
for (1.13) to be a Huygens’ differential equation, derived by Rinke and
Wunsch [27 ], unless = 0 [~0] ] [5 ], when (1.14) modulo a coordinate
transformation reduces to the plane wave metric ( 1. 3) :

Annales de l’Institut Henri Poincaré - Physique theorique



119AN EXPLICIT DETERMINATION OF THE PETROV TYPE N SPACE-TIMES

It should be noted that Rinke and Wunsch used Conditions III and VII

to show that the conformally invariant wave equation on the plane fronted
wave with parallel rays space-time with metric

where m is an arbitrary function, is a Huygens’ differential equation only
if there exists a system of coordinates for which

in which case the metric reduces to the plane wave metric (1.3).
The results described above suggest that the Conditions III, V, and VII

may be sufficient to show that every space-time on which the conformally
invariant equation (1.13) satisfies Huygens’ principle, is conformally related
to the plane wave space-time (1. 3) or is conformally flat. A plan of attack
for proving this conjecture, suggested by the authors [4 ], is to consider

separately each of the five possible Petrov types [7] ] [2~] ] of the Weyl
conformal curvature tensor Cabcd of space-time. This is a natural approach
since Petrov type is invariant under a general conformal transforma-
tion (1.2). The conjecture is indeed true for Petrov type N, as has been
stated without proof by the authors in [5 ].
The main purpose of the present paper is to provide a detailed proof of

this result. Our analysis enables us to obtain « en passant » some related
intermediate results on the validity of Huygens’ principle for Maxwell’s
equations for a 2-form 03C9 on V4 which may be written as

where d and 03B4 denote the exterior derivative and co-derivative respectively,
and for VVeyl’s neutrino equation for a 2-spinor 4&#x3E; A which may be written as

where denotes the convariant derivative on spinors. It has been shown
by Kunzle [7~] ] that Huygens’ principle is satisfied for Maxwells’ equa-
tions on the plane wave space-time [31 ] according to a criterion given by
Gunther [13 ], and that the only empty space-time with this property
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120 J. CARMINATI AND R. G. MCLENAGHAN

has metric (1. 3) with e = 0 [14 ]. Wunsch [38] ] [~9] has shown that Weyl’s
equation also satisfies Huygens’ principle on the plane wave space-time
with a converse analogous to that for Maxwell’s equations when Rab = 0.
Necessary conditions for the validity of Huygens’ principle for the equa-
tions (1.16) and (1.17) have also been derived [36] ] [39 ]. The first of these
is the vanishing of the Bach tensor [2], Cab, which is defined to be the
tensor on the left hand side of Eq. (1.6). The next level of conditions are
similar to Condition V in the case of the conformally invariant scalar wave
equation (1.13) but with different numerical coefficients. These condi-
tions can be combined into the following form valid for all three of the
equations considered :

where the values of k1 and k2 in each of the three cases are given in the
following table :

TABLE 1

Equation k1 k2

Scalar 3 4
Maxwell 5 16

Weyl 8 
~ 

13

It will be shown in the sequel that the general solution of Eqs. (1.18)
and ( 1.19) for Petrov type N are conformally related to special cases of the
complex recurrent space-times of McLenaghan and Leroy [23 ]. In the case
of the conformally invariant scalar wave equation (1.13), imposition of the
additional necessary condition VII yields the solution of Hadamard’s pro-
blem already stated. However, in the case of Maxwell’s and weyl’s equations
the corresponding problems remain open. It seems that additional condi-
tions analogous to Condition VII are required in order to settle Hadamard’s
problem for these equations.
The plan of the remainder of the paper is as follows. In Section 2 the main

theorems are stated and a description of the method of proof given. The
formalisms used are briefly described in Section 3 and the details of the
proofs given in Sections 4 and 5.
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2. HYPOTHESES AND STATEMENT OF RESULTS

We assume that the space-time v4 is Petrov type N. This is equivalent
to the existence of a necessarily null vector field l such that the non-vanishing
Weyl conformal curvature tensor satisfies the equation [7] ]

at each point. We note that the plane wave space-time with metric (1.3)
is Petrov type N with l = 

The main results of this paper are contained in the following theorems.

