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(QED)2 in the Coulomb Gauge (*)

J. DIMOCK

Department of Mathematics, SUNY at Buffalo, Buffalo, N. Y., 14214

Ann. Henri Poincaré,

Vol. 43, n° 2, 1985, Physique ’ theorique ’

ABSTRACT. 2014 We give a construction of the Coulomb gauge for (QED)2
in a finite volume, both on Fock space and as a functional integral. As
an application we obtain the non-relativistic limit for the theory.

RESUME. 2014 On donne une construction de la jauge de Coulomb pour
(QED)2 dans un volume fini, dans l’espace de Fock et comme intégrale
fonctionnelle. Comme application, on obtient la limite non relativiste de
la theorie.

I INTRODUCTION

In any gauge quantum field theory the Coulomb gauge plays a distin-
guished role. It is in this gauge that the classical field theory can be cast
in Hamiltonian form and one can more or less apply standard quantization
procedures. The resulting structure is however rather ill-defined and one
usually makes a formal transformation to one of the covariant guages
before studying the theory. For completeness it would be interesting to
make this first step precise, that is to construct the theory in the Coulomb
gauge and show that it is equivalent to the covariant gauges. It might also
be useful as a practical matter it would be a way to establish Osterwalder-
Schrader positivity for the covariant gauges. Finally the Coulomb gauge
seems to be the natural setting for studying the non-relativistic limit of a
theory.

(*) Supported by NSF grant PHY82-204399.
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168 J. DIMOCK

In this paper we construct the Coulomb gauge for quantum electro-
dynamics in the charge zero sector on a compact two-dimensional space-
time. There are actually two constructions. The first is a construction of
the Hamiltonian for the theory on Fock space. As an application we study
the non-relativistic limit for the model. The second construction is in terms
of functional integrals and is closely connected with the functional integral
formulation of the Landau gauge. At the end we comment on the equiva-
lence of the two constructions.

II FOCK SPACE FORMULATION

The classical field equations for a fermion field ~ interacting with an
electromagnetic field A" are

where j  = 03C803B3 03C8 is the current, e is the charge, m is the fermion mass,
and c is the speed of light ( 1 ). By the Coulomb gauge (or axial gauge) we
mean that A 1 = 0. Then the equation for Ao becomes

One solves this for Ao, inserts it into the equation for 03C8 and gets an equation
for 03C8 alone.

Suppose now that our space time is M x S 1 or [R x [ - 7c, 7c] ] with
periodic boundary conditions. Then - 81 is invertible on the orthogonal
complement of the constants in and has the kernel

which is the Coulomb potential for S~. (On !F~ we would have

V(x 2014 y)= ~ -I ~c 2014 y!). We restrict attention to total charge zero, i. e.

j0 = 0, so j0 is orthogonal to constants, and have as the solution of the

equation for Ao

e) The notation is x"‘ = jc~) = (ct, x) and a~ = We have D = where

the metric is = diag (1, - 1). The are the Dirac matrices for and  = We

have ~ = 1 throughout.

Annales de l’Institut Henri Poincaré - Physique theorique



169(QED)2 IN THE COULOMB GAUGE

Inserting this expression for Ao and introducing /3 = /B a = 03B3003B31 we have

For the quantum problem one wants to solve this equation with data
which satisfy the canonical anti-commutation relations. On a fermion
Fock space based on 0 we define

where bp, dp are annihilation operators for particles and anti-particles
of momentum p, and u, v satisfy

and are normalized so upup = 1, pvp = - 1. Here 03C9p is defined by

Then formally we have as a solution of the equation 

Here

The charge density is

and E is a (possibly infinite) constant. We are only interested in the charge
zero sector Q = jo = 0) where the introduction of Wick ordering
on jo corresponds to a shift in H by an infinite constant.
Our goal is to give a precise definition of H, and we show that it is a

bilinear form on a certain dense domain in Fock space. Previously,
McBryan [7] ] [2] ] has shown is well-defined
either as a bilinear form or as an operator-valued distribution.

Vol. 43, n° 2-1985.



170 J. DIMOCK

The method o we use is that of N1: estimates [3 ]. One " defines with

= 2+1t

Then for any wick ordered monomial

or with any b replaced by a d, we have :

Let p(k) = jo(k) be the Fourier coefficients of j0(x) so that p( - k) = p(k)*
and

Then we have

where

and where the kernels are

LEMMA. 2014 For T &#x3E; 1 the following j operators are " bounded uniformly

Annales de Henri Physique theorique



171(QED)2 IN THE COULOMB GAUGE

Proof : (a.) 2014 We have by an N1: estimate and q) ~ I ~ ~(1)

(r &#x3E; 1 is more than we need.) The estimate on p + (k)2 is similar.

(b.) This follows from (a.) by taking adjoints.

