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Maxwell’s equations
in the Debye potential formalism

by

F. FAYOS (*), E. LLANTA (**) and J. LLOSA (**%)

Grup de Relativitat de la Seccio de Ciéncies
de P'lInstitut d’Estudis Catalans

ABSTRACT. — We propose a method for computing the electromagnetic
test-field created by a given distribution of charges and currents using the
Debye potential formalism in curved space-times. All this framework
has been applied explicitely to the Schwarzschild case.

REsuME. — On propose une méthode de calcul du champ électromagné-
tique créé par une distribution donnée de charges et de courants en utilisant
le formalisme du potentiel de Debye dans un espace temps courbe. Ce cadre
est appliqué explicitement au cas de Schwarzschild.

I. INTRODUCTION

The advantages of the Debye or two-component Hertz potential for-
malism for computing the electromagnetic field in a source-free region
in curved space-times was presented in Cohen and Kegeles work [I].
They showed that the Hertz formalism could be extended to all curved
space-times, and that the Debye formalism could be extended to every
algebraically special geometry, in the sense of Petrov, which admits a shear-
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196 F. FAYOS, E. LLANTA AND J. LLOSA

free congruence of nul geodesics along the repeated principal direction
of the Weyl tensor (in the electromagnetic test-field approximation).

In this work, we propose a way to incorporate the part related with the
electromagnetic field sources into this formalism in such a way that it
is possible to compute the Debye potential created by a given distribution
of charges and currents and, through it, the corresponding electromagnetic
field. We shall see that in the space-times where the source free Debye for-
malism can be applied, this extension will also be feasible.

Our approach is based on a generalization to curved space-times of the
potential current formalism introduced by Laporte and Uhlenbeck [2],
and used by Nisbet [3], for the Minkowskian case. Stephani [4] also pre-
sented a method to deal with the Maxwell equations with sources in the
Debye potentials formalism in General Relativity. However, our approach
presents the advantage of stressing the geometrical meaning of the objects
we are dealing with; this makes our procedure clearer than Stephani’s
and also easier to handle from the computational viewpoint.

In part II we prepare the Debye potential formalism, by using the exte-
rior calculus in Riemannian manifolds [5], in order to obtain the complete
differential equation for the potential in the Newman-Penrose (NP)
framework. The stream potentials and the 1-forms associated with the
gauge transformations of the third kind, which were already present
in the special relativistic treatment of the problems, are generalized to
curved space-times and their relation with the electromagnetic 4-current
will be shown.

In part III, we explain how to compute the stream potential from a
given 4-current. Finally, in section IV we will apply this method to the
Schwarzschild space-time.

II. MAXWELL’S EQUATIONS,
HERTZ’S AND DEBYE’S POTENTIALS

The Maxwell equations in the framework of General Relativity and
using the differential forms language can be written as

df=0 2.1aq)

Of = — 4mj (2.1b)

where f is the electromagnetic tensor (a 2-form), j the electromagnetic

current (a 1-form), d the exterior derivative operator and ¢ the coderiva-

tive [5] [6].
Using the Poincaré lemma in (2.1 a) [7] we can define a 1-form A (four
potential), related with f by f = dA. The Lorentz gauge can be written as

SA =0 (2.2)
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MAXWELL’S EQUATIONS IN THE DEBYE POTENTIAL FORMALISM 197

and the Maxwell equations boil down to the following system of second
order differential equations
AA = — 47j (2.3)

where A = dé + dd is the Laplace-Beltrami operator. Using again the
Poincaré lemma in (2.2) we can define a 2-form =, called the Hertz poten-
tial [3] such that

A =on (2.4
The four-current satisfies the continuity equation
0j=0

and so, it is possible to find a 2-form g, called the stream-potential [2] such
that

4nj = dq 2.5
Inlserting (2.4) and (2.5) into (2.3), we obtain
0[At +q] =0 (2.6)
whose most general solution is
An + q = 6G

where G is an arbitrary 1-form, and « ~ » is the Hodge operator [5].
However, the new stream potential ¢’ defined by

q’=q—5G

generates the same 4-current as q.
Therefore, we can write without any loss of generality that the solution
of (2.6) is
At +qg=0 2.7

which is the equation that the Hertz potential has to satisfy.
The steps that have to be carried out in order to find the electroma-
gnetic field f created by a 4-current j are the following:

i) From a given 4-current j one has to find the stream potential g, as
a particular solution of (2.5).

