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The wave equation in random domains:
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Universita « La Sapienza » Pz. A. Moro 2 Roma,

00185 Italy

Ann. Inst. Henri Poincaré,

Vol. 43, n° 2, 1985, ] Physique theorique

ABSTRACT. - We consider two models of wave propagation in domains
of Rd, d = 2, 3 with stochastic boundaries. We then show that the normal
modes of sufficiently long wave length are exponentially localized and
consequently that there is no wave propagation in the same frequency
region. The techniques and main ideas needed for the proof are borrowed
from the recent analysis of the Anderson localization for the Schroedinger
equation made by J. Frohlich, E. Scoppola, T. Spencer and the author.

RESUME. - On considere deux modeles de propagation d’ondes dans
des domaines de (~d, d = 2, 3, avec des frontieres aleatoires. On montre
alors que les modes normaux d’assez grande longueur d’onde sont loca-
lises exponentiellement et par consequent qu’il n’y a pas de propagation
d’ondes dans la meme region de frequences. Les techniques et les idees
principales necessaires pour la demonstration sont empruntees a 1’analyse
recente de la localisation d’Anderson pour 1’equation de Schrodinger
effectuee par J. Frohlich, E. Scoppola, T. Spencer et l’auteur.

INTRODUCTION

’B In this paper we study two models of wave propagation in unbounded
domains of Rd, d = 2, 3 whose boundaries are stochastic in a sense to be

Annales de l’Institut Henri Poincaré - Physique theorique - Vol. 43, 0246-0211
85/02/227/23/$ 4,30/ (Ç) Gauthier-Villars



228 F. MARTINELLI

specified later. This problem is relevant in the analysis of waves guides
and in hydrodynamics through the shallow water theory [1] ] and it belongs
to the more general context of wave propagation in random media which
has received in recent years increasing attention both by mathematicians
and by physicists.
The most stricking phenomena for this kind of problems is the so called

Anderson localization [2 ]. For large disorder of the medium or for some
frequency interval:

i ) the normal modes are exponentially localized
ii) there is no wave propagation.
Among the various models of wave propagation in random media the

interest was concentrated on the Schroedinger equation with a random
potential because of its relevance to the theory of disordered crystals expe-
cially in connection with the metal-insulator transition [3] ] [4] ] [5 ].
For such an equation the rigorous discussion of the Anderson localiza-

tion turned out to be a difficult problem and only recently it has been

proved by J. Frohlich, F. Martinelli, E. Scoppola, T. Spencer [6] ] and

subsequently by B. Simon and T. Wolff [7] and by F. Delyon, B. Souillard
and Y. E. Levy [8 ]. Here we will follow the lines of [6] where the physical
mechanisms leading to localization emerge in a rather transparent way.
The main point of the approach to the Anderson localization deve-

loped in [6] was the analysis of the quantum tunneling over long distances
for typical configurations of the potential. This point of view was already
present in the germinal paper [9] ] and it was subsequently considerably
developed in [70] ] by G. Jona-Lasinio, F. Martinelli and E. Scoppola
in their work on hierarchical potentials. These potentials which allow
a rather direct and detailed analysis of the tunneling are the first multi-
dimensional models for which the Anderson localization has been proved,
and have represented a key intermediate step in the analysis of more rea-
listic models like the Anderson model.

In this paper we combine the main ideas of [6] with some techniques
developed in [77] and we present a rather general approach to the Ander-
son localization for the wave equation in random domains in the small

frequency region. For similar results in the case of wave guides with

boundary modulated by quasi periodic functions see [12 ].

SECTION I

DESCRIPTION OF THE MODELS AND MAIN RESULTS

We now describe precisely the random domains on which we will inves-

tigate the wave equation.

