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ABSTRACT. — In an earlier joint paper with B. Simon, we defined a
notion of intrinsic ultracontractivity for Schrédinger operators, and
obtained a lower bound on the ground state eigenfunction which implies
it. In this paper we present a method of verifying this condition which
applies to a variety of particular cases. We also prove another generalization
of the uncertainty principle lemma which has been so important in the
study of ultracontractivity and other spectral properties of Schrédinger
operators.

REsUME. — Dans un article précédent en commun avec B. Simon, on
a défini la notion d’ultracontractivité intrinséque pour les opérateurs de
Schrédinger, et on a obtenu une borne inférieure sur la fonction propre
de I'état fondamental qui entraine cette propriété. Dans cet article, on
présente une méthode pour vérifier cette condition qui s’applique & un
ensemble varié de cas particuliers. On prouve aussi une autre généralisa-
tion du lemme exprimant le principe d’incertitude qui a été important
dans I’étude de I'ultracontractivité et des autres propriétés spectrales des
opérateurs de Schrodinger.

§1. INTRODUCTION

In an earlier paper [6], B. Simon and the author introduced a notion
of ultracontractivity which makes sense for a variety of second order
elliptic operators. In particular we considered the case of a Schrodinger

operator
H=-A+V
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182 E. B. DAVIES
on L%RM), where V is a non-negative potential in L. _ and H is assumed
to possess a ground state eigenvalue E with corresponding eigenfunction ¢
normalised by ¢ > Oand || ¢ |l = 1. From this operator one may construct
the intrinsic semigroup e~ on LARYN, ¢(x)?dx), where H = H* > 0 is
defined by N

H = U*H - E)U

and the unitary operator U from LA(RY, ¢%dx) to LA(RY, dx) is defined by
Uf=¢.f.

It is well-known that e~ ¥ is contractive on LA(RY, ¢*dx)forall1 < p < oo,

and we say that H is intrinsically ultracontractive if e maps L? into L~
for all ¢ > 0. It was shown’in [6, Th. 5.2] that this property holds if

— log ¢ < 6H + g(6) (1.1)

in the sense of quadratic forms on L*(RN, dx), for all 0 < § < 1, where
g(8) does not increase too rapidly as § | 0. In this paper we shall specify
for definiteness that g should satisfy the bound

gd) <a+bo™ 1.2)
for certain positive a, b, M.

Although the condition (1.1) is of a very general nature, its validity was
only confirmed in [6] for comparatively few cases. In particular if
V(x) = c¢|x|* where ¢ > 0 and o > 0 then by [6, Th. 6.1], (1.1) holds if
and only if « > 2. In this paper we present a new treatment of some of the
examples of [6]. We also prove uniform intrinsic ultracontractivity for
an example which necessitates the development of a generalized uncer-
tainty principle. Because of its independent interest this generalization
is given separately in Section 4.

We remark that (1.1) is equivalent to the construction of a function W
such that

p=>e v, (1.3
W < 6H + g(d). (1.4

In view of the recent discoveries by Agmon and coworkers [/] [2] [3] of
explicit upper and lower bounds to ¢ which are asymptotically nearly
equal as | x| — oo, it seems natural to consider (1.3) first and then to
check whether or not (1.4) holds. Our first observation is that it is fre-
quently easier to choose W so that (1.4) is only just true, and then to
check (1.3) by using standard subharmonic comparison inequalities. The
precise version we shall need is as follows.

LemMma 1. — Suppose that W : RN — R is continuous and satisfies

(@) W(x) > +0as|x| » o
(b) VW[ — AW = (V ~ B),
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in the distribution sense, outside some compact set K,
(e V<o

in the set K. Then
e V™ < ¢(x)
for all xe RN,

Proof. — Putting Q = RMK we see that = e~V satisfies y < ¢ on
0QuU { o} and Ay = Xy on Q where

IVW|? — AW =X > (V - E), .
Subharmonic comparison now implies that ¥ < ¢ on Q.
As a first application and for the sake of completeness we restate Theo-
rem 6.3 of [6].
LemMA 2. — If there exist ¢; > 0, b;e R and a; > 2 such that

a;, + 2 < 2a, S2a2
and

cllxl‘”+b1SV(x)Sczlx|“2+b2 (1.5)
for all xe RN, then (1.1) and (1.2) are valid.