ii) From (2.7) we can compute the Hertz potential © corresponding to
the stream potential g once the suitable boundary conditions have been
given. The latter are derived from those of the actual physical problem
(generally defined in terms of the electromagnetic field components).

iii) Eventually, we can obtain the electromagnetic field by combining
the A and = definitions. That is to say:

f=don (2.8)
To solve (2. 7)is still very involved (as much as to solve (2. 3)). Nonetheless,
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198 F. FAYOS, E. LLANTA AND J. LLOSA

the fact that physics is contained in the electric and magnetic fields and
not in the Hertz potential shall give us a lot of freedom, that will allow
us to simplify the problem as we will see in what follows.

Let us consider the following transformations:

' =n+6l +dA 2.9)
¢ =q+6G+dL 2.10)

where I', A, G and L are 1-form. These transformations leave eq. (2.7)
invariant.

AT’ +q' =0 (2.11)
provided that the following relations between G, L, T and A

AT + G =d¢, (2.124a)

AA + L =dg, (2.12p)

are fulfilled (where £, and &, are two arbitrary functions).
In this case, the electromagnetic tensor will be obtained by substituting
(2.9)in (2.8) N
f=4dé[r’ — (0T + dA)]

but, taking into account the properties of the operators, d and J and (2.12)
we can easily derive the following relation

f=d[on’ + L] (2.13)

Appealing to the Hodge operator properties, the space of 2-forms with
complex values on .#, can be separated in direct sum of the self-dual
and antiself-dual 2-form subspaces, corresponding to the eigenvalues —i
and +i of the Hodge operator, respectively.

So, Vr e A%(M,, C) we can write

: 1 * o
7t=§(71’ + @) (2.14

where 7 = m + i7 is the self-dual part and # = 7 — i7 the anti-self dual one.

In particular, a real 2-form is completely determined when one of the two
parts is given (for instance the self-dual one). Indeed n € A2(#,, R) = n=r.
Using the decomposition (2.14), it can easily be seen that eq. (2.11) is
equivalent to

1 * 4 * 1 o o
2 [An" + g + (dQ)*] + 2 [An" + g + (dK)°] =0

where Q = (L — iG) and K = Q.
The first three and the last three terms are respectively self-dual and
_ antiself-dual bivectors. We can split (2.11) in two equations: one for the

Annales de I’Institut Henri Poincaré - Physique théorique



MAXWELL’S EQUATIONS IN THE DEBYE POTENTIAL FORMALISM 199

self-dual part and the other for the antiself-dual one. The latter will be
the complex conjugate of the former. So,

AV + g+ (@dQ*=0 (2.15)
AT’ + g+ (dK)P =0 (2.16)

and one has to solve only one of them (the first one for instance) since g
is the complex conjugate of 7’
The electromagnetic tensor of (2.13) will be now

1 . .
f= 3 d[or’ + Q] + complex conjugate 2.17)

Working in the framework of the NP formalism [8] and after choosing

the null tetrad (m, m, I, k) [9,§3.2] we have automatically a basis of the

bivectors space we will denote by: U, W, V, U, W, V [9, § 3.4] respectively,

Z,7';1,] =0, 1, 2). The first three elements become a basis of the self-

dual bivectors subspace and the last three a basis of the antiself-dual one.
The expression of the Hertz potential in this basis is

2 2
1 1N
' = 7'+ Z'.
"7 2"" 22""
r=0 r=0

Now we can wonder if it is always possible to choose Q so that the cor-
responding Hertz potential (which is the solution of the differential
equation with the suitable boundary conditions) will have a unique non-
null component. That is to say

= yZ! (2.18)

The O-form ¥ is the complex Debye potential which coincides with the
two real Debye potentials of the classical electromagnetism [3]. For
certain types of space-time, Cohen and Kegeles showed that in the study
of the free fields, this-choice was possible, We shall have to study the res-
trictions that arise when we introduce the stream potentials. Inserting (2. 18)
into (2. 15) we obtain

YAZNe + (AYZy — 207 Zhe + G + Q)Y = (2.19)

This equation (which holds for self-dual bivectors) is equivalent to say
that the projections of the left-hand side on the three elements of the bivec-
tor basis (Z',J = 0, 1, 2) must be zero. But, since there is only one value
of J =1, such that { Z', Z # 0 (*), there will be only one projection
that will contain the second derivatives of ¥ (due to the term (Ay)Z).