Annales de Poincaré - Physique theorique



229THE WAVE EQUATION IN RANDOM DOMAINS

MODEL 1. - Let {Ci} i~Zv v = 1, 2 be a paving of R’ with unit

squares centered at the sites of the lattice ZV with sides parallel to the
coordinate axes and let { be i. i. d. random variables with common

distribution :

with sup g(h)  and supp g = [0, 1 ].
A configuration of the random variables { h~ } is an element of the pro-

bability space:

and it will be denoted by OJ.
Let now h &#x3E; 1 be fixed and define for a given cv = { the set Dro c Rd,

d = v + 1 as follows :

In order to avoid ambiguities we assume the squares Ci to be half open.
The domain Dro can therefore be thought of as a slab with stochastic bottom.

MODEL 2. - (The stochastic worm).
Let { i E Z be i. i. d. random variables with common distribution :

with supp g = [R1, R2], 0  R 1  R 2 and sup g(R)  + oo .

As in model 1 we denote by 03C9 = { an element of the probability space :

Let now for a fixed R &#x3E; 0 and ro &#x3E; 0 DR,to c R2bethehalfannuligivenby:

and let = + E R. 

For a given configuration 03C9 ~ Q we define the random domain Dw c [R
as follows :

with for and 

for i  0 (see (Fig. 1).

Vol. 43, n° 2-1985. 9



230 F. MARTINELLI

Let now Dro be either defined by (1. 2) or by (1. 6); then in Dro we consider
the wave equation :

We assume that the initial data uo and vo are smooth functions in the
interior of Dro and vanish at 

In order to analyze the long time behaviour of the solution of ( 1. 7)
it is natural to expand the solution u(x, t ) in terms of the normal modes
of the equation. To do that let us denote by HW the operator - ð on 
with Dirichlet boundary conditions. Hro is a selfadjoint operator which
can be uniquely defined in terms of the corresponding quadratic form on
the Sobolev space The normal modes of the equation (1.7) are
then the generalized eigenfunctions of H. By this we mean the following :

DEFINITION. - A function ~p on Dro is said to be a generalized eigen-
function of the operator Hw corresponding to be generalized eigenvalue
E((u) iff ~p is a polynomially bounded solution of the equation :

vanishing at the boundary of Dw.
The closure of the set { E E R ; E is a generalized eigenvalue of 

gives the spectrum of Hro (see [13 ]). It is easy to check using the
ergodic theorem [7~] ] that is almost surely a non random set E.
Our first result is a characterization of E :

PROPOSITION 1.1. - a) In model 1 03A3 = [03BB0(h), +00) where 

Annales de l’Institut Poincaré - Physique theorique



231THE WAVE EQUATION IN RANDOM DOMAINS

d2 
2 

-

is the lowest eigenvalue of - 2 on L 2( [0, h ], dx) with Dirichlet boundary
conditions. dx 

d2 1
b In model 2 let Eo(R) be the lowest eigenvalue of - d - 1 on0( ) g 

dx 2 4x 2

L 2( [R, R + ro J, dx) with Dirichlet boundary conditions. Then:

Remark. - i ) The quantity Eo(R) is easily seen to be a monotone
increasing continuous function of R. Therefore Eo(R2) &#x3E; Eo(R1).

ii) It would be possible to investigate in more detail the structure of
the set E in model 2 using the methods of [7~]. However this will not be
necessary for our purposes, since we will be interested only in the lowest
part of the spectrum 
We are now in a position to state our main results on the nature of

the spectrum of H(.{) near the left edge of E and therefore on the long time
behaviour of the solution u(x, t) for suitably chosen initial data. Let

Eo = inf 03A3 and let for ~ &#x3E; 0, I~ = [Eo, Eo + 

Main results

THEOREM 1.1. - Let Dro be either defined by ( 1. 2) or by ( 1. 6) and
let Hw be the corresponding Dirichlet Laplacian. Then for ~ &#x3E; 0 small

enough there exists a set with P(Qo) = 1 such that if E(w) E 1~,
is an arbitrary generalized eigenvalue then the corresponding

generalized eigenfunctions decay exponentially fast at infinity.

COROLLARY 1.1. - Let P(H) be the spectral projection of Hro asso-
ciated to the interval I~. Then for ~ small enough there exists a set 
with P(Qo) = 1 such that for any 03C9 ~ 03A90 the following holds :

let uo = vo = with uo and vo elements of the space
and let u(x, t) be the corresponding solution of equation (1. 7).

