
ANNALES DE L’I. H. P., SECTION A

A. PRÀSTARO

T. REGGE
The group structure of supergravity
Annales de l’I. H. P., section A, tome 44, no 1 (1986), p. 39-89
<http://www.numdam.org/item?id=AIHPA_1986__44_1_39_0>

© Gauthier-Villars, 1986, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1986__44_1_39_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


The group structure of supergravity

A. PRÀSTARO

T. REGGE

Dipartimento di Matematica, Universita della Calabria
87036 Arcavacata di Rende (CS), Italy

Istituto di Fisica Teorica, Universita di Torino
10125 Torino, Italy

39

I Inst, Henri Poincaré,

Vol. 44, 1986, Physique theorique

ABSTRACT. - An intrinsic description of the « group manifold

. approach » to supergravity is given. Emphasis is placed on some geo-
metric structures which allow us to obtain a direct full covariant for-
mulation. In particular, the geometric theory of partial differential equations
allows us to give a dynamic description of space-time.
Some applications to physically interesting situations are discussed

in detail..

RESUME. - On donne une description intrinseque du « modele de
variete de groupe » pour la supergravite. L’accent est place sur quelques
structures geometriques qui permettent de donner une formulation directe
completement covariante. De plus la theorie geometrique des equations
différentielles nous permet d’obtenir une description dynamique de l’espace
temps.

Quelques applications physiquement intéressantes sont egalement dis-
cutées en detail.

1. INTRODUCTION

In recent years geometric theories of supergravity were introduced
’ 

in order to give unified models for the fundamental forces of Nature [1] ] [2]
Annales de l’Institut Henri Poincaré - Physique theorique - Vol. 44, 0246-0211
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40 A. PRASTARO AND T. REGGE

[3] ] [4] ] [5] ] [6 ]. Although none of these theories has reached the status
of a final unified theory many of them show interesting features and use
novel ideas. For this reason it is desirable to deal with them by a stan-
dard method and a unified formalism capable of handling a broad range
of applications and having formal power and consistency.
The so-called « group manifold approach », first introduced in ref [1]

and then further developed in some other papers (see e. g. refs [2] ] [3 ])
seems to us to play a very distinguished role. In fact, in this model the
fundamental structure is a « group » on which the physics is built by adopting
a spirit close to the gauge theory one.

Cartan was the first to worry about gauge theories from a geometric
point of view and introduced the notion of connection, the geometric
counter part of the Yang-Mills fields of the physicists. He built an extension
of conventional gravity by the use of torsion. In particular, although Cart an
proposed torsion already in 1922 [ 7], its relevance was recognized only
about 30 years later.
We underline, however, that the past formulations of the group manifold

approach in supergravity seem to overlook a proper gauge theory, since
the so-called « pseudoconnections » are not given as principal connections
on principal fiber bundles. However, in this paper we shall present a detailed
intrinsic exposition of « group model » emphasizing some fundamental
structures which allow us to give a direct interpretation of such theory
as a fully covariant gauge theory. Further, by using some geometric tools
of formal differential equations we shall give a description of space-time
as a dynamic variable.

So, the first step in the present formulation of the group manifold approach
is to take the geometry of differential equations seriously and use it, beside
the theory of geometric objects, instead of the conventional tensor calculus.
For these reasons a large part of this paper is devoted to consider in some
detail fundamental results about some geometric structures which support
our theory. 

’

It is natural to ask why formulate a gauge theory of supergravity on a
Lie group G. The answer is that such a structure offers a natural environment
where curved space-times can be recognized as dynamical variables. Paren-
thetically this aspect should be very profitable also in order to develop
the problem of quantum fluctuations. In fact, another new result of the
present formulation of the group manifold approach to supergravity is
that in this unified framework space-time has the role of a dynamical variable
via the embeddings of the vacuum space-time G/H in the (super) group G.
These embeddings are sections of the gauge structure supporting the model,
and are conditioned to be solutions of a suitable dynamic equation.

Let us comment also on the relation between the use of supermanifolds
within this framework. In general, super-Lie groups, used in this contest,

Annales de l’Institut Henri Poincaré - Physique theorique



41THE GROUP STRUCTURE OF SUPERGRAVITY

cannot be assimilated to graded Lie groups in the sense of Kostant ( [8] ] [9]
[10 ]). But, more precisely they are Lie groups where the usual Lie algebra
has a natural structure of graded algebra. Actually, in order to give a satis-
factory description of supergravity we can use these geometric objects
without entering in the category of supermanifolds in the sense of Kostant.
In fact, the use of such structures is not really very consistent with the group
manifold approach and nevertheless leads to a description of physical
fields that can be worked out in details.

Let us now present some considerations about the advantage of using
an intrinsic completely covariant framework in a theoretical description
of physics.

In the original paper of Einstein, general relativity was concerned with
a very deep and beautiful relation between Riemannian geometry and
gravitational fields. In this traditional setting, Riemannian manifolds
are understood as differentiable manifolds with an additional structure

provided by the metric tensor~. Then, one requires a canonical connection
with Christoffel symbol

which satisfies the relation ~g "~’’ - - 0.
ax~,

The corresponding Riemannian curvature is given by

which satisfies the identity and + = 0.
The origin of these symmetries is different, although they look the same,
since the anti symmetry in the last pair of indices simply reflects the anti-
commutativity in the Grassmannian algebra while the one in the first

pair is related to the Lie algebra of SO(3,1). But this is only an example,
where the true meaning of the things is well understood only by using an
intrinsic description : (g, r,R play the role of geometric objects that are
sections of suitable fiber bundles.). Furthermore, to the local covariance,
automatically assured in the language of fiber bundles, must be added the
full covariance that requires additional functorial structures on the fiber
bundles. In this framework one recognizes the usefulness of the so-called
super-bundles of geometric objects (see refs. [77] ] [72] ] [13 ]).
Another observation concerns the use of connections which are not

of Levi-Civita type, but that have some torsion. The logical desirability
of torsion follows from a generalized « action-reaction » principle. We

Vol. 44, n° 1-1986.



42 A. PRASTARO AND T. REGGE

draw six boxes each containing some field which acts of the following
box and obtain the following diagram :

Cartan-Einstein’s gravity hexagon

Without torsion, the gravity diagram does not close and achieve ’ full
symmetry. A natural way to introduce ’ it is through an action principle.

Annales de l’Institut Henri Poincare - Physique " theorique "



43THE GROUP STRUCTURE OF SUPERGRAVITY

It is easy to show that: = -R~ A ~ /B so that the

action of the gravitational field could be taken to be:

We shall vary it by using a first order formalism, following Palatini’s
method. Therefore, 03C9ab and 8a in the Cartan equations :

are considered to be independent variables. Variation of 8a leads to :

which coincides with Einstein equations in vacuum.
Variation of gives RC n 9d - Rd /B 0’ = 0. If the vierbein is not

singular it follows simply :

which is the original equation defining cvab in terms of the derivative of
the 9d. If matter is present we have the action : I = Igrav. + Imatter. If the
Lagrangian density of the matter contains explicitly, as it happens
with high spin fields, we find an additional term and the torsion will not
vanish.

Before concluding this introduction we come to a final formal point.
Given a field configuration 03C9ab and Ba we can extend it to a configu-

ration on a principal bundle by introducing an extra A E SO(3, 1) variable
along the fibre and defining extended fields as :

In fact, (II) represents a generic, unspecified SO(3, 1) gauge transfor-
mation. For this reason we have also :

Then, we may write :

The variational equations are now obtained by varying all fields inde-
pendently and asking that I be stationary if integrated over a submanifold M4

Vol. 44, n° 1-1986.



44 A. PRASTARO AND T. REGGE

oi the bundle. They look just the same as (I), (I’) with replacing 
Ba. But curiously enough, the final content of the equation is just the same
and one can give heuristic arguments in favour or (II) being the only solu-
tion, modulo inessential co-ordinate changes, of the variational equations.
So, we may conceive the action principle and associated fields as living
on the group manifold P, any 10-dimensional solution is actually « facto-
rizable » into a trivial SO(3,1) gauge transformation and the usual four-
dimensional configuration. When this kind of mechanism is also obtained
in more complicated theories, we can always factor out the gauge trans-
formation of some subgroup H c G, where G is the full group (here G = P,
H = SO(3, 1)). But this brings us to a final important comment. The set
of forms 03B8aext would indicate that we are about to construct a theory
which is Poincare invariant.

Actually Igrav. is only invariant under H = SO(3, 1) although we started
with the full set of G gauge fields.

So, we are faced with the problem of finding some principle, other than
invariance, to restrict the choice of action. A number of interesting theo-
ries and possibly all the interacting ones, satisfy the following condition :

A) The Lagrangian density is a polynomial in the 03C9A built using the
operators d, A only without using the star Hodge operator *. In fact,
in defining it we need to have a (pseudo) Riemannian structure on the
manifold, but this cannot be given in any physical situation. For this
reason it is wise to avoid it. This sometimes difficult; after all the Maxwell
action must be written with the help of * ; if A is the vector potential and

F = dA the field we have the action: I = 1 F A F*. It is, however,
87~ J 

’ ’

possible to circumvent this obstacle in many different ways which will
be examined later. Another, simple condition besides (A) is :

B) The variational equations must admit gauge null fields (flat space
as solutions).

