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ABSTRACT. - It is proved that the set of observables of a quantum
system, stable under linear combinations and square, and complete with
respect to a compatible norm topology, is a J-B algebra. This means that
the Jordan identity can be replaced by the power-associativity in the defi-
nition of a J-B algebra.

RESUME. 2014 On demontre que 1’ensemble des observables d’un systeme
quantique, stable par combinaisons lineaires et carre, et complet relative-
ment a une topologie definie par une norme compatible, est une J-B algebre.
Cela signifie que, dans la definition d’une J-B algebre, l’identité de Jordan
peut etre remplacee par la propriete de puissance associative.

0 . INTRODUCTION

The idea of using algebraic techniques for structuring sets of observables
is almost as old as quantum mechanic itself, as can be seen by looking at
the early works of Heisenberg, Jordan, Von Neumann, etc.
In spite of some periods of forgetting, this approach made its way up
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212 B. IOCHUM AND G. LOUPIAS

to the present time (see for memory works of Mackey, Segal, Haag, Kastler,
Araki, Kadison, etc.) through, essentially, two more or less correlated
ways : the first one leading to concrete algebras of operators on a Hilbert
space, with emphasis on the weak operator topology and normal states,
the second one, basically more abstract and advocating the use of normed
algebras, which is sufficient to get a well-behaved functional calculus, and
leads to the consideration of non-normal states, which seems to be phy-
sically pertinent, for instance in statistical mechanics.

In both cases, it is usually taken as granted that the natural minimal
algebraic structure to be put onto a set of observables is a Jordan one.

This seems evident in the concrete approach, as it is well known that
the family of bounded self-adjoint operators on a Hilbert space possesses,
in a natural way, a special Jordan algebra structure through the composition
law AoB = (AB + BA)/2. In the abstract approach, things are less evident.
Of course the same can be said for the self-adjoint part of, for instance,
an abstract C*-algebra but then remains the question of the pertinence
of the a priori product in the algebra. So the problem to be solved can be
phrased as follows : is it possible, starting from elementary axioms assuming
essentially the existence of linear combinations and powers of observables
together with an appropriate norm topology, to deduce the existence of
a Jordan structure, or is it necessary, as is done for instance in [7 ], to impose
it as a supplementary axiom ? Of course, the answer depends greatly on
the way of choosing the initial axiomatic.

In the Jordan-von Neumann-Wigner axiomatic [14 ], where the finiteness
condition has the effect of discarding the role of topology, the Jordan
structure is deduced from a reality condition and a power-associativity
axiom by using a particularly simple spectral decomposition.

In the infinite dimensional case, von Neumann obtained the same kind
of result [79] through a rather intricate axiomatic but where the topology
is more or less of the weak type, classifying this result in the operator
algebra approach rather than in the normed algebra one.
To this last one pertains the Segal axiomatic [25 which develops mainly

a functional calculus and the notion of compatibility of observables, but
does not give an answer to our problem, by lack of distributivity and also
of a spectral decomposition. Considering that this axiomatic, by not
beeing linked to some representation on a Hilbert space, presents a more
intrinsic character, we would like to fill the gap by proving that, even in
the presence of a norm topology, elementary axioms imply the Jordan
structure.

This is made possible by the present status of the so-called J-B algebras,
whose fundamental structure is by now well known [11] ] and which possess,
in their W*-type counterpart, a spectral decomposition, insuring a link
with [19 ]. For a parallel, though different, approach, see also [4] ] [5] ] [8 ].
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213BANACH-POWER-ASSOCIATIVE ALGEBRAS AND J-B ALGEBRAS

I. SETS OF OBSERVABLES
AS BANACH-POWER-ASSOCIATIVE SYSTEMS

A pedagogical exposure would necessitate the motivated introduction
of a quantum axiomatic involving the concepts of observables and states.
As this would go beyond the scope of this work, we will just start from some
algebraico-topological definitions containing the minimal hypothesis
which are necessary for our purpose, without any conceptual considera-
tions about the difficulty of simultaneously defining the sum and the
square of observables.

