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Criteria for ultracontractivity

E. B. DAVIES
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ABSTRACT. - In an earlier joint paper with B. Simon, we defined a
notion of intrinsic ultracontractivity for Schrodinger operators, and
obtained a lower bound on the ground state eigenfunction which implies
it. In this paper we present a method of verifying this condition which
applies to a variety of particular cases. We also prove another generalization
of the uncertainty principle lemma which has been so important in the
study of ultracontractivity and other spectral properties of Schrodinger
operators.

RESUME. Dans un article precedent en commun avec B. Simon, on
a defini la notion d’ultracontractivite intrinseque pour les operateurs de
Schrodinger, et on a obtenu une borne inferieure sur la fonction propre
de l’état fondamental qui entraine cette propriete. Dans cet article, on
presente une methode pour verifier cette condition qui s’applique a un
ensemble varie de cas particuliers. On prouve aussi une autre generalisa-
tion du lemme exprimant Ie principe d’incertitude qui a ete important
dans l’étude de l’ultracontractivité et des autres proprietes spectrales des
operateurs de Schrodinger.

§1 INTRODUCTION

In an earlier paper [6 ], B. Simon and the author introduced a notion
of ultracontractivity which makes sense for a variety of second order
elliptic operators. In particular we considered the case of a Schrodinger
operator
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182 E. B. DAVIES

on L2(RN), where V is a non-negative potential in L1loc and H is assumed
to possess a ground state eigenvalue E with corresponding eigenfunction 03C6
normalised by 03C6 &#x3E; 0 and ~03C6~2 = 1. From this operator one may construct
the intrinsic semigroup e-Ht on L2(~N, ~(x)2dx), where H = H* &#x3E;_ 0 is
defined by

and the unitary operator U from to ~) is defined by

It is well-known that e- Ht is contractive on ~2dx) for  oo,
and we say that H is intrinsically ultracontractive if e - Ht maps L2 into L"
for all t &#x3E; 0. It was shown ~in [6, Th. 5.2] that this property holds if

in the sense of quadratic forms on dx), for all 0  5  1, where
does not increase too rapidly 0. In this paper we shall specify

for definiteness that g should satisfy the bound

for certain positive a, b, M.
Although the condition (1.1) is of a very general nature, its validity was

only confirmed in [6] ] for comparatively few cases. In particular if
= c where c &#x3E; 0 and a &#x3E; 0 then by [6, Th. 6 .1 ], (1.1) holds if

and only if a &#x3E; 2. In this paper we present a new treatment of some of the
examples of [6 ]. We also prove uniform intrinsic ultracontractivity for
an example which necessitates the development of a generalized uncer-
tainty principle. Because of its independent interest this generalization
is given separately in Section 4.

. We remark that (1.1) is equivalent to the construction of a function W
such that

In view of the recent discoveries by Agmon and coworkers [7] ] [2] ] [3] of
explicit upper and lower bounds which are asymptotically nearly
equal as x ~ I -~ oo, it seems natural to consider ( 1. 3) first and then to
check whether or not (1.4) holds. Our first observation is that it is fre-

quently easier to choose W so that (1.4) is only just true, and then to
check (1.3) by using standard subharmonic comparison inequalities. The
precise version we shall need is as follows.

LEMMA 1. Suppose that W : tH~ -~ [R is continuous and satisfies
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183CRITERIA FOR ULTRACONTRACTIVITY

in the distribution sense, outside some compact set K,

in the set K. Then

Proof 2014 Putting j Q = RNBK we see that 03C8 = satisfies 03C8 ~ 03C6 on
~03A9 ~ { ~} and A = on S2 where

Subharmonic comparison now implies that 03C8 ~ 03C6 on Q.
As a first application and for the sake of completeness we restate Theo-

rem 6 . 3 of [6 ].

LEMMA 2. 2014 If there exist c~ &#x3E; 0, b~ and ai &#x3E; 2 such that

and

for all then ( 1.1 ) and ( 1. 2) are valid.

Proof 2014 If we choose

where ~ &#x3E; 0, then ( 1. 4) holds, and Lemma 1 is applicable with

provided G is small enough, and R, k are large enough.
Lemma 2 suggests that the rate of divergence of V(x) as I ~ 00

along rays through the origin cannot vary too much between different
rays. This is not correct.

and A, B are strictly positive periodic COO functions on [0, 27r]. Then H is
intrinsically ultracontractive if there exists /~ &#x3E; 2 such that B(o) &#x3E; /3 for
all0e [0,27r].

Proof. 2014 We put

Vol. 43, n° 2-1985.



184 E. B. DAVIES

so (1.4) holds. To prove (1.3) we verify the conditions of Lemma 1 when

Condition (a) is elementary. Also

and

so

Now

and

so

if r 2 1. For such r we conclude that

where c2 &#x3E; 0. If we put

then 0  ~,  1 and

so

and

for all r &#x3E; 1, provided c is large enough. Since (~ has a strictly positive
lower bound if r ~ 1 and W &#x3E; c, condition (c) also holds if c is large enough.