Proof. — If we choose
W(x) =k|x|*7*

where ¢ > 0, then (1.4) holds, and Lemma 1 is applicable with
K={x:|x|<R}

provided ¢ is small enough, and R, k are large enough.

Lemma 2 suggests that the rate of divergence of V(x) as [x| » o
along rays through the origin cannot vary too much between different
rays. This is not correct.

Lemma 3. — Let H = — A + V on L¥R?) where
V(r, 0) = A@)™®

and A, B are strictly positive periodic C* functions on [0, 2z]. Then H is
intrinsically ultracontractive if there exists f > 2 such that B(6) > § for
all 0 e [0, 2x].

Proof. — We put
W = ¢(V* + 1)

where ¢ >0 and 0 < 1 < 1. Then if ¢ > 0 and 6 = c¢ we have

W < eV + ¢ 17D 4 1)
<OV 4+ oM h 4o
<OH + 670D 4 ¢
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184 E. B. DAVIES

so (1.4) holds. To prove (1.3) we verify the conditions of Lemma 1 when
Kis {x:|x|<1}.
Condition (a) is elementary. Also

VW = cAV*7lvV

and
AW = cAV*7IAV — cA(1 — HVA72|VV |2
SO
IVW |2 — AW > C2/’{2v2}.—2 | AYAYS '2 _ CAV}"_IAV
ov\?
> c2)2V2i-2 <6—> — cAVATIAV.
r
Now av
. — ABr® !
or d
and
10/ oV 1 0%V
AV=——\|r— |+——
r or <r 6r> r? 06>

=ABZ%B 24 2(A”"r®+2A'B’ logr.r®+AB” logr.r®+ A(B')*(logr)*.r?)
so
I AV | < Cer_l

if r > 1. For such r we conclude that

|VW|2 _AWZCZ/{ZAZ}.—Z'.(Z&—2)BA2B2r2B—2 —C},A)‘— lr(}.— I)Bcer—l

2AB—2 __ AB—1

>c2c,r cesr

where ¢, > 0. If we put

1 1
A 13+2
then 0 < A < 1 and
1 1
12B+2
SO
2\B>B + 2
and

[VW |2 — AW > V

for all r > 1, provided c is large enough. Since ¢ has a strictly positive
lower bound ifr < 1and W > ¢, condition (c) also holds if ¢ is large enough.
In order to prove contractivity theorems for multiple well Schrédinger
operators, it is useful to have a localized version of Lemma 1. In the following
lemma one chooses K; to be neighbourhoods of the various minima of V,
and chooses W; to have only one minimum and that one inside K.
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LEMMA 4. — Suppose W; : RN — R are continuous for 1 <i < M and
that they satisfy

(@) W{x) > + o0 as|x| - oo,

(b) | VW;|*> — AW, > (V — E), outside some compact subset K;,

(¢) eVt < ¢ inside K,

(d) min (W;) < oH + g(9)

for all 0 <6 <1, where g satisfies (1.2). Then — log ¢ < 6H + g(9)
so H is intrinsically ultracontractive.

Proof. — Lemma 1 implies that e™ Vi < ¢, so if
W = min W;

1<i<M

then e™W < ¢ and the lemma follows from (d).

§2. THE SEMICLASSICAL LIMIT

In order to prove uniform contractivity results in the semiclassical
limit a further extension is necessary. Let us suppose that

H}. = - A + V).
where 4 1 + oo and
Vi(x) = A2V(x/4).

We assume that V is non-negative and continuous and vanishes at x;
1 < i < M. We suppose that H; has ground state ¢, with corresponding
eigenvalue E; > 0. Then uniform intrinsic hypercontractivity of H;, as
A T + oo follows from the validity of the estimate

— log ¢, < 0H; + g(d)

for some 6 > 0 and all large enough A. See Theorem 6.5 of [6] for an earlier
treatment of this problem.

THEOREM 5. — Let W;: RN — R be continuous for 1 <i < M, and
suppose that the following conditions hold for large enough A > 0.

(@) Wi(x) > + oo as | x| - oo.
(b) There exists a; > 0 such that
| VWi(y) |2 — A7 2AWi(y) = V()

provided | Ay — Ax;| = a;.
(c) We have
e—lzwi(x/l) < e"‘"(b;,(X)

provided | x — Ax;| < a;.