Therefore, they should be at least linear in the curvature RA.
General relativity in all dimensions and supergravity in dimensions 4, 5,

6 satisfy A) and B). But also a number of physically unacceptable theories
do so and must be ruled out by more conditions.

2. GRADED LIE ALGEBRAS AND SUPER LIE GROUPS

In this section we shall consider some fundamental notions of graded
Lie algebras and introduce a notion of super Lie group which is not exactly
that considered by Kostant in ref. [8 ]. Really, for a correct formulation

Annales de l’Institut Poincaré - Physique theorique



45THE GROUP STRUCTURE OF SUPERGRAVITY

. of the « group manifold approach » it is not necessary to use the concept
of supermanifold as given by Kostant which, even if dealt from the super-
spaces point of view (see e. g. ref. [14 ]) presents some intriguing and not
very well solved questions.

2.1. Fundamental functors on the category
of graded vector spaces.

In this section we shall give a short account of fundamental definitions
and results of graded Lie algebras by using the functorial language. This
made in order to understand better the following considerations about

- 

super Lie groups from a completely covariant point of view.
- Let IK be the algebra of real [K = ~ or complex !K = C numbers. Let
us introduce some fundamental categories.

1) = category of Z2-graded vector spaces over [K (1). A graded
vector space V is one where one has fixed subspaces Vo and V1 called
respectively the even and odd (homogeneous) parts of V such that V = Vo EÐ Yi.
Morphisms are graded linear maps with degree 5 E ~L2. Recall that

h E W), with V, W E Ob if c W,+,, if the degree
1 (2).

One has the functors : i-degree P, : ~ P,(V) = Vi, i = 0,1.
is the sub-category of K-vector spaces. (Any vector space has

a natural Z2-grading V = V C {0}). In particular, K E Ob (V(!K)). If

v E Vi, we set v ~ = i and we call this integer the degree of v. Note, that Hom
is a natural functor Vg(tK) x ~ Vg(tK).

Similar considerations apply to the functor (8).

2) = category of graded algebras over tK.
- A graded algebra B is a graded vector space such that and

such that 1 E Bo. If x, yare homogeneous elements of B E Ob one

has xy = ( - In Ag(fK) can be distinguished a sub-category A(K)
of K-algebras such that Ob(A(tK)) c 

3) = category of graded Lie algebras.
A graded Lie algebra is a graded vector space ~ _ ~o 0 together

with a bilinear operation [x, y ] on y such that :

i ) ii) iii) (graded Jacobi

identity)

( 1 ) Here ~2 = { 0,1 } is an additive group with « addition » given by : 0 + 0 = 0, 0 + 1=1,
1+1=0, -1=1.

(2) Ob (A) denotes the set of objects of a category A and Hom (A) denotes the set of
morphisms of A.

Vol. 44, n° 1-1986.



46 A. PRASTARO AND T. REGGE

Note, that [x, y ] _ [ y, x E ego if x, y E Further, if on y is chosen an
. 

adapted basis, the relations ii) and iii) can be written by using the structure
constants 

One has the following natural functors :
a) jo : ~ sub-category of Lie algebras, such that

r;; ~7o(~)=~o;
-~ = sub-category of A-modules, (A = Lie algebra),

such = ~1.
In the following table we list some important natural functors defined

between the categories above defined.

TABLE 1. - Some important , functors regarding graded algebras.

In this table 1 ~ : Ag(K) -~ Vg(K) is the forgetting functor and U ~- :£
denotes that U is the left adjoint of j5f (For details on the functorial lan-
guage see e. g. refs. ] [16 ]). Further, denotes the category of iso-
metric finite dimensional Z2-graded inner product spaces over such that
if (V =E Vo C V1, g) E Ob one has Vo = the null space of g and
on Vl, g is not degenerate.

Example (The ~2-graded algebra of the derivations of a superspace). -

Annales de Poincaré - Physique theorique



47THE GROUP STRUCTURE OF SUPERGRAVITY

Superspaces are to-day extensively used in unified field theories. They
interpret in a fully covariant way the Kostant structures of the super-
manifolds.

Let Sup (M) be the category of superspaces over a manifold M (See
also ref. [77]). An object of Sup (M) is given by the following sequence
AB -+- B -+- M where B -+- M is a vector bundle over M. We have two
natural functors defined on Sup (M) :

a) Co : Sup (M) -. Ag(F(M)); AB -+- B -+- M ~ graded
algebra over F(M) (3) of C~-sections of AB ~ M with compact support.
The structure of Z2-graded algebra is with respect to the exterior product :
a A /3 = ( - A (X.

b) B -~ M ~ ~er(~B) ~ graded
derivations of Co(AB). One has = L o Der o Co. ’

2.2. Super Lie groups.

To an arbitrary graded Lie algebra y = çgo 03 çgl we cannot in a natural
way associate a supermanifold which should be also a Lie group as one
usually does for ungraded Lie algebras. In fact, the so-called « graded
Lie group », introduced by Kostant [8], associated with a graded Lie
algebra, is a supermanifold identifiable with a superspace AB -~ B ~ G
(where G is the Lie group corresponding to çgo and B is a suitable vector
bundle over G) and has the total space AB which has not a natural structure
of Lie group.

However, the motivation of why we are conduced to consider graded
Lie algebras is that these arise from the problematic of field unification.
In fact, the group structure of a unified field theory must be an extension
of some sub-group corresponding to non unified fields. In particular, we
see that central extensions of a Lie group are related to extensions of the

corresponding algebra and to a Z2-grading.
We recall some fundamental definitions.

. 

DEFINITION 2.1. - We say that an extension

of a Lie group K by means of another Lie group H is central if i(H)
is contained in the center of G (This implies that H is commutative and
that G contains a subgroup H’ isomorphic to H such that G/H~ ~ K).
Taking the Lie algebras of the group sequence (1) we obtain the following

exact sequence :

e) F(M) is the algebra of numerical functions over M.

Vol. 44, n° 1-1986.



48 A. PRASTARO AND T. REGGE

of Lie algebras homomorphisms. The above sequence is an extension of
Lie algebra with abelian kernel A(H). Then, it is well known (see e. g. ref. [16 ])
that if s : A(K) ~ A(G) is a section, that is a K-linear map such that

s = we can define in i*(A(H)) and hence in A(H) an A(K)-module
structure by

where [, ] denotes the bracket in A(G). Since, A(H) is abelian the A(K)-action
thus defined on A(H) does not depend upon the choice of sections. This
A(K)-module structure on A(H) is called induced by the extension.
Now, we have the following

DEFINITION 2 . 2. - An extension of the Lie algebra h by an h-module A
is an extension of Lie algebras 0-~A-~~-~h-~O, with abelian
kernel such that the given h-module structure in A agrees with the one
induced by the extension.

So, we have the following _

PROPOSITION 2.1. ~ To any central extension of a group K :
1-~H-~G-~K-~l there corresponds an extension of the Lie

algebra A(K) with the A(K)-module H where the action of A(K) on H is
given by (M) : 

’

Note, now, that on A(G) we can recognize a structure of Z2-graded Lie
algebra if an additional structure is defined on H. In fact, we have the
following

PROPOSITION 2.2. - Let 0  A    h  0 be an extension of
the Lie algebra h by an h-module A. Let -r : h -~ F o L(A) denote the Lie
algebra representation which gives to A the structure of h-module. Then,
~ ~ h 0 A becomes a 7 2-graded Lie algebra if on A is defined a bilinear
map p : A x A -~ ~ which satisfies the following requirements :

i ) (symmetry) p(u, v) = (v, u), u, v E A ;
ii) Ad (x) ( p(u, v)) _ [x, p(u, v) ] = p(i(x)(u), 1;) + p(u, i(x)(v))

(4) 
iii ) v))(w) + T(p(r, w))(u) + T(p(w, u))(v) = 0 ‘d u, v, W ~ A.

Proof 2014 In fact, we can define the bracket [, ]~ as = [x, ~] e h,
[x, u]p = - [u, x]p = i(x)(u) E A [u, v]p = p(u, v) E h.
Then, y = h EB A with this parenthesis becomes a Z2-graded Lie algebra.

D

Example. Let K be any Lie group and H be a vector space. Let -r :

K ~ Aut (H) be a representation of K in H, so that H becomes a K-module.

Annales de l’Institut Henri Poincaré - Physique theorique



49THE GROUP STRUCTURE OF SUPERGRAVITY

Then, the exterior semidirect product (see e. g. refs. [77] [17 ]) K 
is a Lie group which is a central extension of K by means of H. Now, let
us consider the semi direct product A(K) xH that is the Lie algebra
with underlying vector space A(K) 0 H endowed with the following
parenthesis : [(a, x), (b, ~)] = ( [a, b], Di(a)( y) - 
One can see that the split extension

is an extension of the Lie algebra A(K) by the A(K)-module H. Further,
(5) is just the sequence of Lie algebras canonically associated to

Finally, if on H is defined a bilinear map p : H x H ~ A(K) satisfying
properties (4) the parenthesis [, ] p gives to A(K) x 1;H a structure 
Lie algebra.
Now, we are able to give the following fundamental

DEFINITION 2. 3. - A super Lie group is a Lie group such that on the

tangent space TeG of the unit e E G there exists beside the usual Lie algebra
structure a structure of graded Lie algebra.