(c.) - Since + + 1)~!!  1 and = 0 we have
using wo(/7, q) ~ I s ~(1)

(d.), (e.) A typical term in [ po( - ~P+(~)] ] is

and a typical term in : [p-(2014 k), p + (k) ] : is

By N1: estimates, |w+| I  O(1), and |w0|  P(1) these are estimated by

,uq t,uq ~  U~ ( 1 ). Q. E. D.
p~

Now let Qo be the Fock vacuum and formally take E = - (Qo. HI03A90) so
that

THEOREM 1. 2014 H is well defined as a bilinear form on x 

for! &#x3E; 1.

Vol. 43, n° 2-1985.



172 J. DIMOCK

Proof This is easily verified for Ho. For the second term it suffices to
show

to show that the sum over k converges.
We expand p==p++po+P- and obtain nine terms. The terms p+p-,

p~, p~, P+Po? and po can all be estimated using the lemma. We
also have po p + - P+Po + P+] and both terms can be estimated by
the lemma. Similarly we treat p-po’ Since pQo = the only remaining
terms are

and both of these terms are bounded by the lemma. (Note that p _ ( - k) p + (k)
alone would not have a good bound in k.) Q. E. D.

Remarks 1. Our results on the domain for H are not optimal. Quite
likely similar estimates would show that H is actually an operator (rather
than a bilinear form) on a suitable domain. The real issue for further pro-
gress is however to show that H is bounded from below. As a corollary H
would define a self-adjoint operator.

2. The theorem should also work for (QCD)2.

III. THE NON-RELATIVISTIC LIMIT

We show that H has the expected non-relativistic limit as c ~ oo . The
model (QED)2 seems to be unique in that this limit exists at the level of
Hamiltonians rather than Green’s functions, for example. In an earlier
paper [4] we obtained the non-relativistic limit for model. 
results are weaker than the present results in that they only refer to two-
particle phenomena, but stronger in that they could be carried out in infinite
volume.
The non-relativistic Hamiltonian has the form

where

and the interaction is the Coulomb interaction between charge densities pNR: . 

Annales de l’Institut Henri Poincaré - Physique theorique



173(QED)2 IN THE COULOMB GAUGE

where pNR(x) _ (b*(x)b(x) - d*(x)d(x))dx and o hence

Let be the domain in Fock space of vectors with a finite number of
particles and wave functions in Schwartz space so c for any
T, a &#x3E;_ 0. Then making an adjustment of energy scale on each n particle
subspace by nmc2 we have :

Proof. 2014 We have

and from this it is straightforward that

For the interaction terms we proceed as before. Instead of the estimate
! w +  Ø( 1) we now use for 0  a  1

(For a = 1, see [5 ], equation 3 . 2 .17, and for general a take a convex
combination with the old bound.) For a sufficiently small the 7? - 
does not disturb any of our previous estimates and the gives conver-
gence to zero. Thus any term in HI which has a p + or p- converges to zero.
To complete the proof it suffices to show that

But this follows from our previous estimates and the following estimate
for a sufficiently small

Vol. 43, n° 2-1985.



174 J. DIMOCK

Here we have used

I V . THE LANDAU GAUGE

In this section we give the functional integral formulation of the Landau
gauge for (QED)2. For simplicity we only consider the partition function,
but the results can be adapted to Schwinger functions for currents and/or
their generating functions.
The partition function in the Mathews-Salam formulation is formally

Here  = A 03B3  where 03B3  are now Dirac matrices for Euclidean two-dimen-
sional space-time satisfying {03B3 , 03B303BD} =2ðJLv and (YJL)*=Yw Also S = ( + m)-1
is the fermion propagator and is the Gaussian measure with mean

zero and covariance

Our aim is to explain the precise definition of Z following the original
treatment of Seiler for (Yukawa)2 [6] ] and the formulation for (QED)2
due to Weingarten and Challifour [7 ], Weingarten [8 ], and Seiler [9] ] [10 ].
The Euclidean space-time is S 1 x S 1 or [-~7r] ] x [-7r,7r] ] with

periodic boundary conditions. In this case the fermion propagator is

We also consider the case of anti-periodic boundary conditions for fer-

mions in which case the above sum is replaced by a sum over (Z + 2J . .
(Then spinors are sections of a vector bundle over S1.)

