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ABSTRACT. - The classical limit of the infinitesimal generators of quan-
tum dynamical semigroups obtained from quantum diffusions are shown
to be second order semi-elliptic differential operators and thus (Markov)
generators of classical diffusions in phase space. Necessary and sufficient
conditions are established, in terms of the quantum generators, under
which (a) the Markov generator is strictly elliptic, (b) the classical diffusion
is deterministic, and (c) the classical flow is symplectic.

RESUME. 2014 On montre que la limite classique du generateur infinitesimal
d’un semi-groupe dynamique quantique, obtenu a partir d’une diffusion
quantique, est un operateur differentiel semi-elliptique du second ordre
et donc, Ie generateur (Markov) d’une diffusion classique dans l’espace
de phase. Des conditions necessaires et suffisantes sont etablies pour que

a) Ie generateur soit (positivement) elliptique,
b) la diffusion classique soit deterministe,
c) Ie flot classique soit symplectique.

§0 INTRODUCTION

Quantum Brownian motion [6] ] has recently been used to develop a
non-commutative stochastic calculus, generalising the classical Ito calcu-

(*) This work was done while the second named author was supported by the Science
and Engineering Research Council.
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134 R. HUDSON AND M. LINDSAY

lus [70] ] [11] ] [12 ]. In this paper we consider the classical limit (h  0) of

quantum diffusions by examining the generators of their dynamical semi-
groups, and display a qualitative difference between the limiting semi-
groups according to whether or not the driving Q. B. M. is of minimal
variance i. e., the « field » is at zero temperature.

In order to compare the classical with the quantum, we exploit the
phase space formulation of quantum mechanics [20] ] [7~] ] in which the
associative and Lie structures on the set of (smooth) functions on phase
space given by pointwise product and Poisson bracket are « deformed » [3] ]
to give a new associative product and Lie bracket which, in the case of
flat phase space, corresponds to Weyl’s quantisation scheme [79] These ,

are the Moyal product and sine bracket [16 ]. Uniqueness of the deformed
structures has been discussed by Arveson [2] ] who considered the class
of polynomials on a symplectic vector space and established uniqueness
of the Moyal structures under the assumption of invariance under affine
symplectic transformations, and Bayen et al. [3] who considered formal
power series in the Poisson bracket (1).
The paper is arranged as follows : in § 1 we introduce twisted products

of measures and functions [cf. 14 (these encompass the deformations men-
tioned above) and give some convergence results ; in § 2 we describe the
appropriate version of the Weyl correspondence; in § 3 we review quantum
Brownian motion and describe quantum diffusions and their dynamical
semigroups; and in § 4 we show that, under certain technical restrictions,
the generators of these semigroups have classical limits which are them-
selves generators of diffusions in phase space, and we determine the condi-
tions under which these are deterministic (i. e. non-stochastic). All results
later referred to have been elevated to the status of theorem.
We shall often assume without mention the identification of Hilbert

space operators AEB(hl) and their ampliation to operators A (8) IEB(hl (8) h2).
The summation convention for repeated indices is adopted throughout.

§ 1. TWISTED PRODUCTS

Let V be a finite dimensional real vector space equipped with its usual
topology, then we have the following Banach spaces : Co the continuous
complex valued functions on V vanishing at infinity; M the complex
Borel measures on V; L 00 and L12014the (equivalence classes of) complex
valued functions on V that are essentially bounded, respectively absolutely
integrable, with respect to Haar (Lebesgue) measure on V. We shall denote

(1) See also R. L. Hudson ; Generalised translation invariant dynamics. D Phil Thesis,
Oxford, 1966.
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135THE CLASSICAL LIMIT OF REDUCED QUANTUM STOCHASTIC EVOLUTIONS

by ~ weak *-convergence with respect to the dualities C~ ~ M and
L~* ~ MK the subspace of M consisting of measures with compact
support and by T the set of locally bounded Borel measurable functions
V x V  C.

LEMMA . 03C9 ~ T the map C0 ~ C given by

~ .

is a bounded linear functional vanishing on functions with support outside
(supp jM + supp v).

Proof. 2014 The integrand is bounded on the support of  x v by
~f~ sup |03C9(u, v)| I and so the integral is well-defined and determines

Me supp .
t~e supp v

a bounded linear functional on Co. The support property is clear. /////
Thus a measure ,u ~ ~ of compact support is determined by the relation

We call *ro the twisted convolution with twist (u, and note that for cv = 1
it is the usual convolution of measures. In general it is non-associative.

