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Legendre transforms and r-particle irreducibility
in quantum field theory:

the formalism for fermions (*)

Alan COOPER, Joel FELDMAN and Lon ROSEN
Mathematics Department, University of British Columbia,

Vancouver, B. C., Canada, V6T 1 Y4

Henri Poincaré, ’

Vol. 43, n° 1, 1985, Physique theorique

ABSTRACT. - For Euclidean field theories involving both a boson
field 4&#x3E; and fermi field let GM { J } be the generating functional of connected

Green’s functions with source terms Jm03C8mf03C6mbds, m = We

analyze the Legendre transform of J } in the framework of
formal power series on a Grassmann algebra. By using Spencer’s t-deri-
vatives, we establish, independently of perturbation theory, that is
cluster-irreducible for various choices of second order M. For certain

simple M’s we extend these results up to fourth order. We show that rM
generates M-field projectors and Bethe-Salpeter kernels with appropriate
irreducibility properties.

RESUME. - Soit la fonction generatrice des fonctions de
Green connexes dans une theorie des champs euclidiens contenant un
champ 03C8 de fermions et un champ 4&#x3E; de bosons. Les termes de source sont

. 

= On analyse la transformee de

Legendre de G~ {J}, dans Ie contexte des series formelles de puissances
sur une algebre de Grassmann. Grace aux t-derivees de Spencer, on etablit,
independamment de la theorie des perturbations, les proprietes d’irreduc-
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30 A. COOPER, J. FELDMAN AND L. ROSEN

tibilite de rM pour M de deuxieme ordre. Pour M assez simple on etend
ces resultats jusqu’au quatrieme ordre. On montre que rM engendre les
projections sur les champs de M et les noyaux de Bethe-Salpeter avec l’irré-
ductibilite appropriée.

§1 INTRODUCTION

This series of papers [7]-[~] is dedicated to the proposition that the rth
Legendre transform provides a unifying framework for the concept
of « r-particle-irreducibility » in quantum field theory. In our previous
papers (which we shall refer to as I-IV), we gave elementary non-pertur-
bative proofs of the irreducibility properties (r  4) and we explained
the role played by as the generator of (channel-) irreducible objects
such as Bethe-Salpeter kernels. In these previous papers we considered
the case of (Euclidean) quantum field theories involving a single scalar
boson field ~. The purpose of the present paper is to extend our analysis
to field theories that involve a fermi field This will enable us (see Ref. [J])
to apply the machinery of the Legendre transform to the study of the
energy-momentum spectrum of the Yukawa2 model with interaction 
The extension to general multi-field theories or to more general fields is
fairly obvious, and except for a few remarks at the end of this section,
we shall not pursue this generalization any further here.
To define the higher Legendre transform for boson theories (see I)

one introduces higher degree source terms,

Jn being a symmetric function of n arguments xi E into the generating
functional for connected Green’s functions

and one then makes a (functional) Legendre transform in the « variables »

Now consider a theory involving anticommuting fermi fields. (We shall
use the notation 03C8 = (03C8-, 03C8+) for the (independent) Euclidean fields in
place of the relativistic notation  ~; spinor indices will be suppressed.)

Annales de l’Institut Henri Poincaré - Physique theorique



31LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

It is clear that source terms such as 

with a = (a-, x+) being ordinary functions, are inadequate. In fact,

so that it is impossible to generate a Green’s function containing more
than one fermion.
The formal solution to this problem goes back to Schwinger [6 ] : one

requires that the fermion source « functions » rx:f: anticommute with them-
selves and with the fermion fields

Of course, the bosonic objects 03C6 and f commute with oc+ and among
themselves. The partition function for a theory of interacting (Euclidean)
bosons and fermions

then generates the Schwinger functions of the theory provided one inter-
ð

prets the functional derivatives - 
of Z in a suitable non-commutative

sense (basically as derivatives on a Grassmann algebra [7 ]). The expec-
tation .~ in (1.2) corresponds to the formal measure

where C and So are the free propagators or two-point functions for the
boson and fermion fields

and V is the (local) interaction. For example, for the (unrenormalized)
Yukawa model

and we have

where d (03C6) = const. e -1 203C6C-103C6 03B403C6 is the well-defined o boson Gaussian
measure and

is the Euclidean Dirac operator with external field The fermion inte-

gral over anticommuting variables in ( 1. 5) is interpreted according to
the prescription [8] ]

Vol. 43, n° 1-1985.