In order to prove contractivity theorems for multiple well Schrodinger
operators, it is useful to have a localized version of Lemma 1. In the following
lemma one chooses Ki to be neighbourhoods of the various minima of V,
and chooses Wi to have only one minimum and that one inside Ki.

l’lnstitut Henri Poincaré - Physique theorique



185CRITERIA FOR ULTRACONTRACTIVITY

LEMMA 4. Suppose Wi : [RN -~ ~ are continuous for 1 f  M and
that they satisfy

(a) Wi(x)  + oo as x I ~ oo,

(b) | ~Wi|2 - 0394Wi ~ (V - E) + outside some compact subset Ki,
(c) inside Kü
(C~) m + ~)

for all 0  5  1, where g satisfies (1.2). Then -  5H + 
so H is intrinsically ultracontractive.

Proof Lemma 1 implies that e-Wi  /J, so if

then e-W and the lemma follows from (d).

§2 THE SEMICLASSICAL LIMIT

In order to prove uniform contractivity results in the semiclassical

limit a further extension is necessary. Let us suppose that

where ~, T + oo and

We assume that V is non-negative and continuous and vanishes at x~,
1  i  M. We suppose that H~, has ground state 4&#x3E;;. with corresponding
eigenvalue E03BB &#x3E; 0. Then uniform intrinsic hypercontractivity of H03BB as

/). i + oo follows from the validity of the estimate

for some ~ &#x3E; 0 and all large enough ~,. See Theorem 6 . 5 of [6 for an earlier
treatment of this problem.

THEOREM 5. - Let Wi : be continuous for 1  i  M, and
suppose that the following conditions hold for large enough /). &#x3E; 0.

(a) + oo as x ~ I ~ oo .

(b) There exists aL &#x3E; 0 such that

provided ~,y - I ~ a~ .

(c) We have

Vol. 43, n° 2-1985.



186 E. B. DAVIES

(d) There exists (5 &#x3E; 0 such that

Then we have ’ the form bound 0

Proof This is an immediate consequence of Lemma 4 if we put

The above theorem can be used to give a new proof of Theorem 6.5
of [6 ], which is more elementary in that it makes no use of functional

integration. To economise on notation we only consider one typical case.

THEOREM 6. 2014 If

on L 2() then the conditions of Theorem 5 are satisfied with xl - 0,
x2 = 1,~=~=1 if we put

for suitable b &#x3E; 0, and

Proo, f : 2014 It is trivial that conditions (a) and (d) hold for any choice of
b &#x3E; 0, provided ð is large enough. By symmetry we need only prove (b)
and (c) for i = 1. Condition (b) states that x ~ &#x3E;_ ~ -1 implies

This follows from the bounds

which holds for all x if b is large enough, and

which holds for all x ~ &#x3E;_ ~ -1 provided b is large enough.
Condition (c) of Theorem 5 states that

if x ~ I  1 and ~, is large enough. This is a consequence of the fact [7] ]
that ~~,(x) converges to ke-"2~2 uniformly on compact subsets of [R as
/L -~ oo, where 0  k  oo .

Henri Poincaré - Physique theorique



187CRITERIA FOR ULTRACONTRACTIVITY

We next turn to a completely new example which exhibits uniform
intrinsic ultracontractivity in a semiclassical limit. We consider the Schro-
dinger operator

on L2(f~N), as ~, ~ +00, where /3 &#x3E; 0 and the function X satisfies

(HI) X is a non-negative function on [R~
(H2) X(x) = c for some c &#x3E; 0, p &#x3E; 2 and |x| &#x3E; R, where 0  R  oo,

(H3) There exist /31 with 0  /31  /3 and a &#x3E; 0 such that /31
implies &#x3E; ex. ,

An examination of the calculations below shows that all of the above
conditions can be very much weakened without affecting the conclusions.
In particular (H2) can be replaced by a condition such as ( 1. 5).

It is evident that H converges in the strong resolvent sense to Roo as
~, T + oo, where H ~ is minus the Dirichlet Laplacian of the bounded
open set

Since both H~, and Hoo are intrinsically ultracontractive, one might hope
to be able to prove uniform intrinsic ultracontractivity of H~, as /). i +00.
For this example one cannot hope to deduce the uniform bound

for all 0  5  1 and all large enough /), from a bound

because such a bound would imply

for all x E SZ, which contradicts the expectation that

for all x E For this example, therefore, we must not neglect the kinetic -

energy term in (2.2).
Although the bounds of the following theorem are much weaker than

they need to be, they suffice for our purposes, and are simpler to compute
with than more accurate bounds.

THEOREM 7. 2014 If X satisfies (Hl-3) then there exists 0  i6  1 such
that if ~, is large enough then the operator HÀ of (2.1) satisfies

Vol. 43, n° 2-1985.
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for all f E C~(~), where

Proof 2014 We first observe that (HI-3) imply that Q is a bounded region
with Coo boundary, so the conditions of Section 3 are all satisfied. Without
serious loss of generality we assume that {31 1 is close enough so that

The lower bound on implies that if /31  X(x)  /3 then

If then Theorem 12 implies

for some T 5 &#x3E; 0. The theorem now follows by using (2.3).
The above quadratic form inequality is the crucial result for our main

result concerning this example.