THEOREM 1. - Let {03C9i, 03C903B1i : i = 1, ... , n a E [RB { 0 }} c T be such
that for each i (D? ~ ay as 0 uniformly on compact sets, then for
/~ E M~

where ’ is the m-fold o twisted convolution the

bracketing being arbitrary but fixed throughout.

Proof

when (~ c~) = t1 *~i(~2 *~(" - ...), and may be similarly
expressed for each of the alternative bracketings. In any case, if K is a

compact set containing 03A3 supp i for each subset I of {1, 2, ..., n + 1}
then ieI

Vol. 43, n° 2-1985.



136 R. HUDSON AND M. LINDSAY

Now let A be a non-degenerate symplectic form on V (i. e. bilinear and
skew-symmetric), so that V must be even dimensional. We denote by ;u
the (symplectic) Fourier transform of ,u :

Since Borel measures on V are uniquely determined by their Fourier
transforms, we may define, for each twist (D, a twisted product ~~, on MK by

THEOREM 2. - For J1a, ,u ~ ,~~x ~ ,u i. e. the Fourier

transform is weak*-continuous.

Proof.

We now introduce the twisted products of interest to , us here. For each
~ &#x3E; 0, let where A~ == (~/2)A
these all belong to T and converge uniformly on compact sets to 1, 2
and A respectively as ~ -~ 0. o~ is just pointwise product and 0 A is Poisson
bracket, as may be seen for instance by taking symplectic coordinates.
We shall denote ~~a by [ , ]~ and [ , ]~- respectively these are

the cosine and sine brackets of Moyal [16 and are intimately related to
Weyl quantisation [79] ] to which we next turn. By theorems 1 and 2,

[f, g]03B4+ ~ 2/.g; [f, g]03B4 ~ {f, g}P.B. as 03B4 ~ 0 ~f g ~ K (1)

and more generally, any combination of sine and cosine brackets weak*-
converges to the corresponding combination of Poisson brackets and
pointwise products. Incidentally, it is when taking combinations of sine
and cosine brackets that convergence in the point-wise sense breaks down.

de l’Institut Henri Poincaré - Physique theorique



137THE CLASSICAL LIMIT OF REDUCED QUANTUM STOCHASTIC EVOLUTIONS

§ 2. WEYL QUANTISATION

Let W be a representation of the canonical commutation relations
(C. C. R.) over (V, A)-that is a map from V into ~(h) (the algebra of bounded
linear operators on some Hilbert space h) satisfying

i) each W(v) is unitary
ii) W(u)W(v) = exp v)]W(u + v) E V

iii) v ~ W(v) is strongly continuous.

For each f E M we define the operator Qf E (h) by

the integral being understood in the weak sense.

where ,uJ = ~,u, ~(u) = exp [ - JM)/2] and J is a linear operator giving
a A-allowed complex Hilbert structure to V (i. e. satisfying J2 - - I,
A(Ju, Jv) = A(u, v), A(u, Ju) &#x3E; 0 ~u, v E V) [14 ].

Proof The first inequality is clear from the definition of Q f. Assume
that the representation is irreducible and let Wo denote the Weyl form of
the Fock representation corresponding to (V, A, J) and Q the corresponding
vacuum state vector. We have, by von Neumann’s uniqueness theorem [77] ]

The assumption of irreducibility may be removed by taking direct sums.
/////

THEOREM 3. - The map f )2014~ Q f is an algebraic *-isomorphism of
(MK, onto a subalgebra ~~ of involution on MK being
complex conjugation.

Proof Linearity is clear and injectivity follows from strict positivity

Vol. 43, n° 2-1985.



138 R. HUDSON AND M. LINDSAY

of ~ and uniqueness of the Fourier transform, by the lemma. Abreviating
we have for f = ~, g = v E MK

and since p* = ~ where t(U) = ,u( - U) we have

which completes the proof.

COROLLARY.

establishing the connection between Moyal’s formalism and Weyl quanti-
sation.