Then there exists a constant C((D) &#x3E; 0 such that :

Remark. - The set of generalized eigenvalues in 111 depends on the
particular chosen configuration o although its closure does not as shown
in proposition 1.1. In particular following the lines of [76] ] one proves
that for ~ small enough a given energy E is not a generalized eigenvalue
with probability one. This in turn implies that the part of the spectrum ofH
inside 111 has no absolutely continuous component.
Vol. 43, n° 2-1985.
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The strategy of our proof of theorem (1.1) and of Corollary 1.1 is orga-
nized in three steps as follows :

FIRST STEP. - One shows that if ~ is sufficiently small the random
domain Dro can be decomposed with probability one into two pieces :
Dro = where D~ is the union of bounded subsets of Dro
very well isolated one from the others and it is such that the restriction
ofH to with Dirichlet boundary conditions has its spectrum
entirely above Eo + 2~. Thus behaves like a barrier for any energy

SECOND STEP. - One studies the « tunneling » among the components
of D~ for energies Technically this is realized by analyzing the decay
properties of the Green’s function corresponding to energies in I, of subsets
ofD intersecting D~. This analysis is carried out by means of the inductive
perturbation expansion developed in [9] and adapted to continuous sys-
tems in [77]. In particular one finds sufficient conditions on the confi-
guration such that the tunneling over long distances is forbidden for all
generalized eigenvalues in the spectral interval I".
THIRD STEP . - One shows that for ~ small enough the conditions

found in the second step are satisfied with probability one.
The last two steps of our strategy can be carried out using the general

machinery developed in [6] and are largely model independent with the
exception of a probabilistic estimate, originally due to Wegner [77] (see
also Lemma 2 . 4 in [9 ], Lemma 3 . 2 in [11 ]) which will be proved for
the two models in consideration. Therefore our main result on the struc-
ture of the typical configurations for ~ small enough will be stated without
proof in the next section. In section 3 we prove proposition 1.1 and Corol-
lary 1.1 while in section 4 we prove the basic probabilistic estimates. Some
technical results are collected in Appendices (A), (B) and (C).

SECTION 2

ANALYSIS OF THE TYPICAL CONFIGURATIONS
AND PROOF OF THEOREM 11

In order to present a unified approach to the proof of our main result
in the form of theorem 1.1 we first establish some useful notations.

Let 1 be a non negative integer and let be the lattice (21 + 1)ZB
To each site) E we associate a half open cube B( j) c Ry centered at}
with sides parallel to the coordinate axes of length (21 + 1) and we will

Annales de l’Institut Henri Poincaré - Physique theorique



233THE WAVE EQUATION IN RANDOM DOMAINS

call it the block at site ~’. The block B(j) is identified with a subset of the
domain D(J) which we denote by B( j, as follows :

a) In Model 1:

using the notations of the previous section.
M In Model 2: _

Given a bounded set A c 7~v(l ) we denote by Aro = and by 
~’6A

the restriction ofH to with Dirichlet and Neumann boundary
conditions respectively on where is in Model 1 the part of the

boundary ofA parallel to the z-axis and in Model 2 the part of the boundary
of Aro which lies on the x-axis. The selfadjoint operators 
have purely discrete spectrum with eigenvalues 
k &#x3E; 1, counting multiplicity.

Let now Eo = inf E, E being the almost surely constant spectrum of Hw
and assume that A c is such that:

Then using the Dirichlet-Neumann bracketing (see Appendix A) we get :

Next we compute the probability that :

We have :

THEOREM 2 .1. - There exists two positive constants /32 such that
if = [ /31/~ ] then for all sufficiently small 11:

The proof of this theorem will be given in section 4. We observe that
a similar result has already been established in [18 ] in the context of

random Schroedinger operators using large deviations probabilistic esti-
mates. Our proof will follow closely the ideas of [18 ]. In the sequel the
integer l will be kept fixed and equal to [~i/~]. Using the above result
and (2.4) we obtain that for ~ small enough a large portion of the set Dro
will substained only energies above Eo + 211 and that the « singular blocks »
where (2. 3) is violated will from small clusters well isolated one from the
other. Furthermore, using the Combes-Thomas argument [7~] one shows
that if A c 7w(l) satisfies (2 . 3) and if :