1
(*) ITA,BeA% (A,B) = 5 AuB.
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200 F. FAYOS, E. LLANTA AND J. LLOSA

The other two will only contain first derivatives and we shall have to select
a suitable Q in order to make these two projections vanish. The first equa-
tion, which will include second order derivatives of i, is called the « Debye
potential equation ».

The 1-form Q can be splitted in two parts: the first part Q, will have
to cancel the parts that depend on y and the second one will do the same
with g, so that

Q=Q+Q

The existence condition of Q, and Q, relies on the choice of 7’ we make,
for, according to (2.18). Z! can be any of the three bivectors of the basis.
For a given Z!, the two equations the 1-form Q, must satisfy are:

Y(AZLZR Y —Z(VZLZ0 Y + (ZdQy,ZP Yy =0  (2.20)

“and the two of Q, are
(q+@dQ)%Z%y =0 2.21)
where Ij, can take the two values different from I,.

The Debye potential equation will be then obtained by inserting the
values of Q, and Q, in the expression

CAWZY + g+ [@dQ*,ZP > =0 (2.22)

From now on we will use NP formalism [9,§ 7] to write all expressions.

a) If we choose = YU it is easy to show that if the space-time is such
that the spin coefficients 4 and v and the Weyl tensor component ¥ are
zero [8] then Q,, exists as a solution of the two equations (2.20) and is:

Qy, = 2(— um, + nl. )y (2.23)

As far as Q, is concerned, one can see that if we make Q) = Q; = 0 and
taking into account that A = v = W5 = 0, the two equations (2.22) become
reduced to

G+2A=-+T—a—PQi=0 (2.24 a)

— g1 +(=0-B+a+n+7)Q2+(D—p—p+e+&Qi=0. (2.24))
The first one is a first order differential equation and thus its compatibility
is assured. Since we can get Qj from the first equation, the same reasoning
is valid for the second one. Therefore, if we take Q! = Q3 =0 and Q;

and Q} are particular solutions of (2. 24), equations (2. 21) become identities.
With these values of Q, and Q, we may write the Debye potential equation

{(D—e+E—pNA—2y—p)—(6—0—B+T)0—20—7) } Y=

1 _ _
=3 qo+(—D—2+e+p)Q2+xQ;. (2.25)
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b) If we make the choice 7’ = yW we will have to carry out the same
steps as in the previous case and the Debye potential equation will be

{~(A—y=7+E-pD+(+p-a—T-n)} Y=

1 o 5 B : .
=5 {q—(—A+pu—E+7+7)Qi—(D—p+p+2+eQ; } (2.260a)

where, now Q, is the following
Q, = 2A— mm — wm + pl + pk)y (2.26 b)

with the condition 4 = v = y = ¢ = 0. As far as Q, is concerned, taking
into account the previous condition and making Q) = Q7 = 0, the other
two components will be a particular solution of the equations

1 —_ —
S@at(=3+T—a—pQi=0 (2.274)
1

qu—(—5+7‘z+ﬁ+a)Q3=0 (2.27b)

¢) When " = y/V we can use « the modified calculus » [9, § 7.3 ] applied
to option a). The Debye potential equation is:

{(A=T+y+ D +2e+p) - +o+B—-T)0+2p+7) } ¥ =

1 _ _
= -0 (-A+7-y-BQ —vQ;. 2284

where Q, takes the value
Qy = 2pm — k)Y (2.28b)

with the condition that y = ¢ = ¥; = 0. A particular solution of (2.21)
for Q, can be obtained making Q = Q; = 0 and taking Q) and Q}
as particular solutions of the following equations

1
qu—(—é—ﬁ+ﬁ+R)Q2=0 2.29a)

— g+ O+ +T+TQ +H(—A+p—F+T+7)Q; =0 (2.29b)