PROPOSITION 2 . 3. - Any central extension of a group K :

such that on H is defined a bilinear map p : H x H ~ A(K) which satisfies
the requirements (4) with 03C4: A(K) ~ L o L(H) the representation induced
by the extension, is a super Lie group.

Proof This is a direct consequence of Proposition 2.2 and Defini-
tion 2 . 3. Q

Examples. - 1) Let M ~ T~M ~ S~M E9 A~M be a 2-dimensional
oriented affine space with metric- g and volume form 1] (4). Let M be the
space of free vectors of M. The symmetry group of such structure is denoted
by A2. By choosing an adapted coordinate system on M we have a Lie
group isomorphism A2 ^-_~ M2, where M2 is the group of Euclidean motions

in 1R2, that is the group of matrices like ( ~ ) where hE S0(2) and a E 1R2.
Let us denote by T and SO(M) the subgroups of A2 corresponding respec-
tively to translations and proper rotations in M. T can be identified with M.
So, we put T = M.

(4) Let X be an n-dimensional manifold and TX, T*X be respectively the tangent and
cotangent bundle of X. Set TX (8) , , , (8) TX (8) T*X (8) , " (8) T*X. We denote
by AqX and SqX respectively the skewsymmetric subbundle andq symmetric subbundle
of TqX.

Vol. 44, n° 1-1986.



50 A. PRASTARO AND T. REGGE

Then, we can see that A2 is a central extension of SO(M) by means of M :

More precisely, A2 = SO(M) where L : SO(M) -4 Aut (M) is given
by The Lie algebra sequence corresponding to (6) is

o -4 M -4 A(A2) -4 A(SO(M))  0, A(A2) ~ A(SO(M))CM, and it is

naturally Z2-graded. In fact the structure constants Ckij are given by C i 2 = 0,
C31= - Ci 3 = ~2, C23 = - C32 = ~i . So, we can see that A2 has a natural
structure of super Lie group.

2) Let us consider the following central extension : 1 -4 E -4 GP  P -4 1
of the ( special) Poincaré group P ( = group of symmetry of the oriented
Minkowskian space-time M) with the vector space E = charge conju-
gation invariant part of the 4-dimensional complex space S = AM~ of
Dirac spinors; P = SO(M) x T M, where M is the space of free vectors
of M and SO(M) is the Lorentz group of M. L is the natural representation
of SO(M) on M ; = 

Let SO(M) act on E by means of the natural spin representation. GP is
called the super-Poincaré group (or graded Poincaré group). The Lie algebra
A(GP) has the splitting A(P) EÐ E and it is naturally endowed
with a Z2-graded bracket as can be easily seen by considering the structure
constants of GP :

where - 0 if ,u ~ v, r~ 00 - - r~ 11 - - r~ 22 - r~ 3 3 - 1. - -2 1 ~Y ~ ~ are

the Dirac matrices: 
2

where are the elements of Pauli matrices where the indices are lowered

by means of the antisymmetric matrices : = (~) = (s~), 612=~12=!.
The greek and capital italic indices run from 0 to 3 ; italic indices (dotted

-- 

and undotted) run from 1 to 2.
One can see that the symmetric bilinear map p : E x E -~ A(P) is

now just p(u, v) _ [u, v ].

3. DIFFERENTIAL EQUATIONS,
CONNECTIONS AND CURVATURE

In this section we shall consider connections and curvature directly
related to differential equations. This is of particular interest, as it allows

Annales de l’Institut Henri Poincaré - Physique theorique



51THE GROUP STRUCTURE OF SUPERGRAVITY

us to consider connections as particular constraints on the space of states
in a gauge theory (See also refs. [77] ] [7~] ] [79] ] [20] ] [27] ] [22]).

3.1. Fundamental results of formal theory
in differential equations.

Let 7T: W ~ X be a fiber bundle over a manifold X and TW be the

tangent bundle of W. We denote by vTW the vertical tangent subbundle
of TW. Let be the k-jet-derivative bundle of W [77] ] [24 ]. We have
a natural injection

such that

is an exact sequence of vector bundles over 
Let 7T’ : E ~ X be another fiber bundle over X. We define the symbol

of a differential operator K. : characterized by a fiber
bundle morphism K : J~k(W) ~ E the bundle map ~k(K) - vT(K) 0 
S~X @ vTW  vTE. The rth-prolongation of K is the differential operator
of order k + r K(r):C~(W) ~ C~(JDr(E)) characterized by the following
fiber bundle morphism = J~r (K) ~ J~+’(W) ~ J~’(E), where

is the canonical injection J~k+ r (W) -~ J~’(J~(W)). The symbol
of the rth-prolongation of the symbol and is given

In physics differential equations are generally obtained as kernel of
differential operators. So, if f is a fixed section of E, a differential equation
of order k is obtained by setting Ek = kerf K c and prolongated
equations are Ek+ r = c J~+~W). The corresponding sym-
bols are gk = and gk+ r = Note, that differential
equations can be defined independently on any differential operator, as
subbundles of over X for some ~ ~ 0. Then, the symbols gk and
their prolongations can be defined as (x) vTW) ~ vTEk and
gk+ r = O vTW) n being Ek+ r 
gk+ r coincides with the kernel of the following compositions of homomor-
phisms :

Further, we have the following exact sequence of vector spaces over Ek+ r :

A differential equation Ek c is formally integrable if for r &#x3E;_ 0,

Vol. 44, n° 1-1986.



52 A. PRASTARO AND T. REGGE

gk+ r + 1 is a vector bundle over Ek and the map 03C0k + r + 1,k+ r : Ek + r + 1 -+ r

is surjective.
Taking into account that the following propositions are equivalent :

(9) 1 ) Any prolongation 0  r _ h is an affine subbundle of
Jk+r (W) -1 modeled on the vector bundle 
over Ek + r - 1 ;

(9) 2) gk + r - 1 is a vector bundle over Ek and Ek + r + 1 -+ Ek+ r is sur-

jective for 0  r ~ h ;

We try that the formal integrability is equivalent to say that any pro-
longation Ek+ r, r ? 1 has a structure of affine sub bundle of 
over Ek + r + 1 with associated vector bundle ~+~~+~-i~+~ r -+ Ek + r - 1.

Associated to any differential equation Ek c Jk(W) one recognizes
a family of vector spaces { where is the

cohomology of A0jX (8) (Spencer cohomology) of the first Spencer
complex :

with the coboundaries ~m the vector morphisms canonically induced by
the coboundaries -

being V a vector space.
If = 0 Ek is called involutive. If = 0 0 _ j  r, Ek is

called r-acyclic. Further, one can see that there exists an integer 
depending on the dimension of X, the dimension of W and k such that Eko
is involutive. If Ek c is a differential equation such that the map
Ek+ 1 -+ Ek is surjective and gk+ 1 is a vector bundle over Ek then there
is a morphism over Ek :

such that one has the following exact sequence :

is called curvature of Ek. More precisely, has values into Spencer
cohomology space

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’



53THE GROUP STRUCTURE OF SUPERGRAVITY

Further, iff gk+2 is a vector bundle over Ek one has the following exact
sequence of vector bundles over Ek :

We have the following important

THEOREM 3.1. - If Ek c is a differential equation such that
the map Ek+ 1 ~ Ek is surjective, gk+ 1 is a vector bundle over Ek and gk
is 2-acyclic, then Ek is formally integrable.

Proof - Since gk is 2-acyclic we have that Hk’2 - 0, so the exactness
of sequence ( 11 ) sayies that Ej~+2 -~ Ek+ 1 is surjective. Further, one can
prove that if gk is 2-acyclic and gk + 1 is a vector bundle then gk+ r, r &#x3E; 1
is a vector bundle over Ek. Then, proceeding by induction and by using
the fact (10) we conclude that Ek is formally integrable. D

Finally, we have the following criterion of integrability.

THEOREM 3.2. - Let Ek c be a differential equation. Then,
there is an integer + ~ ~ ~ depending only on k, the dimension
of X and the dimension of W, such that Eko is involutive and such that
if gk+r+ 1 is a vector bundle over Ek and Ek+r+ 1 ~ Ek+r
is surjective for 0  r  h, then Ek is formally integrable.
A remarkable application of above theorem is an alternative form of

the Frobenius theorem for r-distributions E c TX over a manifold X.

THEOREM 3 . 3. - Let E c TX be a r-distribution on X. Let { Çcx }03B1=1,...,r
be r independant vector fields defined on U c X which span the distri-
bution at each point of U. Then, E is completely integrable (involutive)
iff the following first order linear system

is involutive formally integrable. 
i

Let us, now, consider another important concept.
DEFINITION 3.1. - A differential equation Ek c is completely

integrable if for any q E Ek there exists a local section s : U c X -~ W,
such that = q, where = x, and Dks(U) c Ek (This implies
that the map Ek + r -~ Ek, r &#x3E; 0 is surjective).
The formal integrability does not assure the completely integrability

(see e. g. ref. [20 ]) and a completely integrable differential equation is not
necessarily formally integrable [18 ]. However, in the analytic case the
formal integrability implies the completely integrability.

However, the differential equations to which we are interested in this
section are that associated to k-connections and are characterized by
submanifolds Ek diffeomorphic to = Ej~-1.
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So, in the following of this section we shall consider a theorem of inte-
grability for such systems. Let us, first give some useful definition.