Vol. 43, n° 2-1985.
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denotes the Green’s function of Hw then :

with m = ~/2 provided | x - y |  1/~.
We now turn to the analysis of the tunneling for energies among

the singular blocks where (2. 3) is violated. An important observation
for this analysis is the following :

let E(co) E I~ be a generalized eigenvalue and 03A8 be the corresponding
generalized eigenfunction. Then for each, A c q is the unique solu-
t i on of the Dirichlet problem :

provided E(a~) ~ 
Therefore by Green’s formula :

where denotes the outward normal derivative of cv, x, ç) at ç.
From (2.9) it is clear that the decay properties of 03C8 are strongly related
to those of GA(E, x, y). To make this idea more precise we introduce
the following definition : .

DEFINITION. - A set A c is said to be a k-barrier for the energy
iff :

for some " constant m &#x3E; ~ 2 and any x, y ~ 03C9 such that | x - y |  ldK/5
where : 2

Let now AK, ÃK be cubes in centered at the origin with sides of
length [8dK ], ] respectively. Here [ . ] denotes the integer part and
we use the convention that any length in the lattice is measured in

the natural length scale l of Then our basic result on the structure

of the typical configurations 03C9 which shows the absence of tunneling
over long distances for energies in 1~ reads as follows :

THEOREM 2 . 2. - For ~ small enough there exists a set Qo of full measure
such that if co E Qo there exists an integer and for any generalized

Annales de l’Institut Henri Poincaré - Physique theorique
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eigenvalue E(co) E 1~ an integer K(E, c~) ~ such that the following
holds :

i ) For the set is a 

ii) ~)-1; then the set Ãï( is a for 

provided that K ~ 

Remark. 2014 In the context of random Schroedinger operator this theo-
rem was first proved for the hierarchical models introduced in [7~] and
subsequently for the Anderson model in [6 ]. The proof given in [7~] was
considerably simpler than the one given in [6] because of the hierarchical
structure of the random potential.
As already anticipated in the introduction we will not give any detail

of the proof of theorem 2.2 since it follows step by step the proof of the
analogous result for the Anderson model given in [6] provided one replaces
the inductive analysis of the discretized Green’s functions of [9] ] [6] with
its continuous version discussed in [77]. However at the basis of the pro-
babilistic part of the proof there are two estimates which will be proved
in section 4. These estimates depend on the specific model in conside-
ration and are necessary in order to apply the general machinery deve-
loped in [6 ]. The first of these estimates has been established in theo-
rem 2.1 while the second one allows us to estimate the probability that
two separated regions Ai, A2 of Dro are in resonance in the sense that :

We state it in the next lemma :

LEMMA 2.1. - Let A c be a bounded set. Then for E ~ 1’1’
and e ~ 11:

where 1 = l(~) is as in theorem 2.1 and A03C9| is the volume of the region Aw.
Using now theorem 2.2 it is easy to complete the proof of theorem 1.1.
Let OJ E Qo be fixed, Qo as in theorem 2 . 2, let E(cv) E 1~ be a generalized

eigenvalue of Hw the corresponding eigenfunction. Let also x ~ D03C9
be given, x ~ AK(E(03C9),03C9)(03C9) where is defined in theorem 2 . 2.

We choose an integer k such that :

and

A simple geometric argument shows that such an integer always exists.

Vol. 43, n° 2-1985.
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By applying (2 . 9) to the set AK we get :

The normal derivative of the Green’s function can be estimated by :

for any ç E using theorem 2. 2 (2.13) and the following technical lemma
provedin[77] ] 

- 

_

LEMMA 2 . 2. - Let A c Then for any with

~ 2014 ~ ~ 2 one has :

The exponential decay of can now be infered using (2.14), (2.15)
and the polynomial boundedness of ~.