DEFINITION 1.1. Let j~ be a real linear space. A square map is a map
from A into A, denoted

for reasons that will be obvious in the sequel, and such that

Such a map allows to define a « product » in ~ according to

and the nth-power recursively by

where n is any positive integer such that n &#x3E; 2. Of course one can note

DEFINITION 1.2. A system of observables is a real Banach space j~
with a square map such that

A subsystem of observables is a real closed subspace of j~ stable under
squaring. The system of observables j~ will be said « with unit » if there
exists some element in ~, denoted D and called a unit, such that A. 1! = A
for any We can note A° - ’0 .

PROPOSITION 1.3. - Let ~ be a system of observables. Then

Proof. - As !! 0~ !! = !! 0 ~ = 0, then A.O = - 02/2 = 0. II
If a straightforward computation reveals that the product is commutative

but non-associative, we do not know if it is bilinear, continuous, if A. A = A2
or, more generally, if A"". A" - Am+n.

Vol. 43, n° 2-1985.



214 B. IOCHUM AND G. LOUPIAS

PROPOSITION 1.4. Let A be a system of observables and R ~ A a

subsystem such that

Then, in ~, the product is bilinear, continuous with

and such that A . A = A2, AE. If 1] then II II = 1.

Proof Because

we get the parallelogram law (A + B)2 + (A - B)2 - 2A2 + 2B2. By
successive applications of it, we get that

As, if C = 0, A. B = [(2A). B ]/2, we obtain the distributivity of the product
and, by induction, A . rB = r(A . B) for any rational r. The same will be
true for any real ~, if we prove the continuity of the product. But once
again the parallelogram law allows to write A . B = [(A + B)2 - (A - B)2 ]/4
so that, if r is rational

Extending the last inequality to the reals by density, and putting r= I |B~
we get that I II B!!, which asserts the claim. Finally the
property A . A = A2 is also a direct consequence of the parallelogram law,
while !!~=!!~!!=~~=1. ~

PROPOSITION I. 5. Let d be a system of observables and R ~ A a

subsystem such that

Then ~ is power-associative in the sense that

for any strictly positive integers m and n (and also m = 0 or n = 0 if 14 has
a unit).

Proof 2014 By proposition 1.4, 14 is a real commutative but non-associative
algebra. It is then a standard result in the theory of such algebras that the
condition A2 . A2 = A4 implies power-associativity [1 ], ( [22 ], p.130). II

COROLLARY 1.6. Let j~ be a system of observables, and C(A)

Annales de Henri Poincaré - Physique theorique



215BANACH-POWER-ASSOCIATIVE ALGEBRAS AND J-B ALGEBRAS

the subsystem generated by A, and D if it exists. Assume the square map
is continuous in C(A) and C(A) satisfies to the hypothesis of proposition I . 5,
then C(A) is a commutative, real, (associative) Banach algebra.

Proof Proposition 1.4 and 1.5 and the continuity of the product
insure that C(A) is an associative algebra with I I
for any B, CEC(A). But then ~B.C!!~=!!(B.C)~!=!!B~.C~!!2!!B~! !!C~ 6
or IICII and, by induction, II C II. II

Remark. The proofs of distributivity and power-associativity do not
rely on Ho) if we assume that 02 - 0.

In order to get a well behaved functional calculus in j~, it would be

interesting to know that C(A) is isometrically isomorphic to an algebra
of continuous functions on some compact space. But as the situation is
more intricate for real C*-algebras than for complex ones, we need some
additional hypothesis, which motivates the following definition.

DEFINITION I.7. A Banach-power-associative system is a system of
observables j~ such that, for any A, 

HI) A2 . A2 = A4,
H2) Am . ( - An) _ - m, n E N* if there is a unit),
H3) 
H4) the square map is continuous in C(A).

If moreover H2) is replaced by A . ( - B) = - (A . B) then j~ is said a

Banach-power-associative algebra.