Vol. 43, n° 2-1985.



186 E. B. DAVIES

(d) There exists 6 > 0 such that

,min Wi(y) < 6V(y)
for all ye RN
Then we have the form bound

— log ¢, < 0H,; + ,max ;.

Proof. — This is an immediate consequence of Lemma 4 if we put
Wiix) = PWix/2) + ¢,
Ki,={x:|lx—1x;|<a}.
The above theorem can be used to give a new proof of Theorem 6.5

of [6], which is more elementary in that it makes no use of functional
integration. To economise on notation we only consider one typical case.

THEOREM 6. — If
2

d
H, = e + xX(1 — x/2)?
on L%(R) then the conditions of Theorem 5 are satisfied with x; = 0,
x,=1,a,=a, =1 if we put

W, (x) = b(x* + x?)
for suitable b > 0, and
Wy(x) = Wy(l — x).

Proof. — 1t is trivial that conditions (a) and (d) hold for any choice of
b > 0, provided ¢ is large enough. By symmetry we need only prove (b)
and (c) for i = 1. Condition (b) states that | x| > A~' implies

b dx3 + 2x)? — A72b(12x% + 2) > x*(1 — x)*.
This follows from the bounds
b*(4x> + 2x)* > x*(1 — x)?
which holds for all xeR if b is large enough, and
b*(4x3 + 2x)* = A72p(12x* + 2)

which holds for all | x| > A~! provided b is large enough.
Condition (c¢) of Theorem 5 states that
e—b(x2+x4/}.2) < ec1¢;.()€)
if | x| <1 and 1 is large enough. This is a consequence of the fact [7]

that ¢,(x) converges to ke */? uniformly on compact subsets of R as
A — oo, where 0 < k < o0.
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We next turn to a completely new example which exhibits uniform
intrinsic ultracontractivity in a semiclassical limit. We consider the Schro-
dinger operator

H, = — A+ AXyxsp 2.1

on L%RN), as A —» + oo, where f > 0 and the function X satisfies

(H1) X is a non-negative C* function on RN,

(H2) X(x) = c|x|°forsomec > 0,p > 2and | x| > R, where 0 < R < o0,
(H3) There exist f, with 0 < ; < f# and « > 0 such that X(x) > f,
implies | VX(x)| > a. :

An examination of the calculations below shows that all of the above
conditions can be very much weakened without affecting the conclusions.
In particular (H2) can be replaced by a condition such as (1.5).

It is evident that H converges in the strong resolvent sense to H,, as
A 1 + oo, where H,, is minus the Dirichlet Laplacian of the bounded

open set
Q={xeRN:X(x)<p}.

Since both H, and H,, are intrinsically ultracontractive, one might hope
to be able to prove uniform intrinsic ultracontractivity of H; as A 1 + oo.
For this example one cannot hope to deduce the uniform bound

—log ¢, < 6H; + g(9) 2.2)
for all 0 < 6 < 1 and all large enough 4 from a bound
— log §; < 6iXyx>p + 8(0)
because such a bound would imply

$i(x) > e75@

for all xeQ, which contradicts the expectation that
lim ¢,(x) = 0

for all x € 0Q. For this example, therefore, we must not neglect the kinetic
energy term in (2.2).

Although the bounds of the following theorem are much weaker than
they need to be, they suffice for our purposes, and are simpler to compute
with than more accurate bounds.

TueoreM 7. — If X satisfies (H1-3) then there exists 0 < 74 < 1 such
that if A is large enough then the operator H, of (2.1) satisfies

CHLf f > 216 VS f)

Vol. 43, n° 2-1985.
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for all f e C®(RN), where

AX(x) if X(x) > 8,
_ AX(x) .
Vix) = m if By < X(x) < B,
0 otherwise

Proof. — We first observe that (H1-3) imply that Q is a bounded region
with C* boundary, so the conditions of Section 3 are all satisfied. Without
serious loss of generality we assume that f; is close enough to f so that

{x:py<X(x)<p}cQ. 2.3
The lower bound on | VX | implies that if f; < X(x) < f then
ao(x) < B —X(x) < p.
If feCZ(RY) then Theorem 12 implies

1 1
<Hf,f>2§<Hf,f>+§f AX| f 1Pdx

RN\Q
[ 1B f I 1
———d - X\ f 1A
.;Q/21+lﬁ0'2 x+2 RN\Q [fl *

(1 wXigP ] JX| f |2d
Jo 2 T+ BB — X7 7 2 fama ¥
[ X f?