SECTION 3

PROOF OF PROPOSITION 11 AND OF COROLLARY 11

Proof of Proposition 1. l. 2014 a) By the Dirichlet-Neumann bracketing :

in the sense of quadratic forms where Ho corresponds to the configu-
ration ay in which each random variable hi is set equal to zero. Therefore :

It remains to show that any E  03BB0(h) belongs to R Let us fix 03B4 &#x3E; 0 and

E ~ ~,o(h) and choose a cube A c 7 y so large that :

Since the spectrum of can be computed exactly it is easy to see

that such a cube always exists. Let us now assume that for all j E A one has :

Annales de l’Institut Henri Poincare - Physique theorique
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Under this assumption it follows that for all ~, &#x3E; 0 :

for a suitable constant K(~). The proof of (3.5) is given in Appendix B.
From (3 . 5) and (3 . 3) it follows that :

for E small enough.
To conclude the proof it is enough to use Weyl’s criterium [79] ] (see

also [7~]) and the following standard result based on the ergodic theorem :

P (there exists a box A c Z’ of side L such that 0 ~ ~ ~ t; V/eA) =1 (3 . 7)

b) We proceed as in a). By the ergodic theorem for any G &#x3E; 0, any L  + 00

and any R E [R1,R2]:

P (there exists an interval AL of length L in 7~ such that

In Appendix B we will prove in analogy with (3 . 5) the following result :
assume that then for any ~, there exists a constant

K(Â) such that :

where OJR = ~ R~ = R 
From the Weyl’s criterium, (3 . 8) and (3 . 9) we obtain (see [15 ] for details) :

We are left with the problem of showing that :

Actually (3.11) is a consequence of (3.12). In fact by the Dirichlet-Neu-
mann bracketing : 

‘

in the notations of section 2. Therefore :

Vol. 43, n° 2-1985.
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Using the polar coordinates ((7, p) centered in is easily seen
to be unitarily equivalent to :

on ] x [0,7r]) with Dirichlet boundary conditions at

p = Ri 03C1 = Ri + ro and Neumann boundary conditions at 6 = 0,7r. Thus
the lowest eigenvalue coincides with Eo(Rt) and thus, using (3.14) :

To prove (3.12) we observe that, using the explicit representation (3.15)
of the operator in the local polar coordinates of each it
is easy to check that :

Thus (3.12) follows from the monotonicity and continuity of Eo(R),
R E [R1, R2 ].

Proof of Corollary 7.7. 2014 We have to estimate a time evolution and
it is natural to expand the solution t) of the wave equation (1.7) in
terms of the generalized eigenfunctions of H~. To make this precise we
recall for reader’s convenience the following general result [7.?]:

THEOREM 3.1. 2014 Let a &#x3E; 2014_2014; then ther e exists a spectral measure
of Hw such that for any Borel bounded function g : [R -~ [R

where F(x, y, OJ, E) is given for almost all E with respect to dp~ by :

Here the functions {/;} are orthogonal functions in with
N(E)

I I I 2 - 1 such that the new functions :

j= 1

are 
" solutions of the equation : - = 

Using (3 . 20) and 0 the Harnack inequality (see [13 ]) it is easy to see that

Annales de Henri Poincaré - Physique " theorique "



239THE WAVE EQUATION IN RANDOM DOMAINS

the are actually polynomially bounded and therefore are generalized
eigenfunctions of H. The number N(E) counts the multiplicity.

Let now for u0, v0 ~ C~0(D03C9), uo, vo given by :

where P(H) is the spectral projection of Hro associated to 1~. Then we
will show that :

is the unique solution of ( 1. 7) and satisfies the stated bound. This follows
from theorem 1.1 and from the next estimate on the multiplicity N(E) :

LEMMA 3 .1. - Let Qo and ~ be as in theorem 1.1 and let E I~
be a generalized eigenvalue of Hw, Then :

where K(E(co), co) is the integer defined in theorem 2. 2.
The lemma will be proved in Appendix C. Using the above bound and

the results of theorems 1.1, 2.2 we obtain the following basic estimate.