THEOREM 8. 2014 If X satisfies (Hl-3) then the operator Hl defined in (2 .1 )
is uniformly intrinsically ultracontractive as ~, T +00.

Proo, f : 2014 If we put

where 0  0  1 and c &#x3E; 0 are to be chosen later and V~, is as in Theorem 7,
then

where " C8 = i6~. Thus (1.2) and ’ (1.4) are " satisfied uniformly as À i +00.

Annales de l’Institut Henri Poincare - Physique " theorique "



189CRITERIA FOR ULTRACONTRACTIVITY

We prove that ( 1. 3) also holds uniformly by verifying the conditions of
Lemma 1 for the compact set

We first note that condition (a) of Lemma 1 is trivial. To check condi-

tion (b) for points x such that

we note that at such points

where

We see that f is an increasing convex function on whose derivatives
are

and

Now using (H3) we see that

where a &#x3E; 0 and exl ~ 0, a2 &#x3E; 0. Now

,

if t E [~i,~]. Therefore

provided c &#x3E; 0 is large enough.
To check condition (b) of Lemma 1 for points x such that ~8  X(x)

we note that at such points

Vol. 43, n° 2-1985.
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so

We now choose () = - + - where p &#x3E; 2 is the constant in (H2). Then2 /?

(2.4) holds uniformly as 03BB ~ +00 provided

and

for some c &#x3E; 0 and all X(x) &#x3E; [3. This is proved for,X(x) &#x3E; [3 and x ~  R

by using (H3) and compactness, while it is proved for and x ~ I &#x3E; R

by using (H2).
We next observe that there is no problem concerning a singularity in

condition (b) of Lemma 1 as one passes through the surface X(x) _ /3,
because W is actually defined as the minimum of two functions which are
smooth around this surface, so VW can only have a jump discontinuity
across the surface and  W can only have an infinite negative singularity,
which does not affect condition (b).
We finally consider condition (c) of Lemma 1. If x E K then V~, &#x3E;_ 0

so W~, &#x3E;_ c. Thus we need only choose c &#x3E; 0 so that

for all x E K and all large enough ~,. This can be done since converges
uniformly on K to the ground state ~ ~ of the Dirichlet Laplacian of Q,
which is strictly positive and continuous on K.

§3 A GENERALIZED UNCERTAINTY PRINCIPLE

In this section we present a new quadratic form inequality for operators
on L 2(~N), which is closely related to the uncertainty principle and to
inequalities in [4] ] [5 ]. For the sake of precision we comment that all the
form inequalities below are proved for test functions in C~(t~), which
is a form core for all the operators we consider.
We start by studying an operator of the form

where ~3 &#x3E; 0 and Q is an open subset of [RN which is uniformly locally
Lipschitz in the following sense. If

Annales clo Physique theorique
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then there exists i 1 &#x3E; 0 and a finite covering of

by open sets 1 s i  M. We assume that after an isometric motion
each SZ1 has the form

where Vi is an open subset of ~N - 1, and ccy is a continuous function on Vi
with values in (0, 00), and

If we define 6i on Vi by

then our Lipschitz hypothesis is made in the form

for all x E Szi, where T2  oo and L2 is independent of i. We finally assume
that if we define

then

for some y &#x3E; 0 and all 1  i  M.

In spite of the complicated form of the above conditions, it is easy to
check their validity in many cases, for example if Q has a compact Coo
boundary.

LEMMA 9. 2014 If we define the form Q by

then

for all f E C~(~).
We omit the elementary proof. The point of our list of conditions on Q

is that it enables us to find a good lower bound on Qi. We start with a
computation in one dimension.

Vol. 43, n° 2-1985.
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as forms on C~c(R), where 03B40 is the Dirac delta function. In particular
then

Proof 2014 If

is regarded as a function of ex, then the threshold for the existence of a
negative eigenvalue occurs at

the zero energy resonance eigenfunction for this value of a being

Thus

as stated.

LEMMA 11. If ~, &#x3E; 0 and /eC~) then

Proof 2014 We first reduce to the case where f is real, and put p(s) = s + 1/2/L
The identity

implies that

Therefore

as stated.
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THEOREM 12. 2014 If Q satisfies the conditions of this section then there

exists T3 &#x3E; 0 such that

for all y &#x3E; and all 

Proof. For each y E Vi we apply the last two lemmas to the variable

(s - to obtain

Therefore

- Note 13. 2014 An attractive feature of this bound is that if we let ~3 T +00
for fixed y, &#x3E; 0, we get the bound

for all f E C~(Q), which was discovered in [4 ]. See also [5] for a generaliza-
tion in another direction.
An alternative form of the above theorem is as follows.

THEOREM 14. 2014 If Q satisfies the conditions of this section then H &#x3E;_ L4 Y
on L2(~N) where 0  1"4  1 and

Vol. 43, n° 2-1985.
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so the result follows with 1"4 = min (~3/2, 1/2).
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