DEFINITION 3.2. 2014 1) The sesquiholonomic prolongation of W

is the kernel of the following double flèche:

2) The k-order semiholonomic prolongation of W is the kernel JDk(W)
of the following double fleche:

V 
_ 

V 
_

One has: (a) JDk(W) c JDk(W) c JDk(W);(b)JD(W) = JD(W) = JD(W):

(c) JD2(W) = JD2(W). V V

Similarly, for an equation Ek c JDk(W) we set E,+, = 
and Ek+r == One has r 

c Ek+r c Ek+r. Then,
we have the following fundamental theorem of integrability.

THEOREM 3.4. - Let Ek c Jk(W) be a differential equation diffeo-
morphic to its projection Then, Ek is

u

completely integrable iff Ek+ 1 = Ek+ 1.
V

Proof. 2014 Note, that as one has also that Ek. Then,
u u

since c Ek is surjective iff = On the

other hand the diffeomorphism Ek-1 ~ Ek implies that Ek can be written
in local coordinates as

So, E~ identifies a distribution E which since ~ Ek is assumed sur-

jective and gk = 0, the Theorem 3.3 assures to be completely integrable.
D

3.2. Curvature of a connection.

The concept of curvature of a connection on a fiber bundle can be related
to that of curvature map of a differential equation.
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DEFINITION 3 . 3. - 1 ) W ~ X be a fiber bundle.

A k-connection on W is a k-order differential equation Ck c 
diffeomorphic to by means of the projection .

2) Ck is called flat if Ck is completely integrable.
3) We say that a fiber bundle 03C0 : W ~ X is flat if one can define on

it a flat 1-connection.

A k-connection is equivalent to assign an affine fiber bundle morphism
v

over such that DF = 1,
or to assign a section ~ : to the affine bundle 
modeled on the vector bundle 

v

D r denotes the vertical derivative of I with respect to the fiber bundle
structure of So that 1 denotes the identity map

One has

If W == E is a vector bundle over X, then ~ X are vector
bundles s &#x3E; 0 and we can define a linear as a k-connec-
tion Ck c which is also a linear differential equation.

This is equivalent to assign a section t J~k-1(E) ~ which
is a fiber homomorphism of vector bundles over X (See also ref. [24 ]).

Assigned a k-connection on W we can define absolute derivative
(k)

of a section s : X -&#x3E; W as Vs = I 0 Dks : X -~ @ vTW. If W = E
(k)

is a vector bundle one has V s : X ~ S2x @ E. A first order linear connec-
tion determines a splitting of the following exact sequence of vector bundles
over : 

.

So a linear connection identifies a splitting JD(E) ~ T*X Q E ~x (E).
More generally any first order connection can be identified with a splitting
of the following exact sequence of vector bundle over W :

(See also ref. [77]). So, a connection identifies a splitting

More precisely, the relation between the connection r: J~(W) -~ T*XQvTW
and the splitting (12) is obtained by means of the canonical embedding
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of J~(W) in the derivative space [2~] ] Therefore,
the following diagram

is commutative. In particular, for a vector bundle W = E one has :

Moreover, by considering the sequence (7) we check that a k-connection 
determines a splitting (8) vTW C 

Note. 2014 IfE and F are vector bundles on X and Ck, Ck are linear k-connec-
tions on E and F respectively, we can canonically induce linear k-connec-
tions C~k, C~k on the Withney sum E 0153 F and on the tensor product E (8) F
respectively. More precisely, 
and Cf = c (8) F), where p is the canonical projection

E (8) F.
Finally, given a first order linear connection Ci 1 c J£ð(E), there is a

unique linear connection Cf c J!Ø(E*) on the dual bundle E* -~ X such
that the following sequence

of vector bundles over X is exact, where (, )~ is the homomorphism
J!Ø(E x E*) ~ J!Ø(X x [R) ~ T*X induced by the pairing (,).

DEFINITION 3 . 4. - (P, X, 7r; G) be a principal fiber bundle
over X. A connection C 1 = t (P) c J!Ø(P) on P determines a A(G)-valued
differential form 03C9 = idT*P (8) t/J 0 r : P ~ T*P (8) A(G), where 

A(G) is the isomorphism induced by the action G x P -~ P.

Then, C 1 is a principal connection if = is

called the Ehresmann connection (See also ref. [11 ]). So, a principal connec-
tion is defined by the following commutative diagrams :
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’. 

DEFINITION 3 . 5. - Given a k-connection Ck =t (J~k-1(W)) c 
we define curvature of Ck the composition map

V V 
’

where pr: -+ is the canonical projection
on the quotient manifold.

2) We say that a connection Ck is flat if Ck c One can prove
that this definition is equivalent to that given in Definition 3 . 3/2 (See next
Theorem 3. 5/4).

X is a vector bundle, the curvature R of a linear connec-
tion C 1 = *) (E) c J!Ø(E) is a morphism of vector fiber bundles over X :

C 1 -+ (8) E. In fact by using the following commutative diagram
where the rows and the columns are exact

V

we recognize the canonical isomorphism JE02(E)/JE02(E) ~ AgX (8) E.
So, taking into account that Ci = 1 (E), ") = linear, we can also identify R
with a section R : X ~ Q E (8) E*. Then, taking a local coordi-
nate system {x03B1, yj} on E, the local expression is as follows :

Wlth Rj03B103B2i = + 0393j03B1h0393h03B2i - 0393j03B2h0393h03B1i : X ~ R where 0393j03B2i ~ 0393j03B2 o ei :
X ~ R, with {ej}1jm a basis of COO (E) such that the following diagram
is commutative

with 0 the zero is the dual basis Further,
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[R. The proof is obtained o directly taking j
into account that

Let us, now, consider the fundamental theorem of integrability for connec-
tions.

THEOREM 3 . 5. - Let 7r : W -~ X be a fiber bundle. Any k-connection
Ck c on W has the following properties :

1) 
2) Ck is not, in general, a formally integrable differential equation.
3) The set of solutions of Ck is characterized by the set of sections 

with zero k-absolute derivation.

4) Ck is flat (completely integrable) (and also formally integrable) iff

lR = O.

Proof 1) If we prove that gk = 0, from exact sequence (7’) will follow
that gk+ r = 0, r &#x3E; 0. Now, a connection t gives a splitting uT(1) on the
left of the exact sequence (7). So, if there is a vector t; =~ 0 belonging to
vT Ck = and its image in 
under should not be zero, as 1 is a diffeomorphism onto Ck
and taking into account that in contrast
with the fact that sequence (7) is exact. We conclude that

2) In general Ck is not formally integrable, in fact from sequence (8)
we check that the map vTCk+ r ---+ vTCk+ -1 is inj ective for r &#x3E; 1.

(k)

3) If s : X ---+ W is a section of W, one has Vs = 
(k)

So, V S = 0 iff Dks = I 0 that is iff s is a solution of Ck.
4) Finally, the coincidence of the flatness with the zero curvature lR = 0

V

is obtained by using Theorem 3 . 4 and the fact that (1) (JDk-1(W))=Ck+1,
where Ck+ 1 is the first sesquiholonomic prolongation of Ck :

The following theorem gives a more enlightening geometric meaning
to flat connections.

THEOREM 3.6. - 1) If Ck c is a flat k-connection on W then

(Dks)*vTCk  X is a flat vector bundle, s E C"(W), X -~ Ck.
2) In particular if W == E is a vector bundle and Ck is a flat k-linear

connection on E then X is a flat vector bundle.
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Proof. 1) Let us consider first the Spencer operator (5)

which is characterized by the following conditions :

a) the sequence 0 -~ is

exact ;

c A0r+p X ~ vTCk+p an the map 03B4 :
A°X (8) S~X (8) vTW  A? + 1X (8) (8) vTW is just the restriction of
- D. Set Cm,r = (A°X (8) (8) gm + 2).
Then, the diagram .

induces an operator D which factors through and therefore defines
an operator D : Thus, we are able to write the second Spen-
cer complex for Ck :

Taking, now, into account that Ck is formally integrable and that gm + 1 =0,
1 2 0, we try that A°X (8) vTCk + 1  A°X (8) vTCk + 2 is an isomorphism,
and the second Spencer complex is given by (by using the fact that Ck+ 1 ^-_J Ck
(see Theorem 3 . 5)) :

Thus, Î&#x3E;2 = 0 and if fs E vTCk, where f is a function, then we have
D( fs) = + fDs. It follows that 7(D) = id, in other words, D is
a connection on vT Ck. Further, D z = 0 is the curvature of D. Therefore,
as vTCk admits a flat linear connection it is a flat vector bundle.

2) In this case we can report the above considerations by substituting
vTW by E and vTCk by Ck. Q .

Let us, now, consider the concept of torsion associated to any linear
connection on a manifold.

(5) If F -+ X is a fiber bundle, we denote the sheaf of sections of F by F. Further, by
abuse of notations, we shall write in this Proof vTCh, vTW and 
instead of s*vTW and respectively, where s
is any global solution of Ck.
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DEFINITION 3 . 6. - 1 ) Let C 1 c J~(TX) be a linear connection on
the manifold X. ~ Then, the torsion of C 1 is the following morphism of vector
bundles over X given by l T -_- d ~ C~ -~ A2X, where d : J~(T*X) ~ AgX
is a morphism of vector bundles over X which identifies the exterior diffe-
rentiation of differential forms on X and C i is the dual linear connection
canonically associated to C 1 :

2) A connection is symmetric if C i c ker (d ).
Of course as C*1 = *(T*X), * = linear, we can identify T with a

section T : X ~ A2X (8) TX. be a local coordinate system
on T*X and be the corresponding coordinate system
on J~(T*X). Then, the local expression is as follows :

where

The connection C 1 is symmetric iff 0393kij = 

Note. 2014 Let Ei  X, i = 1, 2, 3 be vector fiber bundles with a bilinear
vector bundle morphism over X (,) : E1 x E2 ~ E3. Then, we can define
the following operator (exterior product)

given by

In the following TAB. 2 we report some useful operators related to vector
fiber-valued differential forms endowed with linear connections on the

vector fiber bundles. Note, that all the operators reported in TAB. 2 are
directly expressed by means of the so-called covariant exterior differential.