PROPOSITION I. 8. - The hypothesis H3) implies

Proof Let us assume that  ~ . Then if H3) is true, the
identity 2B2 = A2 + B2 - (A2 - B2) gives

PROPOSITION 1.9. 2014 If j~ is a Banach-power-associative algebra, then
H4) is redundant because ~A.B~  I for any A, 

Proof The first assertion comes from proposition 1.4 which insures
also that the product A . B = [(A + B)2 - (A - B)2 ]/4 is bilinear in j~.

PROPOSITION 1.10. Let j~ be a Banach-power-associative system and
A E C(A). Then C(A) is algebraically and isometrically isomorphic to Co(X),
Vol. 43, n° 2-1985.



216 B. IOCHUM AND G. LOUPIAS

the algebra of real continuous functions vanishing at infinity on some
locally compact Haudsorff space X, this last one being compact if and
only if j~ has a unit.

Proof 2014 It is sufficient to construct a complex commutative C*-algebra
of which C(A) will be the self-adjoint part. But, thanks to proposition 1.8,
this is a well known procedure ( [15 ], 6 . 6), ( [11 ], 3 . 2 . 2). II

Before investigating more deeply into the structure of Banach-power-
associative systems, we would like to mention the existence of some exam-
ples and counter-examples.

DEFINITION 1.11. A J-B algebra is a real Jordan algebra complete
with respect to a norm obeying to Ho), to the equivalent conditions H3)

[6] [77].
The main result of this work will consist in proving the converse of the

following proposition which, by the way, asserts the non-vacuity of our
definitions.

PROPOSITION 1.12. A J-B algebra j~ is a Banach-power-associative
algebra. D

Proof 2014 Let { A, B, C } be the associator equal to (A. B). C - A. (B. C).
The only point to be proved is Hi), which is equivalent to the nullity of
the associateur {A, A, A 2 }, and is implied by the Jordan condition

{A, B, A 2 } = 0, A, II
However there exist examples of Banach-power-associative systems

which are not algebras : for instance the class of counter-examples exhibited
by Sherman [23 ].

REMARK 1.13. There exist power-associative algebras which are not
Jordan algebras (see for instance [2 ], p. 504). But such algebras contains
nilpotent elements which are here excluded by the condition!! A2~ = II A 112.
A finite dimensional power-associative algebra is a Jordan algebra if it

n

is formally real: Af = 0 implies Ai = 0 (which is equivalent to H3)
t=i

in that case) (see [14 ]). The conclusion remains valid under the semi-
simplicity hypothesis and also in the infinite dimensional case for a simple
algebra without any topological considerations ([1] ] [2] ] [17 ]). But as
there is no hope, without any additional hypothesis, for a decomposition
of a semi-simple infinite dimensional power-associative algebra into a sum
of simple ones, the topological structure has to play some role. Moreover
there is a semi-simple formally real Jordan norm-complete algebra such
that !! AB !!  II II B = II A 112 and which is not a J-B algebra
(see [11] 3.1.4).

Annales de Henri Poincaré - Physique theorique



217BANACH-POWER-ASSOCIATIVE ALGEBRAS AND J-B ALGEBRAS

So it remains open the problem of the equivalence of power-associativity
and Jordan structure for more general algebras than semi-simple power-
associative normed algebras. Let us recall that this has been done in [79] ]
for a weak type topology. Here we solve this problem with a Banach-type
topology.

II BANACH-POWER-ASSOCIATIVE SYSTEMS

WITH UNIT AS ORDER-UNIT SPACES

Let us introduce an order in j~ with the help of the square map.

PROPOSITION 11.1. 2014 If j~ is a Banach-power-associative system, then
.~,12 is a closed proper convex cone inducing
a partial order in j~, under H3) only if j~ has a unit.
Proof - Let us first prove that

= ~ 03BB for some 03BB ~ ~A~ and any B ~ A, ~B~ = 1 }
= {A I ~,’~ - A I I ~ ~ for some ~, &#x3E; II A !! } if j~ has a unit.