III. STREAM POTENTIALS

The calculation method of the stream potential g as a particular solu-
tion of (2.5) has to be deeply studied since it is a crucial step in the whole
process.
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If we express the equation in coordinates we obtain
0% = j"4n  a,$=0,1,2,3. (3.1)

where §=./—gq®, J*=—-g* and g=det(g,)

As we are only searching for a particular solution of this equation we
will choose g = 0 (i,j = 1, 2, 3). We may write (3.1) as

470 = 9, (3.2qa
4njt = 9y (3.2b)

Since in what follows we will use the Fourier transform in order to solve
the Debye potential differential equations, we are interested in obtaining
the Fourier transform of the stream potential g components which are
different from zero.
Let us expand them .
Fxr) = j dwe™ [, x¥) (3.3 )

— 0

+
3%x" = f dwe™ ' §%w, x*) (3.3b)
Inserting these expressions in (3.2 b) and taking the coordinate associated
with the subindex « 0 » as the t variable used in the Fourier transform,
we obtain : )
~0i Loy i
i 3%, ¥*) = — ji(o, x*) + Ki(x*)d(w) (3.4
v 9]
where K' are three functions that will be determined by inserting (3. 4)
in (3.2). Working along these lines and isolating the term that contains K'

we obtain
+ o0

[0K(x*)1(w) = —f dte"“"[]’"(x") - éaof‘)(x”)] (3.5)

— 00
where we have used the inverse Fourier transform and the continuity
equation.

To interpret this last equation we will place ourselves in two different
situations:

a) If we assume that j%(x*) = j%w, x*)e"*** the right hand side of (3.5)
is zero and we can thus take K’ = 0.

b) If, on the contrary, j(x*) = A(x*) (3.5) becomes:

ORI = = /—gA()

and, therefore, K(x*) will be a particular solution of this equation.
The appearance of the term K'(x*) in the stream potential Fourier
transform expression is, thus, related with the static part of the four-current
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component j°; that is to say, it is related with the static part of the charge
density.

Finally, as far as Q, is concerned it is necessary to say that the space-
time has to be specified in order to try to find a particular solution of
the differential equations that have to be satisfied (these equations have
been written in the previous section).

IV. DEBYE POTENTIAL
IN A SCHWARZSCHILD SPACE-TIME

Now, we will study the particular case when the space-time, in which
the charge and current distribution moves and in which we will measure
the electromagnetic test-field, is a Schwarzschild spacetime with the metric:

ds? = a~'dr* 4+ r}(d6? + sin? 0de?) — adt® 4.1

where a=1-— -

The null tetrad we will use is the usual one:

m* = V[.r{omsne}

(1,-4,00} (4.2

=

k*={a"110,0}.
The spin coefficients different from zero are:
1 M a

- = =—— cotgf (4.3
p=—=3 1=—33; K T q0 (4.3)

o= —f=—

1
2\/§r
a) Homogeneous equation.

We will study the Debye potential differential equation when g is zero
and so we can choose Q, to be also zero.

In all three options the Debye potential satisfies second order partial
differential equations. Using the null tertrad (4.2) one immediately obtains
the differential equations, in terms of the coordinates (t, r, 0, @), which
can be decoupled.

Appealing to the behaviour of the self-dual bivectors basis elements U,
V, W under rotations we have that for every option, it will be advisable
to express the Debye potential angular part in terms of the spin-s spherical

Vol. 43, n° 2-1985.



204 F. FAYOS, E. LLANTA AND J. LLOSA

harmonics with the suitable spin weight [/0] [1/], namely s = — 1 for a),
s =0 for b) and s = + 1 for ¢).

This is the reason why, from now on, with the subindex s in the Debye
potential we will denote what option we are working in. The expansion
we propose is then

(e, r, 0, p)= J_ do Z im0, 7)Y 10, @)™ " (4.4)
I,m

Inserting (4.4) into (2.25), (2.26) and (2.28) (making ¢ = Q, = 0) and
for a given value of I, m and w we obtain the ordinary differential equations
for the radial parts (%,,(w, r) of the potential [16] [12]

dZ
7 9 + aZ - Vs(wa y) sUlm(w> y) = 0 (4'5)
dy?
where
" opin(— —1 4.6)
= — n|{—— .
Y ™
LA S W @.7)
= s — isa )
x3 4x* x?
r
X =—), o =2Mw
2M

and the three new unknown variables (U,,(w, r) are related with the former
by
x —s/2
s'%lm(wa X) = <-) sUlm(wa X) (4 8)
x—1

At first sight, equations (4. 5) have a simple appearance but this is so because
the complicated part is in the functions V,, which will be called effective
potentials.