DEFINITION 3 . 7. - Let 7r: E -~ X be a vector bundle over X endowed

with a linear connection The covariant exterior

differential is the vector fiber bundle morphism over 
(8) E) ~ A0p+ 1 X (8) E, where j is the isomorphism induced by t:

J~(A~X (8) E) ~ O p 0 being O p a vector bundle over X ; pr2 is

the projection on the second space, e. g. the following diagram

is commutative.
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In local coordinates {xa,xi1...ip ~ yj, x03B1i1...ip ~ yj} on E) we
get for any E-valued p-differential form

Let us, now, characterize principal connections on a principal fiber
bundle by means of some additional geometric objects. Let us, first, give
the following

DEFINITION 3 . 8. - The absolute differential induced by a connection 1
on 7r: W -~ X is the first order differential operator -,V:

given by means of the following commutative diagram :

TABLE 2. - Some useful operator related
to the covariant exterior differential assoc. ~o a conn. ~ (1).
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where d is the exterior differential naturally extended for V-valued diffe-
rential forms (See e. g. ref. [25 ]).

THEOREM 3 . 7. - The curvature -,R of a principal connection

on a principal fiber bundle ~ = (P, X, G) can be identified with a map

In the following table 3 we report some useful standard formulas for
Ehresmann connections. 

" " 

0 0 0 
" " 

. 0 . 0 0 o 0

TABLE 3. - Ehresmann connection and ’ related objects
for any principal connection.

As an application we shall consider principal connections on homo-
geneous spaces. This will allow us to obtain the classic Maurer-Cartan

equation for Lie groups as a consequence of existence of a flat connection
on a G-principal bundle canonically associated to any Lie group.

DEFINITION 3.2. - Let G be a n-dimensional Lie group. Let H be
a closed Lie subgroup of G. A H-principal connection on G is a principal
connection 1 on the principal fiber bundle H ~ G ~ G/H.
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For such connections we have the following

PROPOSITION 3.1. - To assign a G-invariant H-principal connection
on G is equivalent to assign a splitting of the vector space ~ (A(G)) = A(G)
that is

such that

7(Z~)) = [Z, Z~(H), 6(Z), 6(Z’) = invariant vector fields
on G corresponding to Z, Z’ E M and [Z, Z’ ]A(H) is the component of [Z, Z’]
into A(H).

2) Further, the H-principal connection t on G associated to such a
splitting s is the G-invariant connection G ~ T*G (8) A(H) given

3) Any splitted extension of a Lie group K by means of a Lie group H,
1-~H-~G~K-~l, which determines a splitting of the corres-
ponding vector space : A(G) ~ A(H) @ M, M - s*(A(K)), such that condi-
tion ( 13) is verified, determines a G-invariant H-principal connection on G.
Then, ifiM is a Lie sub-algebra of A(G), then (7(Z’))=0, VZ, Z’ E M.
Note that, in general, we do not assume that s is a group-homomorphism
but it is a pointed differentiable map s : K -~ G such that = idK,
being 03C0G the canonical epimorphism G ~ K.

THEOREM 3.8. - For any n-dimensional Lie group G the following
propositions are equivalent :

1) There exists a canonical A(G)-valued differential 1-form a~ on G

which satisfies the following equation dco + - [ co = 0 (Maurer-Cartan
equation). 2

2) There exists a canonical completely integrable G-principal connection
on G.

3) is a basis of G-invariant differential forms then they satisfy
the following equation : d03C9i + = 0.

Proof 2014 Let us consider the following principal bundle

Since one has J~(G) = 0 = T*l (8) TG, we have a canonical G-principal
connection C 1 c J~(G). Or, in other words there is a canonical G-inva-
riant horizontal space on any point a E G given by Ha = { 0}. To this
connection we associate the Ehresmann connection 03C9 : G ~ T*G0A(G)
Vol. 44, n° 1-1986.
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which coincides with the canonical 1-form c~ of G, that is the differential
1-form, A(G)-valued, given by 
Then, we try also

Finally, in the basis { co’ } above equation reduces in the form of point (3).
D

PROPOSITION 3.2. - The following propositions are equivalent:

1) A G-invariant H-principal connection on the Lie group G and a
G-invariant linear connection on G/H are given.

2) A splitting on the left of the exact sequence of vector spaces

is given such that condition (13) is verified and a Ad(A(H))-invariant
bilinear form (x : A(G/H) x A(G/H) -~ A(G/H) is also assigned.

. P roof 2014 In fact assign a G-invariant H-principal connection is equi-
valent to assign a splitting of exact sequence (14) plus condition (13).
On the other hand to assign a G-invariant linear connection on G/H is
equivalent to assign an Ad(A(H))-invariant bilinear form on any sub-space M
of A(G) such that A(G) ~ A(H) 0 M and Ad(A(H))(M) = M.
The relation between H-principal connection on a Lie group and graded

Lie algebras is given by the following

PROPOSITION 3.3. - The assignment of a G-invariant H-principal
connection on the Lie group G gives to G the structure of a super Lie
group if on A(G/H) is defined a symmetric bilinear map p :

Proof - In fact a G-invariant H-principal connection on G,

gives a splitting of the vector space A(G) ~ A(H) EÐ M = A(G)o 0 A(G1,
where M == is a Ad(A(H))-invariant vector subspace of A(G).
Further, let us define on A(G) a symmetric bilinear map p :
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such that condition ( 15) is satisfied. Then, on A(G) can be defined the follow-
ing bracket:~,]: A(G) x A(G) ~ A(G) given by

where [, ] is the usual parenthesis of A(G). In fact, we have

iii) Further one can easy see that also the graded Jacobi identity is
satisfied. D

4. THE GROUP MANIFOLD APPROACH
TO UNIFIED GRAVITY

In this section we shall enter in the details of the geometric formulation
- of the « group model » for supergravity. We shall, in particular, emphasize
that this can be made by using the general framework for gauge theories
developed in ref. [11]. This allows us to better understand the full covariance
content and to distinguish which are the characterizing structural elements
of the present model.

41 Some fundamental geometric objects on a Lie group.

Let us consider a super Lie group G with graded structure constants.
Let us give the following fundamental definition.

DEFINITION 4.1. - A pseudoconnection on G is a first order connection
C 1 == l(E) c JD(E) on the trivial vector fiber bundle 03C0: E == G x A(G) ~ G
such that C 1 is freely generated by C 1 and A(G), that is C 1 x A(G),
where C1 is a m-dimensional sub-fiber bundle of T*G (8) A(G) over G,
m = dim G.

PROPOSITION 4.1. - Any pseudoconnection on G is characterized by
means of a A(G)-valued differential 1-form on G:
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Proof. 2014 In fact, as J~(E) ~ A(G) x T*G (8) A(G) we get tha any first
order connection 1: E ~ J~(E) on E can be written 
where ~ : G x A(G) -. T*G (8) A(G).
On the other hand if  is a pseudoconnection the partial derivation

of  with respect to A(G), D2*!, must be zero : = 0. Therefore 
is identified with a section G ~ T*G (8) A(G) of the fiber bundle
T*G (8) A(G) ~ G and t looks like 1 = lfl X 0

Note. 2014 As a pseudoconnection on G is characterized by a differential
form valued in a (trivial) vector fiber bundle endowed with a connection,
we are able to apply the results resumed in table 2. In particular, we have
the following

PROPOSITION 4 . 2. - Let a be any p-differential form A(G)-valued on G.
Then, the covariant exterior differential of 11 with respect to a pseudoconnec-
tion t of G is given by

where lJ1 is the A(G)-valued form characterizing l.

THEOREM 4.1. - 1) The curvature lR of a pseudoconnection on G

is given by lR = d  = d  + - [lJ1, lJ1]

3) + - 2 = 0 (Bianchi identity , for pseudoconnections).

Proo,f: 2014 These results are direct consequence of Proposition 4.1 and
results reported in Table 2. D

PROPOSITION 4 . 3. - The fiber bundle 03C0:E = G x A(G) ~ G is a

principal fiber bundle with respect to the natural action of A(G) on E consi-
dering A(G) as a commutative additive group. Then, a pseudoconnection 
on G becomes a principal connection on (E, G, 7r; A(G)).

Proof 2014 The action of A(G) on E (u ; a, v) (a, u + v). The Lie

algebra of A(G) is just ToA(G) = A(G). Further, since for any u E A(G)
the map (~ E ~ E is an affine map with derivative the identity of the
space, we get that for the horizontal spaces Ho is satisfied the requirement
of A(G)-covariance. In fact, = D

PROPOSITION 4.4. - Any H-principal connection on G determines

a unique pseudoconnection on G.
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Proof 2014 In fact we have the following commutative diagram

where j is the canonical injection. So, we can give the following

DEFINITION 4.2. - A reductif pseudoconnection G l on G is a pseudo-
connection on G such that there is a H-principal connection H l on G for
some closed sub-group H c G with Ehresmann connection Hl a~ such that
the following diagram

is commutative, wherein is the projection induced by means of the splitting
A(G) ~ M induced by means of the connection nt (6).