In fact, if A=C2 with C E C(A), then If moreover ~, &#x3E;- II I A I I and
II B II = 1, then

=  max = max {~ =~;

if there is a unit, !HH - A II = II D2~ s II D2 + C2 II = II D2 + A II = /.
with the help of Proposition 1.10 and H3). Finally, if this last property
is true, let D = A/~, - B2 : as II D II  1, proposition 1.10 allows to choose B
in C(A) such that II B II = 1 and B2 + D = C2 with C E C(A). Then
A = ~,(D + B2) = (~C)2 where ~C E C(A). The set ~2 is

obviously a cone, proper because if A2 = - B2 E j~ ~ { 2014 ~2 ~ , then
II A2~ = II B211 A2 + B2~ = 0, closed thanks to the preceeding cha-
racterization Let us end by proving its convexity. If A, A’ E j~~, then
II ÂB2 - A II - ~ and II ,uB2 - A’ II for some ~, &#x3E;- II A II, ~ ~ &#x3E;- II I
and any with II B~ = 1. Then, if 0  ’[  1,

which proves that 

II
We are now in position to give an order-unit space characterization

of Banach-power-associative systems with unit, paralleling the one for
J-B algebras [6] ] [77] ] that will give us the opportunity of proving the
equivalence of H3) and H3). For definitions, see ( [3 ], Chapter II).

PROPOSITION 11.2. 2014 If j~ is a Banach-power-associative system with

Vol. 43, n° 2-1985.



218 B. IOCHUM AND G. LOUPIAS

unit D, then d is an order-unit space whose order-norm coincide with
the given one and such that

Conversely, if j~ is a real norm-complete order-unit space with order
unit D and a square map satisfying (*) and inducing a product and a power
operation such that 02 = = A,A2.A2 = A4, Am . ( - An) _ - (AmAn)
and the square map is continuous in C(A), then j~ is a Banach-power-
associative system with unit. Similarly, if the square map is not required
to be continuous but A . ( - B) = 2014 (A. B) for any A, then j~ is a

Banach-power-associative algebra with unit.

Proof 2014 If j~ is a Banach-power-associative system with unit, we get
the result by using the functional representation of C(A). Conversely, if

1,  1, then ± B)/2!! ~ 1, which is equivalent to

- ~ ~ (A ± B)/2  t Thus 0  ((A ± B)/2)  ’0 in such a way that

-t ((A+B)/2)~-((A-B)/2)~t and ~((A+B)/2)’-((A-B)/2!! ~ 1.
From this we deduce that !! C2 - D211 ~ C211 , II which

proves H 3). Assume next that ~ A2~ ~ 1, or else that 0  A2  t Then
thanks to the remark following corollary 1.6,

while

since, by (*), all squares are positive, which implies that ~A~2 ~ 1 and,
II

COROLLARY II. 3. Let j~ be a Banach-power-associative system with
unit. Then H3) and H3) are equivalent on j~.

Proof 2014 Because of Proposition I. 8, this will be a direct consequence
of Proposition II.2 if one remarks that the first part of its proof, relying
on the functional calculus on C(A), is true only under H3) (see the proof
of proposition 1.10).
We can deduce from Proposition 11.2 another characterization of

Banach-power-associative systems with unit which relies on the fact
the dual j~* of an order-unit space ~ is a base-norm space with base the
state space ~(~/) of (necessarily positive) continuous linear functionals !/
on A such that = 03C8(1) = 1 ( [3 ], Chapter II, paragraphe 1 ).

COROLLARY 11.4. - Let j~ be a real Banach space equipped with a
square map and a unit for the induced product. Then A is a Banach-power-
associative system with unit if and only if C(A), the smallest closed subspace
of A containing A E A and H, and stable under the square map, is, for any

Annales de l’Institut Henri Poincaré - Physique theorique



219BANACH-POWER-ASSOCIATIVE ALGEBRAS AND J-B ALGEBRAS

A E j~, a Banach-power-associative system for the induced product. Then
C(A) turns out to be a Banach-power-associative algebra.