Since SA is not trace class one must make further modifications to define
the determinant. We introduce

which formally gives the same determinant. Then if A is a bounded function
on S 1 we have that is a bounded operator on x in the

class a4 (i. e. is trace class), and hence the modified determinant

Annales de l’Institut Henri Poincaré - Physique theorique
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det4 (1 + $’(A)) is well-defined. We formally restore the terms we have
omitted by defining -

where Trren is a renormalized trace. The precise definition of the renorma-
lized trace depends on introducing and removing an ultraviolet cutoff.
Using the lattice approximation one obtains [7 ] :

where with S(p) = + m) -1 :

r
The expression is well-defined for A,~ sufficiently smooth on SI,
An important feature " of the renormalized determinant is gauge inva-

riance. For x sufficiently smooth we have ’

(In fact det4 is invariant and = 0). This can be proved in the lattice
approximation.
Next we consider the integral over A~. To define the covariance D~

we must define an inverse for - A. In x Laplacian is invertible
on the orthogonal complement of the constants and we could define the
inverse to be zero on the constants. Instead let ~~ be the subspace of func-
tions which are constant in x1, invert ( - A) on and define it to be
zero on ~~. Thus we set

where

Note that in the infinite volume limit the distinction will disappear.
We define A  as a Gaussian random variable with covariance D 03BD as

follows. Let F = F(h), the field strength, be a Gaussian random variable
indexed by  e x (real-valued) with mean zero and covariance I,
i. e. F is white noise. The measure is denoted dv(F). We define

Vol. 43, n° 2-1985.
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Note that ð)-l is a bounded operator on x Sl) so A~ is
well-defined via the adjoint. Using ~ 03BD~03C103C3 = we see A  has
covariance 

It is convenient to work with a cutoff version of these fields. Let

=(27r)’~~and

which satisfy Then define COO Gaussian random functions

We can also use a real basis for the same " subspace " such as Ck = 2 - 2 (ek + e -k)
and ~ Sk = 2 - 2 i -1 (ek - with k 1 &#x3E; 0. Then we have "

where ak = F(Ck) and bk = F(Sk) and E" means sum over /(i &#x3E; 0 only.
We also have that are Gaussian

random functions with covariance :

Now define

where

Since AN is Coo the determinant is well defined. It is also bounded and so
the integral converges. In fact we have [8] ] [77] for any A :

The proof uses the lattice approximation and Osterwalder-Schrader

positivity which requires anti-periodic boundary conditions for fermions.
A bound for periodic boundary conditions was given by Ito [12 ]. The
constant EN is a vacuum energy renormalization and has the effect of

Wick ordering the fields in Using the transversality of 03A0 03BD one

obtains the bound = N) as N ~ oo.

l’Institut Henri Poincaré - Physique theorique



177(QED)2 IN THE COULOMB GAUGE

Using the above bounds as input one obtains the basic stability result.
This is the existence of the limit :

For the proof see Seiler [9] ] [10 ]. (The second reference has a simple proof
for e/m small.)

V. THE COULOMB GAUGE-

FUNCTIONAL INTEGRAL FORMULATION

The partition function Zc for the Coulomb gauge is formally defined by

where dcv is Gaussian with covariance

Formally this is the same as the Landau gauge Z by the change of variables

We want to make this statement precise.
The covariance C is positive definite on c x and we

let C be a Gaussian random variable indexed by with covariance C.

The associated measure is denoted _
We also let = ~( ek), kl ~ 0, which satisfies = k 1 2~~k. Then

is a smooth Gaussian random function with covariance

(I&#x3E;N can also be written in a real basis as before.)
The cutoff partition function is defined by

The next result gives stability for the Coulomb gauge and equivalence
to the Landau gauge.

Vol. 43, n° 2-1985.
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Proo,f: - It suffices to show Zc,N = ZN. The first step is a change of
variables. Using the definition of the integral of a cylinder function we have
for suitable f :

Here is Gaussian on R with variance /L:

Similarly we have for ZN

(The extra derivatives cause no problem since everything is smooth.)
To complete the proof we need the identity

But this is just the gauge invariance of detren for we have with 03A6 = l&#x3E;N
and 0) -1 ~ that

where X = ao( - Ll) - 11&#x3E;.

VI. REMARKS

We explain why our two constructions of the Coulomb gauge are for-
mally equivalent, ignoring finer points such as matching the vacuum energy
counter terms. The determinant in Zc can be formally written as an integral
over anti-commuting fermion fields ~, tf to give

where j  == and ’ N-1 is a normalization so that ZC = 1 at e = 0.

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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If we now do the integral over C and use C(x - y) = ~o 2014 yl)
we obtain

Assuming j periodic boundary conditions for the fermions this can be
identified as a partition function for the Fock space theory at inverse "
temnerature 03B2 I = 203C0

This identification can be made in perturbation theory for example. More
generally if the time coordinate had period ~6 in the functional integral
we would have inverse temperature ~3. Similar formulas exist connecting
the Schwinger functions and thermal correlation functions. (For 
this is even rigorous [7~]).
To make the above connection precise the best bet seems to be to intro-

duce a lattice approximation. However this does have the disadvantage
of spoiling the nice integration over C above.
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