PROPOSITION 4 . 5. - For a reductif pseudoconnection C1 ~ (E) ~ JD(E)
we have that the associated form and the Ehresmann connection 03C9
are related by the (o= composition on the
valuation spaces). In particular, is reductif iff

 ° ~ ~~ X ) = ad (a 1 ) ~ ~ ~(e) ° ~ ~~ X &#x3E;, &#x3E; E H.

Example. 2014 Let us consider the super Poincare group GP. By taking
an adapted coordinate system we have the following 9 x 9 matrix repre-
sentation of GP :

where C), A:SL(2,C) ~ SO(3, 1) is the usual homomor--

phism, (Pa) is a four-vector, (03BBa) is an anticommuting spinor and C is the
charge conjugation matrix (C --_ y2 ~ -, where ’ is complex conjugation (7)).

(6) Note, that the pseudoconnections of Proposition 4.4 are of a particular reductif
type that we shall call fully reductif pseudoconnections.

(’) Recall that if 03C8 is a controvariant 1-spinor one has C:(03C8,03C8,03C8,03C8) ~ (-03C84,03C83,03C82,-03C81)
in a standard Dirac representation of Clifford algebra (see ref. [11 ]).
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Then, a pseudoconnection  on G = GP is locally characterized by the
following A(G)-valued 1-form on G :

where 9a, are 1-forms on G. J03B103B2 generate the SL(2, C) sub-group,
Pa are the bosonic translations and Qa the fermionic ones. Further, the
corresponding graded Lie algebra is given by the following parenthesis :

The curvature is locally given by

The Bianchi identity looks like

that are formally the same of ones obtained in the formalism of principal
connection on principal bundles with super Poincare group as structure

group (see e. g. ref. [2~] ] [2 7 ]).
If the pseudoconnection 1 is G-invariant then we get from (16) the

Maurer-Cartan equations for lJ.1: ,

(8) rlab = diag ( -1, 1, l, 1); 6ab = - 4 
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where 0~ are G-invariant differential forms on G. Further, if 1
is a fully reductif pseudoconnection on G for the Lie subgroup

we get = 0 and  and lR reduce to the following expressions :

4.2. The group model as a gauge theory.

Recall [11] ] that a k-order gauge continuum system over a basis manifold
M is a couple G(M) == (~, Ek) where: (1) 81 = (~, ~ : B) is a super-bundle.
of geometric objects [77] ] [72] over M having as basic bundle the principal
bundle over M ~ - (P, M, H), as total bundle a suitable fiber bundle
{7T: C ~ M } --- ~ over M containing the fiber bundle of connections
over P; and B is a covariant where (resp.
~(C)) is the category whose objects are open subbundles of P (resp. C),
and whose morphisms are the local fiber bundle automorphisms between
those objects such that :

i) if B U E Ob (~(P)) =&#x3E; U) == n-1(U) E Ob (~(C)) ;
ii) 

and satisiies : (a)~c ~ = fM o ~ ; 
-

(b) if B U E Ob (~(P)), U =&#x3E; 7r’ ’(UQ = I P U’;

(2) Ek is a k-order differential equation on 7c: Ek c J k( C). An internal
constraint of G(M) is a subbundle Co of C over M.

DEFINITION 4.3. - A gauge continuum system G(M) has a blow up
structure if the fiber bundle of principal connections C(P) over P has a
canonical non trivial embedding in the configuration bundle, which
coincides with a fiber bundle of connections over another fiber bundle
over P or M. So, in a gauge continuum system with blow up structure C(P)
is present as a non trivial internal constraint.

Then, we are able to give the following fundamental definition.

DEFINITION 4.4. - A group model gauge theory is a k-order gauge
continuum system G(M) == (~,EJ with blow up structure where :

1 ) The gauge structure is given by means of the following principal
fiber bundle : ~ = 1 ~ H ~ G ~ G/H --~ 1, where H is a closed

sub-group of a super Lie group G. G is called also symmetry of vacuum
and H is the gauge structure group. G/H = M is called the vacuum space-
time (that is also the basis manifold).
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A splitting on the left of ~ = 1 ~ H ~ G E G/H -~ 1, that is a

map s : G/H ~ G such that 03C0G o s = idG/H is just a section of the image
N = s(G/H) ~ G is called a space-time.

2) The total bundle C is given by means of the fiber bundle of pseudo-
connections on G. So, C can be identified with the fiber bundle 7c :

C == T*G (8) A(G) -. G/H.
The blow, up structure is given by means of the embedding C

over G. D

3) The functor B ~(P) ~ ~(C) is given by = T*( cjJ -1) 0/(~’~),
where T* is the cotangent functor is calculated as given in Appen-
dix A 1, for any 03C6 E Hom (B(P)).

4) The dynamic equation is a sub-fiber bundle Ek of (k = 2h),
identified with the set of points u = such that :

a) the sections c : G/H -~ C of vr are factorizable into c = l/1 0 s, where
s : G/H -~ G is a section of TTc and l/1; G -~ C is a pseudoconnection
on G, reductif with respect to the H-principal connection identified by s ;

b) E Ek c Jk(E), x = where E denotes the fiber bundle
E --_ T*G (8) A(G) -~ G and Ek is a differential equation on the

fiber bundle E identified by means of a variational principle by using a
H-invariant Lagrangian density I

Further, Ek is obtained by requesting that the action IA [ 1/1] = JACN 
(A is any submanifold with smooth boundary of a space-time N of G),
should be stationary under all independent variations in the space-time N
and fields. It is then requested that there must exist a flat solution (-;R = 0).
There, exist other solutions beside the « flat ». (Let ( 17) be this set of condi-
tions).
A solution c of Ek is a section c : G/H --~ C that can be factorized as

c = for some section s of 03C0G and pseudoconnection  such that
Ek, 

G ~ T*G (8) A(H), where pr is the canonical projection pr :

identified by s, is a H-principal connection. Then N - s(G/H) is called
a dynamic space-time.

Remark. A very important category of unified theories can be iden-
tified by imposing some internal constraints. Set, for any closed subgroup
K c G,
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JDh(E)K =E { u~JDh(E)|K-invariant section

where J~h(E) -~ G is the canonical projection.
Then, there exists a natural fiber bundle morphism

over Kn : E ~ E/K given u = H [x ] K), where ~/K
is the unique section of G/K corresponding to the K-invariant
section ,u, anx is the image of x E G under the canonical projection

1 G -~ G/K. Further, one can see that given a section ,u of 1 E -~ G

there exists a section of G/K, such that the following
diagram

is commutative iff G ~ 

Finally, a section  : G ~ E is a K-invariant solution to Ek iff ,u/K
is a solution of the reduced differential equation (Ek)K = where

Ek n 
A supersymmetry of a group model gauge theory G(M) = (~, Ek) is

defined by the diffeomorphism ~a : G -&#x3E; G, induced by the multipli-
cation law of G, such that : (i ) a ~ H- == H - { ~ }; (ii) ~~ E Horn (~(P)) ;
(iii) the natural diffeomorphism ~( ~a) of T*G (8) A(G) identifies a diffeo-
morphism of Jk(C) that is a diffeomorphism of Ek too (symmetry of EJ.

So, a supersymmetry transforms any solution c of Ek into a new solu-
tion c’ = = !B( 4&#x3E;; 1) 0 c o (~~, where ~a is the diffeomorphism on G/H
induced by ~a.
Furthermore, as

we try that must be a solution of Ek on the space-time 
Therefore, ~a is a symmetry (supersymmetry) of Ek also.

So, we can give the following

DEFINITION 4. 5. 1) Given a group model gauge theory G(M) = (~, Ek)
we call K-reduction of G(M), K = closed subgroup of G, the gauge continuum
system given by G(M)~=(~ (Ek)K) where is the dyna-
mic equation such that the corresponding reductif pseudoconnections
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-~ ,u : G ~ T*G (8) A(G) are K-invariant solutions of Ek, e. g. is a

solution of We call (Ek)K the K-reduction of Ek.
2) We call canonical reduction of G(M) == (~, Ek) the K-reduction

of G(M) with K = H.
3) A group model gauge theory G(M) = (~, Ek) is K-.sync

if Ek is K-supersymmetric, that is the set of supersymmetries coincides
withKcG-H’.

Note. A good category of unified theory can be obtained by consi-
dering E2h c (h =1, k = 2h), described by a Lagrangian density like

where: s

M 
2014 _

a) R: JD(E) ~ A02sG (8) A(G) is the differential operator on E given by

being R : J~(E) ~ A°G (8) A(G) the fiber bundle morphism over G
which defines the curvature for pseudoconnections, e. g. one has the follow-
ing commutative diagram :

for any pseudoconnection 
If { is a graded basis for A(G) one has

where RAi : J~(E) -~ -

b) w : J~(E) -~ (8) A(G)* is a 0-order differential operator that
can be factorized as follows : (/? = dim G/H) _
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. 