PROPOSITION 3.1. - Let f: I~ ~ R be bounded and let for 03C9~03A90
Then there exists an integer K(co) such that :

and some m  ~/2.
The proof of this proposition follows word by word the proof of theo-

rem 5 in [10 ] and it is therefore omitted. However it can be understood in
simple terms as follows : if we consider a generalized eigenvalue E such that
the corresponding integer k(E) = is very large then, according

Vol. 43, n° 2-1985.
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to theorem 2 . 2, the box will be a for E. Therefore,
using (2 . 9) all the eigenstates corresponding to E will be exponentially
small in the same box which in turn implies that for g of compact support :

(3.24) together with lemma 3.1 implies the proposition.
We are now in a position to complete the proof of Corollary 1.1. Using

the proposition and lemma 3 .1 we get that u(x, t ) defined by (3 . 23) satisfies :

Furthermore u(x, t ) is easily seen to satisfy the wave equation ( 1. 7). It
remains to show the decay in x uniformly in t.

Let us fix x with x very large and let be such that x E 1 

AK, AK as in section 2. Then we divide the integral in (3 . 23) into two pieces :

Using Lemma 3.1 and (2.14) the first term is bounded uniformly in t by :

while the second term is estimated using the proposition by :

uniformly in t.

In (3 . 27) we have used the fact that, by definition, dK + 1 == dK 4. The
proof of the Corollary 1.1 is now complete.

SECTION 4

PROOF OF THE PROBABILISTIC ESTIMATES

In this section we give the proof of theorem 2.1 and of lemma 2.1.

Proof of theorem 2. 1. 2014 We first fix a length scale 1 and estimate from
below the first eigenvalue of for a given configuration

Annales de l’Institut Henri Poincaré - Physique theorique
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Let {Ci}i~Z03BD~B0 be the unit squares around the sites of Zv~B0
and let :

Then for any 0  ~,  1 we have :

in the sense of quadratic forms, where is the characteristic function
of the block C~’ given by (2.1). In Model 1, using the Dirichlet-Neumann
bracketing, we also have :

where ccy = { hi = 0}.
In Model 2, using the representation of Hro in polar coordinates (3.15),

we have :

where the second operator in the r. h. s. of (4. 4) acts on

with Dirichlet boundary conditions at p = 0, ro and Neumann boundary
conditions at e = ~ - In conclusion we have shown that if:

then also the lowest eigenvalue of the operators appearing in the r. h. s.
of (4. 3), (4.4) are less than Eo + 2~.
We now observe that both these operators can be written as :

with : 
-

i ) ,u 1 (Ho) = Eo in both models.

ii) = Eo in both models.
0)

Vol. 43, n° 2-1985.
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Thus, by adding and subtracting Eo in (4.6) we have reduced the proof
of the theorem to the estimate of :

We now take ~, = 1/2 for concreteness and observe that the estimate of (4. 7)
falls into the cases considered in [7~] for the Schrodinger operator :

with VJx) 0 and = 0, for which theo-
rem 2.1 was established. 

ro

Proof of lemma 2 .1. 2014 We proceed as in the original paper by Wegner [17]
(see also [6] and [77]). Using theorem 2.1 for and E ~ I~ we have :

P (dist E) ~ 8) ~ Eo + 211)

with [ = [(11) as in theorem 2.1.
Let now :

Then :

We will estimate the (formal derivative) of co) in terms of the deri-
vative with respect to the random variables { and { respectively
in Model 1 and in Model 2. To do that we use the next two lemmas which

will be proved in Appendix B.

LEMMA 4.1. - Let 1 = 0 and let in Model 1 for any configuration
cc~ = { be the configuration corresponding + G }, 8 &#x3E; 0.

Then if A c 7~v is bounded :

LEMMA 4 . 2. - In Model 2 let for (~ = { R,}, cvE be equal 
Then for A bounded in Z and provided that  Eo + 3~

for suitable constants C1(~), C2(~). Furthermore C2(~)  - 1 D3 for ~
small enough. ~

Poincaré - Physique théorique
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Using the above lemmas we get that for ~ small enough :

in Modell and :

in Model 2.
The same proof of [77] now gives :

The Lemma is proved if we take the geometric mean of (4.9) and (4.14).
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APPENDIX A

THE DIRICHLET-NEUMANN BRACKETING

In this first appendix we review the main results of the so called Dirichlet-Neumann
bracketing which have been used in the previous sections.