THEOREM 1. For every Petrov type N space-time for which the confor-
mally invariant scalar wave equation (1.13), or Maxwell’s equations (1.16),
or Weyl’s equation (1.17) satisfies Huygens’ principle there exists a coor-
dinate system (u, v, z, "2) and a function ~ such that the metric of V4 has the
form

where , the functions p and m satisfy

The functions G and H appearing in (2.4) are either given explicitly by

where go, gl - gl, and h2 ~ 0 are arbitrary functions in which case there
exists coordinates in which the function pZ of (2 . 3) is real and po and p 1
are zero, or they satisfy the following differential equations

where a2 is an arbitrary non-vanishing function and , , and b 1 must satisfy

or

In the latter case the functions pi, i = 0, l, 2, of (2.3) are arbitrary and
the values of the parameters kl and k2 are those of Table l.
When k 1 - 3, k2 = 4, which yields the scalar case, Theorem 1 reduces

Vol. 44, n° 2-19$6.



122 J. CARMINATI AND R. G. MCLENAGHAN

to the proposition stated without proof in [4 ]. When 4&#x3E; = 0, the metric (2 . 2)
is a special case of the type N complex recurrent metric of McLenaghan
and Leroy. The values of G and H given by (2.5), yield the generalized
plane wave metric [23 ], which is already known to satisfy the necessary
conditions III’ and V’ [25 ]. When p2 = 0, there exists coordinates in which
the metric has the form (1.3) of the plane wave space-time. The metrics
defined by Eqs. (2.2) to (2.4) and (2.6) to (2.9) are apparently new solu-
tions of these conditions [4] ] [5 ].

THEOREM 2. - Every Petrov type N space-time on which the confor-
mally invariant scalar wave equation (1.13) satisfies Huygens’ principle
is conformally related to a plane-wave space-time, that is there exists a
system of coordinates (u, v, z, z) and a function ~ such that the metric of V4
has the form

where D and e are arbitrary functions.
Conversely [12] the conformally invariant wave equation (1.13) on any V4

which is conformally related to a plane wave space-time satisfies Huygens’
principle. Theorem 2 and this result may be combined in

THEOREM 3. - The conformally invariant wave equation (1 .13) on any
Petrov type N space-time satisfies Huygens’ principle if and only if the
space-time is conformally related to a plane wave space-time for which
there exists a coordinate system in which the metric has the form (1. 3) .
Theorem 3 is equivalent to the theorem stated without proof in [5 ].

Theorem 2 follows from Theorem 1 in the case kl - 3, k2 = 4, when the
necessary Condition VII is imposed.

3. FORMALISMS

We employ the two-component spinor formalism of Penrose [28] ] [30]
and the spin coefficient formalism of Newman and Penrose (NP) [26]
whose conventions we follow. In the spinor formalism tensors and spinors
are related by the complex connection quantities 03C3aAA (a = 1, ... , 4 ; A = 0,1)
which . are Hermitian in the spinor indices AÅ and satisfy the conditions

In this equation spinor indices have been lowered by the skew symmetric
spinors GAB and GÄB defined by Böi = 1, according to the convention

Annales de Henri Poincaré - Physique " theorique "



123AN EXPLICIT DETERMINATION OF THE PETROV TYPE N SPACE-TIMES

Spinor indices are raised by the respective inverses of these spinors denoted
by GAB and EAB. The spinor equivalents of the Weyl conformal curvature
tensor ( 1.12) and the tensor Lab defined by ( 1.10) are given respectively by

where called the Weyl spinor, is symmetric on its four indices,
where ABAB. called the trace free Ricci spinor, is a Hermitian spinor
symmetric on the indices AB and AB, and where

The covariant derivative of a spinor ÇA is defined by

where rBAa denotes the spinor affine connection. This connection is deter-
mined by the requirements that the covariant derivative is real, linear,
obeys Leibnitz’s rule and satisfies

It is useful to introduce a basis {OA, lA} for the space of valence one
spinors satisfying

These spinors may be used to define a spinor dyad ~aA by

Associated to the spinor dyad is a null tetrad (l, n, m, m) defined by

whose only non-zero inner products are

The metric tensor may be expressed in terms of the null tetrad by

The NP spin coefficients associated to the dyad or equivalently to the
corresponding null tetrad are defined by

Vol. 44, n° 2-1986.