1
> — = dx + - X 24
S T+ -%) 2Lm1'f'x

=

>

for some t5 > 0. The theorem now follows by using (2.3).
The above quadratic form inequality is the crucial result for our main
result concerning this example.

THEOREM 8. — If X satisfies (H1-3) then the operator H; defined in (2.1)
is uniformly intrinsically ultracontractive as 4 T + co.

Proof. — If we put o2
WA = Vl + 1)

where 0 < 6 < 1and ¢ > 0 are to be chosen later and V, is as in Theorem 7,
then
W, < eV, + cee™ 179 + 1)
=016V, + g1 4 ¢
<OH; + 07179 4 ¢

where ce = 1¢0. Thus (1.2) and (1.4) are satisfied uniformly as 1 1 + oo.
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We prove that (1.3) also holds uniformly by verifying the conditions of
Lemma 1 for the compact set

K={x:X(x)<B:}.

We first note that condition (a) of Lemma 1 is trivial. To check condi-
tion (b) for points x such that

Bi <X(x) <P
we note that at such points

W =c(f(X)' + 1)
where

t
f(t)=m

We see that f is an increasing convex function on [B;, ] whose derivatives
are

AL+ AB)
SO =T - op
and .
22
PR

R
Now using (H3) we see that
VW 2 — AW = | 0 f(X)°~ ! f/X)VX |* — 0 f(X)° ™ f/(X)AX
= (cB(0 — D fX)° ("X + 0 f(X)°~ (X)) | VX |?
> 02020C2f20_2(f')2 — C@Otlfo_lf' _ ngzfo—lf"
where ¢ > 0 and a; > 0, a, > 0. Now
LU et AB 1)
N T
if te By, B], and
o _
<
if te [B1, B]. Therefore
[VW |2 — AW > f272(f")? [c?0%® — cOajos — cOozoq] = 0

0 <fB) B=az<cc

22311+ 2f)
221+ 2B)

0 1" _
fy

f < f(B) *B=0s< o0

" provided ¢ > 0 is large enough.
To check condition (b) of Lemma 1 for points x such that f < X(x)
we note that at such points

W = c(2°X? + 1)

Vol. 43, n° 2-1985.



190 E. B. DAVIES

SO

VW > =AW — (AXyxs 5 —EJ) +
> [ e2°X°IVX |2 — AKX IAX + (1 — )APXO 2 | VX 2 —IX.  (2.4)

1 1
We now choose 0 = > + — where p > 2 is the constant in (H2). Then
P
(2.4) holds uniformly as A 1 + oo provided

eXPTIAX < X2 VX P
and
X < c2x20—2 | vX |2

for some ¢ > 0 and all X(x) > p. This is proved for X(x) > fand | x| < R
by using (H3) and compactness, while it is proved for X(x)> f and | x| >R
by using (H2).

We next observe that there is no problem concerning a singularity in
condition (b) of Lemma 1 as one passes through the surface X(x) = f,
because W is actually defined as the minimum of two functions which are
smooth around this surface, so VW can only have a jump discontinuity
across the surface and AW can only have an infinite negative singularity,
which does not affect condition (b).

We finally consider condition (¢) of Lemma 1. If xeK then V, >0
so W, > c. Thus we need only choose ¢ > 0 so that

e " < gilx)

for all xe K and all large enough A. This can be done since ¢, converges
uniformly on K to the ground state ¢, of the Dirichlet Laplacian of Q,
which is strictly positive and continuous on K.

§3. A GENERALIZED UNCERTAINTY PRINCIPLE

In this section we present a new quadratic form inequality for operators
on L%(RY), which is closely related to the uncertainty principle and to
inequalities in [¢] [5]. For the sake of precision we comment that all the
form inequalities below are proved for test functions in C*(RY), which
is a form core for all the operators we consider.