More precisely [~ is given by

So, by taking a basis { çA } in A(G)* one can write w as follows :

where lK(G) == set of K-functions on G.

c) A is the bilinear vector fiber bundle morphism over G

given by

If { çA } is the dual basis of { ZA } we can write Q as follows:

For sake of semplicity we set

So, we have " that the expression of the Lagrangian density is as follows :

for any pseudoconnection -

We can, now, calculate the differential equation for extremals of the
action integral 

.

where A is any submanifold with smooth boundary of a space-time of G
and (7[Q] is the Cartan form associated to Q (see ref. [77]).

(9) In other words the symbols [, ] and 0 used to define Q are « exterior products » with
respect to the graded bracket of A(G) and the pairing (,) respectively (see Note before
Definition 3.7).
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Let lJt be a one-parameter family of sections of E ~ G with

= ~ ,u, and = the tangent vector field along to 

at t = 0, so is the tangent vector to the curve

Then, by using the formula

and supposing that ] = d (D-)*03C3[03A9] vanishes for all varia-
A

tions -)~ of ,,u which agree with outside a compact subset of A we have
that has compact support and by Stokes’ theorem we get

Since this must hold for all vertical fields -~ along of compact support,
we conclude that on A

In the following sections we shall give some examples. In order the lan-
guage to be accessible also to readers non-well expert in differential geo-
metry we shall use the formulation in coordinates and a less technical
exposition.

4.3. General relativity.

General relativity can be cast in the form (18) by setting

and is seen to obey ( 19) as expected since we already know that Minkowski
space is a solution; also pure gravity in higher dimensions obeys (19).
It stands to reason to say that also the third principle in (17) is satisfied,
with the exception of gravity in three-dimension, where in fact the field
equations imply that space is flat. We refer to this condition as « rigidity »
as opposed to « softness », satisfying (17). In fact, soft manifolds are object
of mathematical investigation. We recall that field equations for n-dimen-
sional gravity appear in the form :

From these it is easy to show that Ra - 0, even under the assumption,
implicit in our description, that they are written in a n(n + 1 )/2 dimen-
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sional differentiable manifold. Next we parametrize the curvature as : ’ _

and it is equally easy to prove, if we treat the 03C9ab as independent forms,
RabAB = 0 if either/or A, B = (p, q).
What is meant is that gauge transformations along the SO(l, n -1) = H

sub-group are also interpretable as flows induced by appropriate tangent
vectors and that the theory factorizes in the sense described in the Intro-
d uction.

4.4. Supergravity N = 1, d = 4.

This theory uses the GP gauge fields, already discussed. The curvatures
are also written

where 03C8 is now a Majorana spinor one-form (1 °). Supergravity must contain
ordinary gravity whenever we set 03C8 = 0, it must invariant under S0(l, 3)
gauge transformations. All this suggest trying an action of the kind :

that is again of type corresponding to a Lagrangian density like (18) with
[t] = 0 unless s = 1. The Lagrangian density can be also written putting
in evidence that vA is a « co-adjoint » multiplet :

(see e. g. ref. [3 D. The variational equations are now :

(lo) Yb]. The signature is (1, -1, -1, -1). Recall that a Majorana spinor 03C8
4

is defined by : !/.
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The remarkable fact now happens that if expand in the / treated
as independent forms, we obtain all 0, unless we set the theory fac-
torizes the Lorentz group and reduces to ordinary supergravity. The rigi-
dity of the B ~ 0 theory can be seen as follows. Equations (20) scale under

. 
the replacement :

On the action (20) this means that B scales as B ~ - B. Therefore a varia-
K:

tion of T and k such that TK = 1 yields the condition:

which is a particular consequence of equations (21). If we insert in (23)
the generic expression :

we find that the space-time part must vanish. The theory contains therefore
a trivial gravity. But this means that through Bianchi’s identities and the
other equations, we have RA - 0. We must set B = 0. In general, in building
action similar to (20) according to (17) we must include forms which have the
same dimension as the standard Einstein term :

under the scaling law (22) or of the de Sitter cosmological term :

In this case, we must give to A a dimension (K/r)2. Although this rule has
not been proved rigorously, it seens to be well-respected in all the cases
examined so far. In place of (20) we have now

The resulting variational equations are such that we obtain a set of algebric
relations between curvature compononents (inner) along space-time
and outer curvature components along normal directions. The effect of
this relation is that it is possible to extend a solution given initially on space-
time on the whole group manifold. This possibility has some analogies
to the standard Cauchy problem, the space-time configuration is a set of
initial data for a system of differential equations on the group manifold.
This possibility and the fact that the lifted solution is unique has been
called « rheonomy » in refs. [2] ] [3 ].
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The rheonomic lifting can be seen as a space-time transformation of
the fields. Indeed, once we reach another space-time imbedded in the group
manifold we can operate on it with a suitable diffeomorphism and bring
it on the initial space-time. The old solution is thus mapped into a new one.
This procedure is equivalent to on-shell supersymmetry transformations.
Related to this discussion is the role of Bianchi identities. These pose
constraints on the curvature as calculated from a set of potential one-
forms The rheonomic conditions appear therefore as an additional
set of constraints on the curvatures and as a set of differential equations
on the potentials, when these are considered on the whole group manifold.

If we insert the rheonomic conditions into the Bianchi identities, we see
that they are compatible only if the inner equations hold. By inner equa-
tions, here we mean the complete set of field equations on space-time.

This kind of relation implies that it is in general impossible to lift rheo-
nomically an arbitrary field configuration, only field solutions on space-time
can be lifted to the whole group manifold.

This corresponds to the standard result, already well known in the
conventional approach to supersymmetry, that supersymmetry transfor-
mations admit an infinitesimal algebra which closes only on shell. Should
we want to lift an arbitrary field configuration one has to relax the rheo-
nomy conditions so that they do not imply any more the field equations.
This is done by inserting extra (auxiliary) fields into the parametrization
of the curvatures. The Bianchi identities then merely state the supersymme-
try transformation rules and determine the outer derivatives of the auxiliary
fields.
From this discussion and from the concrete examples which will be dis-

cussed, we then can add another principle :
( . ) The non-trivial solutions of the variational equations must satisfy

the rheonomy condition, i. e. the outer curvature components must be

completely determined by the inner components (Such theories are called
rheonomic symmetrical. Really they are supersymmetric group model gauge
theories).

This set of conditions guarantees that the set of classical solutions on
a space-time manifold will have a closed algebra of supersymmetric trans-
formations. Infinitesimal transformations can be reached as follows.
The effect of an infinitesimal diffeomorphism is given by the Lie derivative:

In this formula all components of the curvature appear explicitly. The
procedure them implies that we must replace all outer components of
the curvature as functions of the inner ones, using the rheonomic conditions.
In this way the infinitesimal change is given entirely in terms of the space-
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time components of the fields and we obtain a transformation which is

properly defined. The transformation defined by (24) and these substitu-
tions form an algebra which closes on-shell. In fact, if we define the Lie
derivatives through (24) we see that closure implies the Bianchi identities.
The rheonomy principle gives a direct construction of on-shell symmetries
on space-time.

But is it possible to extend these symmetries to off-shell configurations
or better to symmetries of the action ? There is no clear-cut extension of
Eq. (24) to off-shell configurations or rather this extension is given only
modulo the field equations. However, in the cases where this extension
has been found it is seen to imply that the derivative of the Lagrangian
form dQ vanishes on G. Obviously, this is equivalent to say that the action,
as computed on any space-time manifold, does not depend on it.

This discussion can be exemplified in N = 1 supergravity. Here the
field equations (21) are :

The solution of the outer equations (that is taking into account rheonomy)
are:

In considering these equations, we should stress that they express the 
and components of the curvature entirely in terms of ()() components.
They can easily be checked by inserting them into (26).

Finally, we have the inner field equations relating ()(} components only :

Besides these equations, we have to take into account the Bianchi identities :
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These are seen to imply that

so that the Rarita-Schwinger spinor pab is self-dual on-shell. The expression
for the curvature is then much simpler if all on-shdl conditions and Bianchi
identities are taken into account :

From these we can recover the infinitesimal transformations :

There is no need to consider the Ea and Eab terms since they yield trivial
co-ordinate and Lorentz transformations. The spinor term leads to the
familiar transformation rules :

Their closure on-shell is guaranteed by the Bianchi identities.

4.5. Supergravity in five dimensions.

The same techniques can be applied also to other theories. A non trivial
example is provided by supergravity in five dimensions [28]. Here we
have a four-component spinor ç beside the vierbein 0~ the spin connec-
tion 03C9ab and a scalar 1-form B. The curvature components are given by :

(11) The signature of the metric is (1, -1, -1, -1, -1). yab --- - 1 [Ya, yb ] --- - 2i03A3ab.
2
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Notice that ç is not a Majorana spinor, according to the general rules.
The manifold M is now embedded in the group SU(2, 2/1), a contraction
of SU(2, 2/1). A detailed analysis (see ref. [2~]) leads to the first order action
with Lagrangian density :

and to the variational equations :

(28 .1 ) (Einstein eqs.)

(28.2) (Maxwell eqts.)

(28. 3) (Rarita-Schwinger eq.)

If we project now Eqts. (28) along the normal components we find the
constraints :
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4. 6. Supergravity d = 6.