In the case s = 0, we have the special feature that V, is a real function
of r and so gives us a simpler differential equation. On the other hand,
this equation has been studied using numerical methods [/3], the JWKB
approximation [/4] [/2] [I5] or by means of series expansions [I6].

In the other two cases s = + 1, it is difficult to find solutions (for instance,
by means of the JWKB method) of (4.5). Nevertheless, we can avoid the
straight search for the solutions, since, as we will see in what follows, it
is possible to find them from the s=0 case solutions.

In the source-free case, the electromagnetic tensor can be obtained

f=%{d[57*t’+Q¢]+c.c.}

For each choice of '(_ . U, oy . W, ;¥ .V) we can find the associated 1-form
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~sQy (where the subindex s points out in what option we are working)
by following the path described in chapter II
The free options have to give the same electromagnetic tensor f. Therefore
we can write the following expressions:
dlo(-1¢.U) + _1Qul + c.c. =d[d(o¥. W) + oQ,] + c.c. 4.9a)
do(+1¥. V) + +1Qul + c.c. =d[8(o¥. W) + oQ,] + c.c.  (4.9b)
do(-1¢.U) + —1Qyl + c.c.=d[6(+1¥. V) + +1Qu] + c.c. (4.9¢)
Using the expansion (4.4) of the Debye potential g, together with (2.23),

(2.26 b) and (2.28 b) we get from (4.9 a, b) and for each value of [, m and w,
the following relations

1R, 1) = — 2/ 227 V2 D R, 7) (4.10)

1P, 1) = — J207 ParGg Ry, v) @4.11)
where

D=0, —iva';  DHw) = D - ) 4.12)

and from (4.9 ¢) we obtain the well-known Teukolsky identities in the
Debye potential formalism, which were developed by Pechenich, Kearney
and Cohen [I7].

To end up, it is easy to prove that the relations (4.10) and (4.11) are
such that if we start from two linearly independent solutions in the s =0 case,
02>, the two solutions ,%/;? we will obtain are also linearly indepen-
dent; the same happens for _ %>

b) Stream potential ¢ and 1-form Q, versus j.

In order to obtain the differential equation of the Debye potential in
the b) choice we have seen that the 1-form Q, has to obey the relations (2.21)
or the equations (2.27 a, b) if we take into account that we have chosen
Q; = Q? = 0. In the Schwarzschild space-time these equations are:

1
542 = 0Q; (4.13 a)
1 3

540 = — 0Q} (4.13 b)

To find a particular solution of these equations is very easy, since:

i) The differential operators 6 and § act only on the angular part and are
proportional to the operators & and & (when s = 0) of the spm—s spherical
harmonics [/1]. These relations are:

1 _ - 1.
0= ——0y=0; 0= ——205=0 4.14)

S Jor
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ii) The components on the null-tetrad of the 1-form Q, and the compo-
nents of the stream potential g on the bivector basis can be developed in
spin-s spherical harmonics:

Qax*) = L dwe™"t Z Qam(@, 1)sY1n(0, ) (4.15)
“ Im

9 (xll) = J' dwe_iw' 2 qllm(w, r)sYlm(ea ¢) (4 . 16)
— 00 Im

Inserting the latter expressions into (4.13) and appealing to the pro-
perties of the spin-s spherical harmonics we obtain:

Qim(w, 1) = — 4.17 a)

r
W qoim(®, T)

Qgim(w, r) = (4.17 b)

r
- W d2im(@, 1)

If we consider (3.4) we can write out:

Gom(®@, 1) = — 2 {éjlzm(wa r) + K*(r)d(w) }
q11m(w> r)= % {él:—ﬁtm(wa r)+ gflsm(a)’ r):l

+ 5(w)[— Kir) + ;’K?m(r)} }

(121m(60, r) =a { é]llm(wa 7') + Kllm(r)a(w) } (4 18)
where
Jimlo, 7 ) = Jdgs?lm(e’ (P)_] a(w’ x* ) .