§3 QUANTUM STOCHASTIC CALCULUS [6] [10] [77] ] [12]

1 
(N)

Let rN = Q ~ (I~ where H = L2(O, oo) C L2(0, oo) is the
(N)

symmetric Fock space over H, let QN = Q S2 where Q = ( 1, 0, 0, ... )
and let a( . ), a*( . ) denote the Fock annihilation and creation operators

respectively. Now let At = 0) + a*(O, and

then {0393N, S2N, A’, A’* : j = 1, ... , N)} is an N-dimensional quantum-.
Brownian motion of variance y2-that is, when expectations are determined
by S2N, and Q/’():== e - ieAt ~. © E ~p~ 2~c) 

.

Annales de l’Institut Henri Poincare - Physique theorique



139THE CLASSICAL LIMIT OF REDUCED QUANTUM STOCHASTIC EVOLUTIONS

i) the process is Gaussian (i. e. the corresponding C. C. R. representa-
tion [6] ] is quasi-free) with mean zero

ii) is independent (2) of 
iii) Qj,03B8t - Qj,03B8s is independent of  t, and

A stochastic calculus is developped in [10, 12 ] ; in particular a « product
formula » for stochastic integrals

is established where the operator-valued integrands satisfy certain adapted-
ness, domain and boundedness conditions. This is summarised by the
differential relations

generalising the classical Ito differential relations

which are satisfied by B’ := (A’ + A’*) when y2~ = 62.
By ampliation, we have a quantum Brownian motion on ho (8) rN for

any « initial Hilbert space » ho. In particular, consider the stochastic
differential equation

where Xj, Yj, Z E von Neumann sub-algebra of B(ho) 01. It is shown
in [70, 72] that there is a unique solution to this and that the solution is uni-
tary valued exactly when the coefficients Xj, Yj, Z are related as follows :

the necessity of these relations being clear from (2).
We introduce a temperature parameter for the « field » represented by

the quantum Brownian motion via the relation y2 - coth 
state determined by the vector S2N is then a Gibbs state (for the N-dimen-

(2) A family (N03B2 : 03B2 E B) of von Neumann algebras is independent if whenever Xi E N03B2i
with 03B2i distinct, | E[X 1 ... Xk = 1] ... j E [Xk and a family of collections of essen-
tially self-adjoint operators is independent if the family of von Neumann algebras generated
by their spectral projectors is independent.

Vol. 43, n° 2-1985.



140 R. HUDSON AND M. LINDSAY

sional harmonic oscillator) at inverse temperature 03B2, for the canonical
s) ] 1~2(Qi - [2(t - S) ] 1~2(Pi - = 1, ...,N}

where Pt = Qt ~"~2 [5 ].
From (4) we see that the general form of a unitary-valued process satis-

fying an s. d. e. of the form (3) is

where we have put (2i) -1 (Z - Z*) = h-1H, 
We call the family of *-isomorphisms from into

induced by unitary conjugation by such processes quantum di_ f ’fusions and
write {~:~0}.
The time zero conditional expectation Eo from J~ onto is defined by

continuous linear extension of the map [7~] ] [72] ]

This is invariant under any state C of the form (~ (8) where ~ is a normal
state on %0 : I&#x3E; 0 Eo = C, and, when 0 is faithful (y &#x3E; 1 ) this is a conditional
expectation in the sense of [18 ].
Now we obtain evolutions in %0 by considering

which is a (uniformly) continuous semigroup of completely positive maps
whose infinitesimal generator J~ is given by [7~] ] [72] ]

or, in Lindblad form [7J]~r’([H, 

If we let Lj = + iF2j with each Fk self-adjoint, then after some mani-
pulations we obtain

where

H is the Hamiltonian of the evolution in the absence " of dissipation
terms { F~ }.

Annales de l’Institut Henri Poincaré - Physique " theorique "
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§4 THE CLASSICAL LIMIT

We are now in a position to state the main result.

THEOREM 5. Let Q be a quantisation of the symplectic space (V, A)
in ~(ho). Given any quantum diffusion {~ : ~ 0} determined by
the s. d. e.

in which H, Lj E ~~ = Q(MK), H = H*, there exists, for each starting point
u E V, a (path-wise unique) classical diffusion { Yt : t ~ 0 } on V driven by
a 2N-dimensional Brownian motion of variance 2//3 whose Markov gene-
rator  is related to the quantum dynamical generator 5£ by

Proof Writing ~ for Q-12. Q, we have from (5) and the corollary
to theorem 3

whose weak*-limit 0 is, by L’Hopital’s rule and (1)

and it is easy to see that this is a semi-elliptic operator ~ acting on .f’.
Choosing symplecting coordinates {ei} for V, the coefficient matrix
for the second order part of ~ is where 7~ = and

{ e~) ~ -1. It follows from the theory of classical diffusion
processes [e. g. 7~] that there is a path wise unique classical diffusion on V,
for each u E V, satisfying the Ito equation

where (q, p) are the coordinates of u, b’ the coefficient vector of the first
order part of  and {Bt : t  0} is a 2N-dimensional Brownian motion
of variance (2//~) and whose Markov generator is cø. The uniform bound-
edness of the coefficients r, b precludes the possibility of « explosion » [13 ].