124 J. CARMINATI AND R. G. MCLENAGHAN

The NP components of the Weyl tensor and trace free Ricci tensor are
defined respectively by

where the notation := etc. has been used. The NP
differential operators are defined by

The equations relating the curvature components and the spin coefficients
and the commutation relations satisfied by the differential operators (3.17)
may be found in NP.
The null tetrad preserving the direction of l is determined up to the

subgroup G4 of proper orthochronous Lorentz transformations L +
defined by

where the functions a and b are real valued and q is complex valued. The
corresponding transformation of the spinor dyad { o, i ~ is given by

where w = a + ib. These transformations induce transformations of the
spin coefficients and curvature components which will be used later.

Finally by (3.12) the conformal transformation ( 1. 2) is induced by the
following transformation of the null tetrad :

Some ’ of the more useful transformations of the spin coefficients induced o

by (3.20) are ’

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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4. PROOF OF THEOREM 1

We begin by expressing Conditions IIF and V’ in spinor form. By contract-
ing Eqs. ( 1.18) and ( 1.19) with the appropriate number of 6’s and noting
that the spinor equivalent of a trace free symmetric tensor is a Hermitian
spinor symmetric in its dotted and undotted indices [22 ] we obtain with
the help of Eqs. (3.3) and (3.4)

We next make the hypothesis that space-time is of Petrov type N. The
condition for this is Eq. (2.1) which in spinor form is equivalent to the
existence of a principal null spinor such that the Weyl spinor has the form

where T := q 4.
We select oA to be the first spinor in a spinor dyad which implies by

(3 .15) that

for all i = 0, ..., 3. In view of the transformation (3.19) it is possible to
choose a spin or dyad satisfying (4.4) in which

For the present we shall assume that this choice of dyad has been made
which implies that

We proceed by substituting for in Eqs. (4.1) and (4.2) from (4.6).
The covariant derivatives of OA and lA that appear are eliminated using
Eqs. (3.13) and (3.14) respectively. The dyad form of the resulting equa-
tions is obtained by contracting them with appropriate products of oA
and iA. In view of the conformal invariance of Conditions III’ and V’ [24]
[37] ] or equivalently of III’s and V’s it follows that each dyad equation
must be individually invariant under the conformal transformation (3.20).

Vol. 44, n° 2-1986.



126 J. CARMINATI AND R. G. MCLENAGHAN

The first contraction to consider is OABClD-A-BCDOI with Condition V’s
which yields the condition

This implies

since from Table 1 k2 ~ 4k1. The condition (4. 8), which is invariant under
the transformations (3.19) and (3.20), implies that the principal null
congruence of Cabcd defined by the principal null vector field

is geodesic.
Before proceeding with the derivation of further dyad equations from

III’s and V’s we exploit the conformal invariance of the problem by using
the transformation (3 . 21 ) for p to set (dropping tildes)

We note that in order to obtain (4.13) the function 4&#x3E; must satisfy the
linear inhomogeneous partial differential equation

which always has a solution. ........

The next contractions to consider are and OAlBCD-A-BCDOl
with V’s and with III’s which yield respectively .

Analysis of these equations requires the NP Eqs. (4 . 2 a) and (4 . 2 b) which
in view of (4.4), (4.8) and (4.13) reduce to

By eliminating D7 between Eqs. (4.15) and (4.19) we obtain

If we assume

Eq. (4.20) implies

Annaks de ll’Institut Henri Poincaré - Physique ’ theorique ’
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By adding this equation to its complex conjugate we have

which implies

since k2 ~ 10k1 in Table 1. Solving (4 . 22) we obtain

We next add Eq. (4.18) to its complex conjugate to obtain

Finally we substitute for Band in (4.16) from (4.25) and (4.26) respec-
tively obtaining

We now observe that the coefficient of 66 in (4.27) is negative in each of
the three cases since from Table 1, 7k2  44k1. It thus follows from (4.27)
that

which contradicts the inequality (4.21). We are hence led to conclude that

a condition that remains invariant under the transformations (3.18) and

(3.20). The condition (4.29) implies that the principal null congruence of

Cabcd defined by the vector field la is shear free [30 ].
We proceed with our analysis by using Eqs. (4.17) to eliminate the term

D(E + e) from Eq. (4.16). The resulting equation has the form

By completing squares we obtain

It follows from this equation that

since by Table 1, 4k 1 &#x3E; k2 for each of our three cases. We note that the

condition (4 . 32) is invariant under the transformation (3.18) but obviously
not under the conformal transformation (3.20). However, it is clear from
the transformations (3.21) that the condition

is invariant under (3.20) and that this is the form that (4.32) takes in an

VoL 44, n"2-1986.