Kl‘;n(w’ r ) = JdQsYlm(e, ¢)Ka(xk) .
and by substitution of (4.18) into (4.17) we, eventually, obtain

5 .
lem(w, r) = ;’_/17/_; { é]fm(w’ r)+ Klzm(r)(s(w) }

772

The problem is, thus, solved in a' Schwarzschild space-time. From a

gm(@, 1) = — ﬁ . { é'jllm(w’ r) + Kin(r)d(o) } (4.19)

Annales de I'Institur Henri Poincaré - Physique théorique



MAXWELL’S EQUATIONS IN THE DEBYE POTENTIAL FORMALISM 207

given four-current j we are able to compute the stream potential g by
using (4.18), and with (4.19) we can get the 1-form Q,. The procedure
shown in this section can also be used to solve the problem in choices a)
and ¢).

¢) Electromagnetic field.
The electromagnetic tensor f (a 2-form) can be developed
o B
f= 2 [$Z' + $Z'] (4.20)
From (2.17) we obtain
1 —
$o = —qu +2(— p + AOY — 8Q;.

1 _
¢, = —5{‘114'61"'(20“’5)5‘//}'

1 - —
$r=— 792+ 2Au+ Aoy — Q. (4.21)
One observer at rest in the gravitational field measures the electric
and magnetic fields:
Ea = f;tﬂuﬂ
1
B,= — 5 Saﬁyauﬂfﬁ 4.22)

where
wu,= -1 u*=(a"1%0,0,0)

B®u, = E*u, = 0

which may be expressed in terms of ¢,.

S | I | - o
E = E|:a‘1/2q>2m =3 a'?pom + ¢, c:| +c.c.
R 1 -1/24 = 1 12 4 = =
B=§ a ¢2m—ia ¢0m+¢1c + c.C.

where the 3-vector ¢ is the projection of the 4-vector — a~ /2] + 3 a'?k

on the space which is tangent to the spatial hypersurface, in the same way
that m, m, E and B are the projections of the four-vectors m, m, E and B.

V. CONCLUSIONS

In this work we have managed to connect the electromagnetic field and
its sources by using the Debye potential formalism. The introduction
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208 F. FAYOS, E. LLANTA AND J. LLOSA

of the source related terms does not modify the possibility of choosing
between the three orientations of the Hertz potential. The problem of
finding the electromagnetic field created by a given distribution of charges
and currents boils down to finding the solution of a non-homogeneous
second order differential equation and afterwards, obtaining the field by
straightforward differentiation of the potential. The homogeneous part
of this equation coincides with that of reference [1] and gives the Debye
potential associated to the free electromagnetic field. The remaining
one is the source related part and to obtain it for each four-current, the
only obstacle is finding a particular integral of a system of two first order
partial differential equations with two unknown functions. This has to
be done for each specific space-time.

In the Schwarzschild space-time case, we have developed explicitely
this formalism and obtained the complete differential equation of the Debye
potential. The treatment of the source related terms in option b) (in Chap-
ter II) has been specially simple due to the use of the spin-s spherical har-
monics, once the usual separation of variables in the NP formalism has been
made. Thus, from the knowledge of two linearly independent solutions of
the homogeneous equation, which satisfy the boundary conditions of the
particular physical problem, we are able to compute the potential through
the Green function method.

It is well known that the differential equation satisfied by the free Debye
potential in a Kerr space-time in option b) cannot be separated [/]. So,
if we want to develop our theory, at least at first order in the angular momen-
tum per unit of mass, a, we have to use option a) or c) (this will be made in
a forthcoming paper). When a is sufficiently small so that terms of order
higher than the first are negligible, but M is allowed to be large, Schwarz-
schild’s solution is the zeroth order of the Kerr’s one [I8] [/9]. Thus,
in this case, using a perturbative method we will be able to build the solu-
tions of the Debye potential homogeneous equation from the correspond-
ing solutions in the Schwarzschild case. But, these solutions, as we have
seen in chapter IV, can be obtained from the solution of option b).

Teukolsky’s treatment of Maxwell’s equations [20] shows that the
second order differential equation for the component ¢; of the electro-
magnetic tensor [2/] cannot be splitted through separation of variables
in the Kerr case. Therefore, in those physical situations when it is neces-
sary to know this component [/2], our treatment should be most convenient.
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