Proof Remark that C(A) is an order-unit space by Proposition II.2.
Let J(A) be the set of continuous linear functionals 03C8 on A such that

=~)= 1, ~(A)&#x3E;0, ~/r E ~(~) ~ . If 
then A E A + if and only if A ~ C(A)2 because, by the Hahn-Banach theorem,
any state on C(A) is the restriction of elements of ~(~/). Using the remark,
it turns out that is a proper convex cone turning j~ into an order-unit
space, complete for the given norm, and satisfying to all conditions of

Proposition 11.2. The converse is trivial. tt
The problem of defining a square map on an order-unit space as assumed

in Proposition 11.2 can be solved positively (see V. 4.1).

III. ADJUNCTION OF A UNIT

If j~ is a Banach-power-associative system without unit, we can define
a unitization process, inspired from [26 ].

LEMMA 111.1. - Let ~ be a Banach-power-associative system with
unit and R a Banach-power-associative subsystem with the same unit.
Any positive linear form 03C6 on R is the restriction of a positive linear form
on A with the same norm. If A has no unit, the same is true for every

Proof The first assertion is just an application of the Hahn-Banach
theorem on a base-norm space while the proof of the second one is identical
to ( [26 ], theorem 2 . 5). II

LEMMA III.2. Let j~ be a Banach-power-associative system without
unit, ~ _ ~ x !R, A E j~ with C(A) ~ Co(X), X = the one point
compactification of X, and ’0x the function constant and equal to one on X.
Defining an order on A by setting (A, /)) 2 0 if and only if A + is

positive as an element of C(X), we get a partial order relation on d extending
the one on A and turning A into a norm-complete order-unit space with
order-unit ’0 = (0, 1), the order-norm extending the one on ~/.

Proof Let us first show that the positivity condition induces a partial
order relation by proving that it is equivalent to the next one : (A, ~,) &#x3E;- 0

if and only if ~, 2 0 and, given E &#x3E; 0, there exists some Ae E ~2 such that
II  ~. + E and A + 0 (it is easy to check that it is in fact a par-
tial order relation on j~). Of course if A + ~’~ ~ &#x3E;- 0, then ~, 2 0

because If the Jordan decomposition of A in C(A) is A = A + - A -,
we choose Ae = A - for any E and (A, ~) &#x3E; 0 according to the new definition.

Vol. 43, n° 2-1985.



220 B. IOCHUM AND G. LOUPIAS

Conversely, let (A, ~,) &#x3E;_ 0 according to the new definition, ~p a state on C(X),
its restriction to Co(X) considered as an ideal its norm pre-

serving extension to A according to lemma III. 1, and 03C8 the extension
of tf 1 to d according to + /1 where (B, /1) E d. Then
!/ is positive on A with respect to the new order because if B + BE &#x3E;- 0 and
II Be 11 /1 + 8, then ~((B,~))=~,(B)+~&#x3E;~-~i(B,)&#x3E;~-!~J!(~+~)&#x3E;~8
for each 8. Hence 03BB)) = + 03BB1X) ~ 0 for any state 03C6 on C(X),
which means that A + &#x3E;_ 0 in C(X). Using the functional calculus
in C(X), it is straightforward to check that D = (0, 1) is an order-unit, that
the order relation is archimedean and extends the initial one on j~, that
the order-norm on A extends the initial one on A. Finally, d is complete
because so is j~. II

PROPOSITION III. 3. - Let j~ be a Banach-power-associative system
without unit. Equipped with the product (A, ~,)(B, ~u) _ (A . B +,uA + ~B, ~,,u)
and the order-norm, d is a Banach-power-associative system with unit
D = (9, 1) and positive cone A2. Any state on A is the restriction of a state
on j~.