128 J. CARMINATI AND R. G. MCLENAGHAN

arbitrary conformal gauge. On the other hand the condition (4.33) is
not invariant under (3.18) since the induced transformation law for G is

From the transformation formula

and the choice (4.5) it follows that the form of the condition (4.33) inva-
riant under (3.18) is

We also note that this condition is also invariant under the conformal
transformation (3.20).
An important consequence of the conditions (4.8), (4.29), (4.32) and

(4.33) is the vanishing of some of the trace free Ricci tensor components.
Indeed from NP Eqs. (4 . 2 a) and (4 . 2k) we find that

Further exploitation of conformal invariance is now possible. From
the transformations (3 . 21 ) we may set

while preserving p = 0, To achieve this, 4&#x3E; must satisfy the following system
of first order linear partial differential equations

In order to establish that this system has a solution we must show that
the integrability conditions for (4.40) are satisfied. The relevant commu-
tation relations are given by NP Eqs. (4.4) which read

To verify that the first of these relations is satisfied we note that by
Eqs. (4.38) and (4.40) and NP Eq. (4.2c) the left hand side is given by

while the right hand side becomes

Annales de Henri Poincare - Physique ’ theorique ’
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The verification of (4.42) is identical. Turning to (4.43) we note that on
the one hand by (4. 38), (4.40) and NP Eq. (4. 2q)

while on the other hand

Comparison of (4 . 46) and (4 . 47) shows that the commutation relation (4 . 43)
is satisfied. We thus conclude that the system (4.40) has a solution and
hence that (4.39) holds. We shall assume in the sequel, that we are using
a conformal gauge in which (4.39) is true and consequently drop the
tildes from all the transformed NP quantities. We note that by Eqs. (4.8),
(4.29), and (4.32) the condition L = 0, is invariant under the tetrad trans-
formation (3.18), but clearly not under the conformal transformation (3 . 20).
The results obtained at this point may be summarized as follows : Condi-

tions III’s and V’s imply that with respect to any null tetrad (l, n, m, 
which l principal null vector of the type N Weyl tensor there exists a
conformal transformation 03C6 in which

The form of the above conditions is dependent on the fact that the tetrad
vector is a principal null vector of the type N Weyl tensor. It is advantageous
for what follows to find a spinorial or tensorial form for these conditions.
To this end we take the covariant derivative of (4. 3) obtaining

We then substitute for oD;EE using (3.13) and (4.48) to get

where

The spinor equation (4.53) is equivalent to the tensor equation

where

Vol. 44, n° 2-1986.
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The tensor *Cabcd in (4. 56) is the dual of Cabcd defined by

where ~abcd is the Levi-Civita tensor.
We now observe that (4. 55) is the defining equation of the complex recur=

rent space-times [2~]. We are thus able to restate our result in the following
tensorial form : Any Petrov type N space-time satisfying Conditions III’
and V’ is conformally related to a complex recurrent space-time. The required
conformal factor, which is identical with that appearing in Eq. (2.2) of
Theorem 1, is given by where 4&#x3E; is the function satisfying Eqs. (4.14)
and (4 . 40), whose existence has just been established. We thus have obtained
a generalization of a similar result which holds in the vacuum case (see
Theorem 1 of [22 ]). However, the similarity with the vacuum case ends
here since the vacuum complex recurrent space-times are necessarily
plane wave while the Petrov type N complex recurrent space-times includes
a much wider class of metrics [23 ].
We proceed with the proof by using the fact that the Weyl spinor satisfies

(4. 53) to extract the remaining information from Conditions III’s and V’s.
We drop the assumption (4. 5) and work in a general spinor dyad with ~
a principal null spinor of It follows from (4.3), (4.49), (4.53), and
(4. 54) that

where

For future use we need the transformation law for 03 induced by (3.19)
which is

By contracting (4.59) with 8DC we obtain

Covariant differentiation of this equation yields

where

The function

de Poincaré - Physique theorique
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that one might have expected to appear in (4 . 65) as the coefficient of 
is identically zero. This follows from the transformation law

induced by (3 .19), and the fact that in a tetrad for which (4. 5) holds

by Eqs. (4.33), (4.62) and NP Eq. (4.2e). We also need the formula

which follows from (4 . 51 ).
In view of the Eqs. (4. 59), (4. 65) and (4. 72) it is an easy matter to show

that the only remaining information in Conditions III’s and V’s is expressed
by the following equations :