This is the simplest one containing a non-trivial (that is not all potentials
are one-forms) free differential algebra given by :

where the connection the vierbein ea and the gravitino 03C8 are gauge

potentials for the six-dimensional super-Poincare group. B is 
a 2-diHe-

rential form. We have therefore strengths with three indices 
The Clifford algebra is given by :

We require that the gravitino is Weyl: y ~ ~r = so that the Fierz identity
holds: ya = 0 and the only non vanishing currents n 

- 

- 1 

03C8 ^ 03B3abc03C8. The three-index current is self-dual: 03B3abc 03C8 = - 6 ~abcpqr 03C8 ^ 03B3pqr03C8

The action must remain invariant under the following scaling properties:

(12) ; d denotes the covariant exterior differential with respect to the fully reductif pseudo-

connection  for the Lie subgroup SL(2, C). The signature of the metric is (1, -1, -1,

-1,-1,-1).
e 3) The matrix yal".ak is the antisymmetrized in all indices of the product yak.
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Furthermore one requires exact gauge invariance under the following
gauge transformation : B ~ B + dx.

If we impose rheonomy and all the outher conditions on the theory we
find two choices :

The variational equations are then :

(Maxwell eq.)

(Gravitino eq.)

From ref. [29] one gets

In order to satisfy the general requirement that any realistic theory must
have the same number of Fermi and Bose degrees of fredom, we assume
the following self-duality conditions for 

The following type of identity is then very useful in the computations.
If Babe have both the same duality type then : ~abcpqrAabcBpqr = O. In
particular Fapq03C8 A 03B3ars03C8~pqrslm = 0. Having this in mind it is possible to

Annales de l’Institut Henri Poincaré - Physique theorique



83THE GROUP STRUCTURE OF SUPERGRAVITY

construct a Lagrangian satisfying the axiom of the theory. The Bianchi
identities are given by :

It can be checked that duality follows only if we take into account the nor-
mal components of the equations. On space-time the theory is consistent
with a generic strength but admits no supersymmetry unless we assume
self-duality. This raises a number of interesting questions.
On space-time the supersymmetry holds only if we restrict the manifold

of the solutions with a condition which does not follow from variation of

the fields, we need the gravitino components. This implies that the set of
theories which can be described by the present scheme is somewhat larger
than the usual set of supergravities.
The group manifold approach regard all variational equations on the

same footing and therefore also normal components have the same states
as the space-time ones.

4.7. The CJS (Cremmer-Julia-Scherk) theory
in eleven dimension.

From the physical point of view this theory appears the most important
of the supergravities. The theory is based on the free differential algebra

where 0" and 03C9ab are the conventional vierbein and spin connection for
the Poincare group, the 03C8 are Majorana and generate the supertranslations.
The potential A is a three-form. We have therefore strengths with four
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indices The action is then given by means of the following Lagrangian
density :

We do not report here all the variational equations associated with the
above Lagrangian density (see ref. [1 ]).
The normal components are seen to satisfy rheonomy as a consequence

of the choice of the coefficients in the action. The resulting equations are :

In (29) we see that the last term violates the scheme which we have followed
so far, it contains a set of space-time scalars which ultimately represent
the strengths and allowed us to form the dual of the form RD. We can in
fact regard the scalars as zero forms in the free differential algebra, the
duality is actually achieved in the tangent space and is not dangerous.
We are allowed to use the general method explained before.

In fact the same procedure allows us to discuss the electromagnetic
field coupled to gravity in any dimension. The Bianchi identities appear as :
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APPENDIX A

PULL-BACK OF A(G)-VALUED DIFFERENTIAL FORMS
ON A LIE GROUP OR PRINCIPAL FIBER BUNDLE

When a differential form a on a manifold M is valued on a vector space V the usual

way to define the of a via a diffeomorphism 03C6 of M is by means of the following
commutative diagram :

In fact, Ap( ~) (8) id~ is the fiber diffeomorphism of A~M (8) V over ø - 1, canonically asso-
ciated to ø.

However, if M is a Lie group G (or a G-principal fiber bundle P), and V == A(G), since
A(G) = TeG (or A(G) ~ vTpP) we have no a priori reasons to consider that to any diffeo-
morphism ø of G (resp. P) the canonical map associated to A(G) is just In fact, we
should see that in some circumstances the situation is completely different.

(A .1) Let a : G -+ A~G (8) A(G) be a A(G)-valued differential form on a Lie group G.
Let ~ : G -~ G be any diffeomorphism of G. The pull-back of a by means of ø is defined
by means of the following commutative diagram :

is a map canonically associated to (~. In order to see which concrete 
is, we shall distinguish two cases: (a) ~(e) ~ e. As A(G) = TeG we can see that the map
canonically associated is just

Therefore, f ( ~) = (Note, also, that to go back from to TeG we shall use the
group G x G -+ G, but since in general G is not commutative we have none
criterion to choice the left or right multiplication !)
These considerations can be applied, for example, = Ra = Lp that are the

so-called right and left translations respectively.
(b) ~(e) = e. In these cases T(4)) is an isomorphism of A(G). So, f ( ~) = T( ~ -1) ~ 

For example, = ja, a E G, ja : b H we check that f (ja) = 
(A . 2) Note, that if G -+ T*G (8) A(H) is a Ehresmann connection on the H-prin-

cipal bundle 03C0G : G -+ G/H for some closed subgroup H of G, we have that the pull-back
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of M by means of any principal fiber bundle diffeomorphism 03C6 of 1tG is given by means of
the following commutative diagram :

where the map f ( ~) is canonically associated to (~.
On the other hand as A(H) = vTeG c TeG = A(G) and since T( ~) maps vertical spaces

into vertical ones, we get f ( ~) = f ( ~) ~ A(H), is the map given in (A .1).
(A . 3) Finally, let us consider the pull-back of a A(H)-valued differential form a on a

H-principal fiber bundle (P, M, 03C0; H). Let 03C8 : H x P -+ P be the action map of Hover P.
For any principal fiber bundle diffeomorphism of P the pull-back of a is given by the
following commutative diagram :

To investigate the structure of F( 4» we note that A(H) can be identified with vertical
tangent spaces of P. So, we get the following commutative diagram :

for some a E H, then 
we have = 

.

As a consequence of above considerations we try that if ocG -+ is a
A(G)-valued differential form on G, a is G-invariant (e. g. invariant for left or right transla-
tions) iff in any basis of A(G) the p-forms G -+ in the linear representation
a (x) ZA are G-invariant.
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APPENDIX B

SOME OBSERVATIONS
ON THE PRINCIPAL CONNECTIONS

AND PSEUDO CONNECTIONS

Let 7r: P -+ M be a G-principal bundle over M. Let 1&#x3E;: G x P -+ P be the action
map of G on P. A principal connection on P can be characterized as a G-invariant connec-
tion l (P) c J ’@(P). More precisely, the differential equation C is invariant under
the natural action of G on J ’@(P), e. g. the following diagram

is commutative for any a E G.
This is equivalent to say that the section ~ : P -+ J’@(P) is G-invariant, that is

or that the splitting map r: TP -+ vTP gives the following commutative diagram

for any a E G.

Furthermore, there exists a unique section /G: P /G -+ Jp(P)/G such that the following
diagram

is commutative, where ~c~ and ~cG are the canonical projections.
Now, if 1 _-- ~ ~ x is a pseudoconnection on a Lie group G we can see that really

it is a principal connection on the A(G)-principal bundle E = G x A(G) -+ G. In
fact, we can easily see that ~ 1 = 1, VM E A(G) by means of the following commutative
diagram :
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Furthermore, we can see that the unique section /A(G) associated to 1 is just the A(G)-
valued differential form In fact one has the following commutative diagram :

Finally, the morphism r: J’@(E) -+ T*G Q vTE corresponding to a pseudoconnection
J’@(E), E = G x A(G), is given by the following fiber morphism over G,

characterized by ~,u :

r = r" x 0 : J~(E) ~ A(G) x A(G) -. T*G 0 T*G 0 A(G) x A(G)

where  = 0 1tp;: A(G) -+ A(G) morphism over G,
0 is the zero map A(G) -+ A(G) and 1tE the canonical projection E == T*G (x) A(G) -+ G.

Let us, now, conclude this appendix with a generalization of the concept of pseudoconnec-
tions in order to consider A(G)-valued p-differential forms not limited to p = 1. These
forms admit the usual super symmetric grading. Here, we shall prove that such objects can
be considered as particular connections of order p on the trivial fiber bundle 03C0E: 1

DEFINITION Bl. - A p-pseudoconnection on a Lie supergroup G is a semiholonomic
p-connection Cp == l (J~p- 1(E)) on the trivial fiber bundle 7~ 1 E = G x A(G) -+ G
such that Cp is freely generated by Cp and J~p-1(E), that is Cp ~ Cp x where

Cp is a m-dimensional sub-fiber bundle of ApG Q9 A(G) -+ G, (~i = dim G).
Note that ApG 0 A(G) can be considered a sub-fiber bundle as we have the

following diagram of exact sequences of vector fiber bundles over G:

A semiholonomic p-connection gives a splitting 
Then, we can see that a p-pseudoconnection  on G has the following structure:

where =~ ~ is a section of Q9 A(G) -+ G and is the canonical projection

So, a A(G)-valued p-differential form a : G -+ A0pG 0 A(G) can be identified with a p-pseu-
doconnection on 
Of course a pseudoconnection on G (see Definition 4.1), is a p-pseudoconnection with

p = 1.
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