Proof 2014 It is clear that all the required algebraic properties in the second
part of proposition 11.2 are satisfied in d because the product on A
extends the one on j~. Moreover, as 2014 1]  (A, ~,)  ’0 is equivalent to
- Dx  A + ~,’0 X  ’0x we get that 0  (A, ~,)2  ’0 and ~+ - ~2. Finally
the square map is continuous in C((A, 03BB)) because if the sequence {(Ai, 03BBi)} i~N
tends to (0, 0) in C((A, /))) tends to 0 in C(A) 
tends to 0 in [RL This is so because, for any E, there exists iE such that

&#x3E; 0, -  (Ai, ~,i)  /1~ }  8 for i &#x3E; iE, or else that

where E = ~ }). In particular, as =  G

which means tends to 0; and the same is true for Ai. Any state
in A can be extended to a state on A by a procedure identical to the exten-
sion of t/11 1 to 03C8 in the proof on lemma III. 2. II

I V . THE BIDUAL

OF A BANACH-POWER-ASSOCIATIVE ALGEBRA

Thanks to the Peirce decomposition of a Banach-power-associative
algebra with respect to an idempotent, we get (see [22] ] V. 1 and V. 2,
Lemma 5.2).

Annales de l’Institut Henri Poincaré - Physique theorique
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LEMMA IV 1. Let j~ be a Banach-power-associative algebra and P, Q
two idempotents such that P. Q = 0. Then { P, A, Q } = 0 for any A in j~.
Thus by a spectral argument it is easy to obtain the Jordan identity

{B, A, B2 } = 0 in j~ if j~ has sufficiently many idempotents. So it is

natural to investigate the bidual of ~/.
Remark first that if j~ is a Banach-power-associative algebra with unit,

~* * is a complete order-unit space which is order and norm-isomorphic
to (Bounded real affine functions on S(d)). Moreover

( see [3] II. 1).
We are in position to prove that the bidual ~* * is also a Banach-power-

associative algebra using the argument of [10 ].

PROPOSITION IV. 2. - Let j~ be a Banach-power-associative algebra.
Then A** is a monotone and w*-complete Banach-power-associative
algebra with as a separating set of normal states (i. e. : VqJ E 

lim = 0 for any increasing net in j~** with 0 as least upper bound

where is the w* extension of ~p to j~**).

Proof Assume first that ~ has a unit. For any ~p E S(d), let (A, B)~,
the bilinear form on A defined according to (A, B). By a
Cauchy-Schwarz-type argument, (A, B)~ ~ (A, so that

N = {A E ~ ; (A, = 0} is a subspace of j~ such that is a real

prehilbert space whose completion will be denoted If is the map
-+ ~/N c HqJ’ (A, and

so that ~~03C6~ I  1. The bitransposed ~**03C6 is a norm-conserving and 
nuous extension of from A** to For any pair S, let

= (~**03C6(S), ~**03C6(T)): it is a real function on S(A), separately w*-conti-
nuous in Sand T. If A, c A**, fA,B is real, affine on and, by
w*-density of A into A**, the same is true for any S, T E A**. As moreover

is bounded !! T ~ there exists, thanks to the remark above,
a unique element, denoted S . T, in ~* * such that = ~(S.T). This
« product » in A** is commutative, separately w*-continuous and extends
the one in j~. Hence the identity

(which can be shown to be equivalent to A . A == A through a lineariza-

Vol. 43, n° 2-1985.



222 B. IOCHUM AND G. LOUPIAS

tion process ( [22 ], Chapter V, Paragraph 1)) remains valid in j~** and
insures the validity of all hypothesis of proposition II.2, but the implica-
tion (*). T 2(~P) = fT,T(~P) - ~ ~ ~~ *(T) ~ ~ 2 - ~ ~ T ~ ~ 2  1= ~(’~ ) _’~ (~)
and 0 ~ T2 - t Finally, A** is monotone-complete because so is 
and w*-complete by duality. On the other hand, separates j~** and

any ~p E can be extended, through bitransposition, to a w*-continuous
positive linear form ~p* * on ~* *. is an increasing bounded net in
~* * = with least upper bound 0, then tends to 0 and also

03C6**(T03B1), which means that is normal. If now A has no unit, let A = A x !R
as in Chapter III: A is a closed subalgebra of A and through bitransposi-
tion, A** is a w*-closed subalgebra of A**, monotone-complete because

is an increasing bounded net in ~* * with least upper bound T
in A**, then tends to which means tends w*-conti-

nuously to T, so that T E A**. Finally, let 03C6 E S(A),  its extension as an
element according to proposition 111.3, ~p** its extension to ~**
and its restriction to ~** : ~p is normal because, as seen above, an

increasing bounded net in j~** c ~** has its least upper bound in j~**.
II

Using standard arguments ([11] ] [20 ]), we get

COROLLARY IV. 3. - Let ~ be a Banach-power-associative algebra.
For any A E ~**, let W(A) be the w*-closed subalgebra generated by A

if it exists). Then W(A) is a monotone-complete real Banach-algebra.