In order to solve these equations we need a canonical coordinate system
for the type N complex recurrent space-times. Such a coordinate system
(u, v, z, z) has been provided by McLenaghan and Leroy with respect
to which the metric of any type N space-time satisfying (4. 55) has the form

where

A canonical null tetrad for (4.75) in which la is a principal null vector of
the type N Weyl tensor is defined by the following choice of NP opera-
tors [23 ] :

Vol. 44, n° 2-1986.



132 J. CARMINATI AND R. G. MCLENAGHAN

The non-vanishing NP spin coefficients and curvature components cor-
responding to this tetrad are

We begin this stage of the proof by imposing the condition (4.49).
On account of (4. 79) and (4. 84) this condition may be expressed as

The general solution of this equation is given by

where pi, i = 0, 1, 2, are arbitrary functions. This establishes the form (2. 3)
of Theorem 1.
We next examine the condition (4. 73). In view of (4. 62) and (4.68) we

may write

Substitution for 03B4, (x, and 03B2 in the above from (4.79) and (4.80) yields

Finally by eliminating 03A8 using (4.84) we obtain on noting (4.87)

From this equation we observe that

It follows that the condition (4. 73) may be expressed as

an equation which is invariant under a general tetrad 0 transformation (3.18)
Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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and conformal transformation (3.20). By (4.90) the above condition may
be expressed as _

The general solution of this equation is given by

where A and B are arbitrary functions. An alternate form of the solution
to (4.93) in the case e = 0, is given by

where G and H are arbitrary functions. This result, which is the form (2.4)
of Theorem 1, is obtained using (4 . 91 ). W hen e = 0, the function 03A8 given
by (4.84) has the form

Comparison of (4. 95) and (4.97) yields on account of (4. 94)

The last equation to be solved is (4.74). In view of Eqs. (4.61), (4.62),
(4.67), (4.79), and (4.95) this equation has the form

where «’ » denotes the partial derivative with respect to z or z. In order
to solve (4.99) it is convenient to distinguish the cases e = 0 and e ~ 0.

If

the above equation reduces to

which implies
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since from Table 1, 2k2/k 1  17, for each of the three cases. It thus follows
from (4. 98) that the functions G and H have the form

where gi, i = 0, 1, and h2 ~ 0, hi, i = 0, 1, are arbitrary functions. By (4 . 96)
and the above

where

By means of coordinate transformations which preserve the form of the
metric defined by Eqs. (4.75) to (4.78) and the form of the functions p
and m given by (4 . 88) and (4.106) respectively it is possible to set [2~] ]

and

The resulting form of m may be obtained from (4.107) to (4.110) without
loss of generality by setting

The above results justify the form (2.5) of Theorem l, which as already
noted, yields the generalized plane wave metric.
We now assume

Dividing Eq. (4.100) by A’A’ we obtain

Taking of this equation yields

This equation implies
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since, as previously noted, 2k2/k 1  17, in each case. The general solutions
of (4.118) and (4.119) are

where and b 1 are functions to be determined. In particular they
must satisfy the following equation

which is obtained by substituting from (4.120) and (4 .121 ) into the equa-
tion which results from taking of Eq. (4.116).

In order to simplify the solution of (4.120) and (4.121) for A and B we
recall that the complex recurrent metric defined by (4. 75) to (4. 78) is form
invariant when e = 0, under the coordinate transformation

where k is arbitrary [23 ]. This transformation preserves the form (4 . 88)
of p, and induces the following transformation of A and B :

It follows from these equations that Eq. (4.100) is invariant under the
transformation (4.123). We are thus able to conclude that the functions ao
and a 1 of (4.120) transform as

Since by (4.122), 0, it follows from the above that we may choose k
such that So = 0. Dropping the hats from the transformed quantities we
may write (4.120) as

The general solution of this equation is

where a2 ~ 0, is an arbitrary function. Integrating by parts we find that the
general solution of (4.121) has the form

where b2 is a function to be determined. By substituting for A and B from
(4.129) and (4.130) into (4.100) we obtain an equation of the form
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where P is a polynomial of degree less than three in z and in z. Now it follows

from (4.122) that 0, 1, or 2. Thus by taking a3 3 of (4 .131 )
we obtain ~

from which it follows that

since = 1, or - 1, by (4.122). By now equating the coefficients of
the polynomial P to zero we find the additional conditions

The last of the above equations implies

while the first equation implies

or

If (4.138) holds the solutions for A and B are given by (4.129) and

where the function according to (4.122), must satisfy

which by Table 1 has solutions for each of the three cases. The above forms
of A and B combined with (4. 98) establishes Eqs. (2.6), (2 . 7) and (2. 9) of
Theorem 1.