/////

COROLLARY. - The Markov generator obtained above is (strictly)
elliptic if and only if the rank of the derivative of the map F : V ~ ~2N
is maximal, that is 2N.

Vol. 43, n° 2-1985.



142 R. HUDSON AND M. LINDSAY

Next we consider the conditions under which the classical diffusion
obtained in the previous theorem is in fact deterministic.

THEOREM 6. Let Yu be the classical diffusion (starting at u) correspond-
ing to the quantum diffusion { vt : ~ 0 } as in theorem 5. V is determi-
nistic if and only if either the « field » is at zero temperature (~3-1 - 0) or
the quantum evolution is governed only by a Hamiltonian (i. e.

Proof 2014 Y" is deterministic if and only if (2/j8)or = 0. 03C3jk = ij~ifk, so
6 = 0 if and only if each fe is constant, in other words, if and only if each Lk
is a multiple of the identity. The s. d. e. governing { vt : t &#x3E; 0} is, in this case,

so that, by the quantum Ito product formula

where r.Q03B8t = r1Q1,03B8t + ... + rNQN,eN and Zj = The result now
follows. /////

Rather than looking at the collection of diffusions {Yu : u E V} we can
consider the := 0 }, a version of which consists of diffeo-
morphisms of V, we then have the following result.

THEOREM 7. The flow of the stochastic dynamical system determined
(of theorem 5) is symplectic if and only if

Proof First notice that in Hormander form,

Necessary and o sufficient conditions for the flow to be symplectic are ’ [~] ]

Annales de Henri Poincare - Physique " theorique ’



143THE CLASSICAL LIMIT OF REDUCED QUANTUM STOCHASTIC EVOLUTIONS

that each of the vector fields X1 (i = 0, 1, ..., 2N) are locally Hamiltonian.
This is clearly true for i = 1, 2, ..., 2N and since

where I is the canonical isomorphism between T*V and TV determined
by A, and

Xo is locally Hamiltonian if and only if (6) is satisfied. /////
Notice in particular that the classical diffusions corresponding to quan-

tum diffusions whose generators are self-adjoint are symplectic.

SUMMARY AND CONCLUSION

Given a quantisation Q of (equivalently, a CCR representation over)
a symplectic space (V, A), any quantum diffusion { ut : ~ 0 } determined
by an s. d. e.

where [At, A* : is an N-dimensional Q. B. M. of variance  coth 
and H, has dynamical semigroup

with generator

where Lj = + which has classical limit

which is the generator of a classical diffusion Y on V, for each u E V, satisfying

where B is a 2N-dimensional Brownian motion of variance

and a Markov semigroup on Co

Deterministic classical evolutions arising from quantum diffusions « with-
out heat » and Heisenberg evolutions..

Several questions immediately arise from this work. First of all, is it

Vol. 43, n° 2-1985.



144 R. HUDSON AND M. LINDSAY

possible to obtain the classical diffusions directly as a limit (h ~ 0) of
the quantum diffusion ? The classical processes would have to be regarded
from the point of view of [1 ], that is one composes with a class of func-
tions (e. g. MK): f ~ Yt . Then one could consider the random functions
( f ~ and quantise these. One would then seek to compare the resulting
family of operators on ho with the operator A method of quantising
classical diffusions is clearly required. Secondly, the deformation theory*
of Bayen et al. [3] ] should permit extension to deal with non-flat phase
space.

Davies [7] has considered the classical limit of a class of quantum dyna-
mical semigroups arising from weak and singular coupling limits of quan-
tum particles interacting with an infinite free reservoir, and obtained
Markov semigroups on phase space. His is a different limiting process,
using a scaling similar to one used by Hepp [9] and working in state space
(Schrodinger picture).
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