Let A and B be non negative selfadjoint operators on a Hilbert space ~f with form
domain Q(A) and Q(B) respectively. We write 0 ~ A ~ B if:

ii) For any 03C8 E Q(B) : 0  (03C8, A03C8)  (03C8,
Using the min-max principle one proves :
If 0  A  B then :

Here {P[o,A](.)} denotes the family of spectral projections.
Let now A c ~d be an open set with continuous boundary and let A!? A~ be the Dirichlet

and Neumann Laplacians respectively on L2(A). Then :

c) If Ai, A2 are disjoint open subsets of A so that A = (A 1 V A2)int and A BAl 1 v A2
has zero Lebesgue measure :

Annales de l’Institut Henri Poincaré - Physique theorique
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APPENDIX B

PROOF OF LEMMA 41, 42

We give the proof of the two lemmas of section 4. We also observe that they prove esti-
mates (3 . 5) and (3.9).

Proof of Lemma 4 .1. - For notations convenience we denote by h) the eigenvalues
with M = { hi }. Then the following chains of inequalities follows from the results

of Appendix A : i i _v ~ , ,

We are now in a position to estimate 

Upper bound : Using (B .1) it is enough to estimate +6)( 1 +~} ; h 1 + h and
this can be easily done by scaling the z-coordinate by a factor (1 + £/h)-1. This gives that
minus the Dirichlet Laplacian on the domain described by (hi + E )( 1 +£/11) and h( 1 + E/h)
is unitarily equivalent to: ,

on Again by the results of Appendix A :

which implies :

with

Lower bound : We start from (B . 2). By scaling the z-coordinate by ( 1 - E/h -1) -1 we get :

In (B. 6) we have used the obvious fact that :

Proof of Lemma 4.2. - As already observed in the proof of theorem (1.1) is uni-

tarily equivalent to :
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Let now : = sup inf ~ ~p, be less than Eo + 3~. Then we
~1...1~/"-1 ~V1~~1...~/n-1

infer that the infimum appearing in the definition of n must be taken over functions 03C6
such that :

since by definition :

Let us make the change of variables : pi + e. Then if we set = ei)
we have :

Using (B . 9) the two sums in (B .11) can be estimated from above by:

and from below by :

The proof is complete if we observe that :

Here :
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APPENDIX C

PROOF OF LEMMA 31

M, E = E(cv) and N(E) be as in the statement of the lemma and let be the

generalized eigenfunctions corresponding to E. From our main result it follows that there
exists a box A c Z" of side L centered at the origin such that :

and

with m, ~ ~ B/~/2. Actually using the arguments of section 2 the side L can be taken pro-
portional to : 

_

where K(E, is defined in theorem 2. 2.

Let now Xh be a smooth approximation of the characteristic function of the set Am and
let = Then it is easy to see that :

Using (C . 4) it also follows that :

Let now { be the eigenfunctions of and let us write :

Using (C .1), (C . 2), (C . 4) and (C . 5) and the orthogonality of the functions the Fourier

coefficients ~(/) have the following properties:

iii) There exists an integer no(A) such that :

furthermore no can be estimated by const. | I A I.
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Properties i ) and ii) are trivial ; iii) can be derived as follows : we apply to both sides
of (C . 6) the operator and take subsequently the scalar product with This gives :

We now observe that there are at most const. A j eigenvalues below 2E. Therefore
if implies : 

.

Using i ), ii), iii) and the Grahm-Schmidt procedure we can extract from the sequences
{ 1  j  N(E) new orthonormal sequences { u,,(/) ~n,no 1  j  min (N(E), const. e)
(see [70] for details). However, since const. I A this is possible only if

m B
that is, using the relations exp(- 2 const. | A j. The Lemma is proved.
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