If (4.139) is satisfied the functions A and B are given by

where the function b 1, by (4 .122), must satisfy

which has solutions for each of the three cases since by Table 1, k2/kl &#x3E; 1.
The above forms for A and B in conjunction with (4 . 98) justify Eqs. (2 . 6) (2 . 7),
and (2 . 8) of Theorem l.

CASE 0. - We will show that Eq. (4.99) has no solution in this case.
If
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Eq. (4.99) reduces to

IfB’ = 0, the above equation implies B = 0, which by (4 . 95) implies 03A8 = 0,
which is impossible. Thus we must have

Dividing Eq. (4.145) by B’B’ we have

Taking ~6/~z3~z3 of the above we obtain

When e = 1, this equation implies, since kl/k2  1

The general solution of these equations is given by

where d, f, g, h, j, and l are functions of integration. For consistency we
must have

It follows that

We proceed by substituting for B/B’, from the above in (4.147), which yields

The vanishing of the constant term in the above equation implies

from which it follows (when e = 1) that

It thus follows that the vanishing of the coefficients of z and z2z in (4.154)
implies
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These equations imply k 1 = 0, which by Table 1 is impossible. We thus
conclude that Eq. (4.147) has no solutions when e = 1. For future use we
note that Eq. (4.155) implies that Eq. (4.147) has no solution of the form
(4.153) when 6?== - 1.
We now consider the case e = - 1, when (4.147) may be written as

We may assume

which by (4.159) is equivalent to

since the case (B/By = 0, which is equivalent to (zB/By = 0, has already
been shown to be impossible. In view of this remark we may separate the
variables in (4.159) yielding

where k is a separation function. For consistency it follows that k must
satisfy

which has solutions since k 1  k2 by Table 1. The general solution of (4 .162)
is given by

where d, f, and g are functions of integration. When this form of B/B’ is
substituted into (4.147) a polynomial equation in z and z is obtained after
multiplication by (l2014~z)(l2014~z). The vanishing of the term independent
of z and z in this eq uation yields

which has no solutions. We thus conclude that Eq. (4.147) has no solution
when e = - 1. Combining the results just proven for e = 1 and - 1, we
conclude that Eq. (4.99) has no solutions when A = 0.
We now consider the possibility

Division of Eq. (4.99) by AA yields
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where

By a process of successive division and differentiation, similar but more
elaborate than that used in the case A = 0, the details of which are given
in the Appendix, it is possible after a finite number of steps to separate
the variables in Eq. (4.167). Integrating back the required number of times
it is possible to show that the functions N, P, and Q are rational functions of z.
We may thus write

where K, N 1, P 1, and Q 1 are polynomials in z whose coefficients are func-
tions of v and K is the common denominator. Substituting for N, P, and Q
in (4.167) from (4.169) and multiplying the resulting equation by KK
we obtain an equation which may be written as

where S is a polynomial in z and z. It follows from this equation that 1 + ezz
must be a factor of the polynomial zK+Pi, since 1 + ezz does not divide
the polynomial 1 + e( 1- for any of the values of k1 and k2 permitted
by Table 1. Thus we must have

where T is some polynomial in z. It follows from this equation that

Thus we have

which by (4.169) implies that

Employing the definitions (4.168) we find that

We now use (4.176) to eliminate A from Eq. (4 . 99). The resulting equation,
when simplified, has the following form :

We proceed by dividing the above equation by BB, since B 5~ 0. This yields
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Taking of this equation yields