V BANACH-POWER-ASSOCIATIVE ALGEBRAS
AS J-B ALGEBRAS. CONSEQUENCES

We can now prove the converse of proposition I.12:

THEOREM V .1. A Banach-power-associative algebra is a J-B algebra.

Proof - It is enough to prove the Jordan identity in ~* *. As W(A) is

monotone-complete, W(A) ~ Co(X) where X is a stonean compact space,
which means that can be approximated uniformely by finite

linear combinations of orthogonal idempotents in W(A) ( [20 ]). But for
such elements and any B in j~,

The Jordan identity { A, B, A 2 } = 0 follows by continuity. ))t

Annales de l’Instiut Henri Poincare - Physique theorique .
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As a by product we get the following definition of J-B algebra, of course
equivalent to the usual one since we have proved 
is redundant (Prop. I.9). This fact was first noticed by Shultz without
proof f2~].

COROLLARY V . 2. A J-B algebra is a real Banach space with a square
map inducing a product such that :

the last axiom being equivalent to ~A2~~~ A2 + if there exists a
unit.

COROLLARY V. 3. Let j~ be a real Banach space with a bilinear power-
associative product (not necessarily associative) such that

Then A is a Jordan algebra for the symmetrized product, and then a
J-B algebra.
There are many connections between the order structure and the product

structure in a Banach-power-associative system. We list in the following
some of them, but we introduce first

DEFINITION V . 4. Let (j~, j~, H) be a complete order unit space. A
square is said to be associated if it satisfies the condition of proposition II. 2.
In particular ~ + - ~ A2 ~ A E j~ }.
Suppose (~, ~ +, ’~ ) is given, then :

CONSEQUENCE V.5:
V . 5 .1) There always exists on A an associated square ( [18 ]) : if A ~ A

and j~A is the vector subspace generated by ’0 and A, define ~A 
Then ~A , H) is a two dimensional Banach lattice, thus isomorphic
(for the order and the norm) to (continuous functions of the
Silov boundary of AA+ ( [21 ]), and that space is a Banach-power-associative
system for the square of functions.

V . 5 . 2) If the induced product associated to an associated square is

bilinear, ~* * is a J-B-W-algebra by the previous theorem and [10 ]. Thus
the closure of (~**)+ for the deduced norm of a self polar form associated
to a normal state is a facially homogeneous self dual cone which is inde-
pendent of that form ([12] VII 1.1).
V. 5 . 3) Note that the bilinearity is not related to the two previous geome-
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trical properties : let X be a set such that card X = 3, j~ = C(X), ~ + the
positive functions and ’0 : X -~ 1 ; then (~, j~, D) has two structures of
Banach-power-associative system, the former being bilinear, the latter

being not ([2~]). Thus the bilinearity is not a global notion.
V. 5 . 4) In 1) and in the counterexemple of Sherman, ~A is a two-dimen-

sional associative J-B-algebra, thus isomorphic to C(X) where card X = 2.
More generally if an associated square is quadratic (i. e. dim = 2

then C(X) with card X = 2 ([11] ] 3 . 2 . 2).
V . 5 . 5) If is strongly spectral ( [3 ] [4 D (i. e. the associated square

is given by a spectral decomposition), then the bilinearity is equivalent
to elliptic or [P - P’, Q - Q’]H = 0 for all P-projections P and Q
( [4] ] [13 D.
V. 5 . 6) There exists up to an isomorphism at most one bilinear product

for an associated square on (~, ~ +, ’0 ) : in fact every linear bijection
preserving the order and the unity is a J-B-isomorphism ( [16 ] with the
same proof) and the previous theorem gives the claim.
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