We start by studying an operator of the form

H=-A+ ﬁX(x:xc,éQ}

where > 0 and Q is an open subset of RN which is uniformly locally
Lipschitz in the following sense. If

o(x) =min {|x — y|:y¢Q}

Annales de I Institur Henri Poincaré - Physique théorique
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then there exists t; > 0 and a finite covering of
O ={xeQ:0<o0(x) <1y}

by open sets Q;, 1 < i < M. We assume that after an isometric motion
each Q; has the form

Q={(y,5):yeV; and 0<s<wly}

where V; is an open subset of RN "1, and w; is a continuous function on V;
with values in (0, c0), and

0N Q= {(y,s):yeV;, and s=wy(y)}.
If we define ¢; on V; x R by
oy, s) = wly) — s
then our Lipschitz hypothesis is made in the form
a(x) < ox) < 150(x)

for all x € Q;, where 7, < o0 and 7, is independent of i. We finally assume
that if we define

Q={(y,s):yeV; and 0<s<awfy +7}
then
QNnQ=0,nQ

for some y >0and all 1 <i<M.

In spite of the complicated form of the above conditions, it is easy to
check their validity in many cases, for example if Q has a compact C*
boundary.

LEMMA 9. — If we define the form Q; by

a 2
Qif) = L R( 6—£ + Brone | f|2>dst_1y
then l "
CHf, f> =2 M_IZQi(f)
for all f € C2(RM). o

We omit the elementary proof. The point of our list of conditions on Q
is that it enables us to find a good lower bound on Q; We start with a
computation in one dimension.

LemMa 10. — If B > 0 and y > O then

2

e + Bxo.y = B tanh (yB/%)d,

Vol. 43, n° 2-1985.



192 E. B. DAVIES

as forms on C*(R), where J, is the Dirac delta function. In particular
if y > B2 then
2

d2+/3X(0y>> ﬁ/25

Proof. — If
d2
H = d W) + BX(O P (S
is regarded as a function of o, then the threshold for the existence of a
negative eigenvalue occurs at
o = B2 tanh (yp'/?)

the zero energy resonance eigenfunction for this value of a being

1 if —0<s<0,
cosh p1%(y — x) .
=7 7 7 ifo<s<y,
$(x) cosh 7% t
1/cosh B2y ify<s<o.
Thus .
iR + B0,y — BY? tanh (yB7%)5o > 0
as stated.

LemMMma 11. — If 2 > 0 and f e C®(R) then

af ds+,1|f(0)|22r L fs)1?

L ds o T2

2

Proof.— We first reduce to the case where f is real, and put p(s)=s+ 1/24.
The identity

1
(p~12f)y = — FPTR +pTR

implies that

1 2
(f)? = <p“2(p‘”2f)’ + —p“f)

2
-1/2 —1/2 gy /-
2p EfpT ) + .
4p
Therefore
® n2 1 -1 £2700 00 fz
(f2ds = 2 [p™" 1715 + Fds
0 0
= — Af0)* + J —dS
as stated.
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THEOREM 12. — If Q satisfies the conditions of this section then there

exists 73 > 0 such that
Bl f
<Hf,f>2J :

2P dx
Q' 1+ ﬁO’

for all y > B~Y2 and all feCP(RN).

Proof. — For each ye V; we apply the last two lemmas to the variable
(s — w;(y)) to obtain

A = EAW

Jo, (4/3B'2 + ai(y, 5))°

[ BISfP

o (4/3 + p%0)?

[ BIfI

o, (4/3 + B'2130)°
Mf3ﬁ|f|2 ix

o 1+ Bo?

2
CHY, f>_ZJ 2 i
>j whlS P

1+ﬁa

[\

Therefore

Note 13. — An attractive feature of this bound is that if welet T + oo
for fixed y > 0, we get the bound

2
<—Af,f>2LT3|a{| dx

for all f € CX(Q), which was discovered in [4]. See also [5] for a generaliza-
tion in another direction.
An alternative form of the above theorem is as follows.

THEOREM 14. — If Q satisfies the conditions of this section then H>1,Y
on L*RN) where 0 < 74 <1 and

B if x¢Q,
Y(x) = —ﬂ— if xeQ’
1 + Bo(x)?
0 otherwise .

Vol. 43, n° 2-1985.



194 E. B. DAVIES

Proof. — If f e C2(RY) then

1
CHT, £ CHE fy+ 5
xgQ

1 [ wplfI? B
>- | BEUL ey ® 24
2L1+ﬁa2 X3 xm'f' X

so the result follows with 1, = min (t3/2, 1/2).

| f 12dx
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