If e = 1, the above equation implies

The general solution of these equations is

where c, d, , f; g, h, and j are functions of integration. For consistency we
must have

from which it follows that

It follows that Eq. (4.178) reduces to

which is impossible. We conclude that Eq. (4.177) has no solutions when
e = 1.
We now consider the possibility e = - 1. We first note that

and Eq. (4.179) imply that

which is the case just considered. Thus we assume

We proceed by dividing both sides of Eq. (4.179) by (zB’/B)" (zB’/B)"
to obtain

Taking the derivative of this equation gives
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from which it follows that

Integrating these equations we obtain

where a and b are functions of integration which by (4 .191 ) must satisfy

Further integration of Eqs. (4.195) and (4.196) yields

where c, d, f, and g are additional functions of integration. Consistency
of the above equations requires

from which it follows that

If d = 0, Eq. (4.200) implies f = 0, from which it follows by (4.198) that

B’ /B = 0, which violates (4.190). If d ~ 0, Eq. (4.201) implies

which in turn implies by (4.197) that

We thus have from (4.198)

We now substitute for B’/B in (4.178) from the above and multiply the
resulting equation by 11 - a(v)z 12. The vanishing of the term independent
of z and z and of the coefficient of z2z in this polynomial equation yields

These equations and (4.203) imply that

which by Table 1 is impossible. We thus conclude that the differential

equation (4.177) has no solution when e = - 1.
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Combining the results for e = 1 and - 1, we conclude that the differen-
tial equation (4.99) has no solutions when 0. Recalling the analogous
result for A = 0, we have thus proven the claim that the differential equa-
tion (4 . 99) has no solutions when e ~ 0, for the values of k1 and k2 permitted
by Table 1. This completes the proof of Theorem 1.

5. PROOF OF THEOREM 2

The proof consists of the application of Condition VII to the general
solutions of Conditions III’ and V’ given in Theorem 1. We continue
to use the spinor formalism and spin coefficient formalism described
in Section 3. Exploiting the conformal invariance of the problem we employ
the tetrad (4.79) and the corresponding spinor dyad. We also use the
special properties of the above mentioned solutions in order to simplify
the calculations as much as possible. We recall that with respect to the
tetrad (4 . 79) the non-vanishing spin coefficients and curvature components
given by Eqs. (4.80) to (4.86), when e = 0, reduce to

where

and where p and m are given by (2. 3) and (2.4) respectively. The NP ope-
rators have the form

We require the covariant derivatives of the Weyl spinor up to third order.
Differentiation of (4.59) and the use of (3.13) and (3.14) yields
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where

By a similar method we obtain by differentiating (4.65)

where

We also require the covariant derivative of the trace free Ricci spinor.
From (4.72), (3.13), and (3.14) we obtain

where

We proceed by expressing Condition VII in spinor form. We use the
same procedure as that employed to derive Conditions III’s and V’s.
The sought after condition, where the terms which vanish identically
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as a result of Eqs. (5 . 9) (5 .18) and (5 . 25) are omitted, has the following form :

The next step is to substitute for the Weyl spinor, the trace free Ricci spinor
and their covariant derivatives in the above equation from (4.3), (4.72),
(5.9), (5.18) and (5.25). Equating to zero the coefficients of the basis ele-
ment O(ABCDlEF)OABCDEF in the resulting equation we obtain

We now apply this condition to the metric defined by Eqs. (2.2) to (2.4)
and (2.6) to (2.9) of Theorem 1. By the definitions (4.61), (4.62), (5.14),
(5.15), (5.17), (5.23) and Eqs. (5.1) to (5.7) we obtain the following inter-
mediate results :

In view of the above results the complex conjugate of Eq. (5 . 32) reduces to

Since 0, this implies
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This in turn implies by (2. 6) and (4.98) that

This equation is inconsistent with the requirements that a2 ~ 0, and that a 1
satisfy (2 . 8) or (2 . 9). We thus conclude that the metric of Theorem 1 defined
by the Eqs. (2 . 2) to (2 . 4) and (2. 6) to (2 . 9) does not satisfy Condition VIII. It
follows that the conformally invariant wave equation (1.13) space-time
with metric given by Eqs. (2 . 2) to (2.4) and (2 . 6) to (2.9) of T heorem 1 does
not satisfy Huygens’ principle [5 ].
We now turn to the metric defined by Eqs. (2.2) (2.3) (2.4) and (2. 5)

of Theorem 1. In this case we have by (4. 98)

It follows from the above and Eqs. (5 . 33) and (5 . 34) that

Thus the condition (5.32) reduces to an identity. The equations (5.44) in
fact imply that the condition (5.31) reduces to

where the left hand side arises from the last term on the left hand side of

(5.31). The condition (5.45) implies

which in turn implies

since’ = 2h2 ~ 0. Now by (2. 3), (5 . 5) and (5 . 7)

Thus (5.47) implies

This establishes the fact that the generalized plane wave metric does not

satisfy Condition VII if a := p2 ~ 0 [5] ] [40 ]. On the other hand if (5 . 49)
holds there exists a coordinate system in which the metric of Theorem 1

defined by Eqs. (2 . 2) (2 . 3) (2.4) and (2. 5) has the form (2.10) of the metric
of Theorem 2. The required coordinate transformation may be found in
Ref. [23 ]. This completes the proof of Theorem 2.
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APPENDIX

In this Appendix it is shown that the functions N, P and Q defined by (4.168) and satisfying
Eq. (4.167) are necessarily rational functions in z. There are numerous special cases to
consider. However, we shall only give the details for the most general case since the method
and the result are the same for the special cases. We proceed by taking the derivative

of (4.167) which yields

where

Assuming

we divide Eq. (A .1) by DU and differentiate the resulting equation with respect to z and
then with respect to z obtaining ,

We now divide (A. 5) hy j (E D)’ (K/G/ assuming

and differentiate to obtain
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where

Next we divide (A. 7) by Q W assuming

and take ~2/~z~z to find

We finally obtain a separable equation by dividing (A .10) by assuming

and by taking the derivative The resulting equation may be written as

Assuming
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we find that (A. 12) implies

where al is some (separation) function only of v. Integrating (A .14) and (A .15) with respect
to z we obtain

where a2 and a3 are functions only of u. We proceed backwards by substituting from (A. 16)
and (A. 17) into (A. 10). On account of the cancellation of some terms the resulting equa-
tion separates and it follows by (A .11) that we have

where b is another separation function. The Eqs. (A . 18) (A .19) (A .16) and (A. 17) may
now be integrated with respect to z and z yielding

where a4, as, b2 and b3 are further functions of integration. We now proceed a further
step backwards by substituting for 9e2R and 3e203A0 from (A. 20) and (A. 21) respectively
into (A. 7). Due to appropriate cancellations the resulting equation separates yielding
two additional equations, which we may integrate with respect to z and z respectively.
We repeat the process just described two more times to separate the Eq. (A. 5) and finally
(A.1). The whole procedure yields ten separated equations which may be written as follows:
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The next step is to replace in the above equations the functions C, ..., M by their defini-
, 

tions given by (A. 3) and integrate the resulting equations three times with respect to zafter taking complex conjugates of the Eqs (A . 25) (A . 27) (A . 29) (A . 31) and (A . 33). The
equations obtained may be written (in a different order) as follows :

where
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The functions li, mi, and ni appearing in (A. 66) are functions only of v for all i = 1, ..., 10.
We also have

Since g2 is never the zero polynomial for any choice of the function a~, we may solve (A. 35)
for Q in terms of N and P yielding

We then substitute for Q in the remaining equations (A. 34) to (A. 43) obtaining a system
of equations which may be written as

where

We compute

and ’ observe ’ that (]7 is never the zero 0 polynomial. This result implies that we may always
cnlve ’ Fn fA .69~. = 7. for P in terms of N namely

Using the expression for P thus obtained we eliminate P from the remaining equations (A. 69)
obtaining a system of equations which may be written as

where

for i = 1, ..., 9, i ~ 7. In view of the preceding definitions it is clear that the }Ii and ~3~
are polynomials for all admissible values of i. It thus follows from (A. 81) that N is always
a rational function of z unless for some choice of the functions ... , a9, bi, ..., b~,
Cb ..., Cs, dl, ..., d3, fl. the polynomials 03B3i = 0, for all i = 1, ..., 9, i ~ 7. However, an
examination of the equations that must be satisfied by these functions as a consequence of
the requirement that ~=0, Vf=l, ... , 9, f~7, shows that this system of equations has
no solutions. We are then able to conclude that in the general case considered the function N
is rational in z. It follows from Eqs (A. 68) and (A. 80) that the functions P and Q are also
rational. The same result is obtained by a similar method in the special cases that result
when one or more of the inequalities (A .13) (A. 9) (A. 6) and (A. 4) fail to hold.
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