32 A. COOPER, J. FELDMAN AND L. ROSEN

It is worth noting that the formulation (1.5) of Z in terms of anticom-
muting sources is consistent with the Matthews-Salam-Seiler [9] ] for-
mulation of the Yukawa model. To see this we complete the square in ( 1. 5)

and, since we may regard ( ~ _ + S*x+) and ( ~r + - as new anti-

commuting integration variables, we apply ( 1. 7) to obtain

(with a different constant). Taking formal functional derivatives of Z (in
the anticommuting sense) yields the usual (unrenormalized) MSS formulae
for the Schwinger functions (see (2. 35)).
The procedure for obtaining the Legendre transform in a theory with

fermions may now be obvious to the reader. For instance, to define the
first transform r(1), we would set introduce

variables {{3, A } conjugate /} by taking appropriate derivatives

03B4 03B403B1G(1), 03B4 03B4fG(1), and then define r(1){{3 A} = 

in the usual way, always respecting the non-commutative nature of the
variables. However it is very awkward to make rigorous the notions of
(complex-valued ?) « functionals » Z, G~ 1 ~, ... on a space of non-commuting
variables and of the desired operations on such « functionals ». Fortunately
for the purposes of our analysis it is not necessary to do so. Instead we
shall interpret such a « functional » as the sequence of its formal moments,
each moment being itself a well-defined multilinear form on a space of
ordinary functions. The desired structure (1.1) of anticommuting source
theory will be realized in the way we define various operations on the
sequences of moments. Now the natural setting for this point of view is
the framework of formal power series (fps) that we introduced in II for
the special case of pure boson theories and that we develop for the case
of theories involving fermions in § II of this paper. For example, consider
the partition function Z of ( 1. 2). By a formal computation based on ( 1.1 )

Annales de Henri Poincaré - Physique " theorique "



33LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

where

Here the y’s are integrated over M~ and the x’s are integrated/summed
over f~d x { -, + } x { 1, 2, ...,2~~} where the first index set provides
for the two independent fermi fields t/1:t, and the second set for the 2~d~2]
spinor components of each field. We thus regard Z as the sequence of
multilinear forms . 

.

where now each aj is an element of the (ordinary) function space

where

and each fj is an element of

As is known [9]-[77] for ~Y2 (the weakly coupled renormalized Yukawa
model in d = 2 dimensions), the space of jointly
continuous multilinear forms on x that are antisymmetric under
permutation of the first m arguments and symmetric under permutation
of the last n arguments. Z == {Z~} is thus an element of the space of
C-valued fps on (~ 

Besides allowing us to interpret the notion of a « functional of anti-
commuting sources » in terms of functionals on ordinary spaces, the fps
framework has the same advantage that we have already exploited in II
for boson theories, i. e., it enables us to avoid the difficult analytic
question of convergence of the series : Operations on the « functio-

nals » (Z -~ Z’) are interpreted as corresponding operations on the
coefficients ({Z~} -~ {Z~}). For most standard operations, 
is given by a finite expression in the Zm,n’s. Hence our results, while stated
in terms of « functionals », are actually shorthand for well-defined statements
about the coefficients. In this way we can draw rigorous conclusions about
the coefficients while retaining the conceptual and notational advantages
of the « functional » point of view.

In the next section we shall carefully define the fps calculus that underlies
this reinterpretation. However, for the remainder of this introduction we
shall revert to the language of anticommuting source theory in order to

Vol. 43, n° 1-1985.



34 A. COOPER, J. FELDMAN AND L. ROSEN

describe the Legendre transform in an intuitively direct way. We introduce
general source terms of the form

where

being the degree of the fermion source and mb the degree of the boson
source ;

b) is a product of m f fermion fields and mb boson fields,

c) for notational compactness, each fermion argument

carries a space-time point, an index ( ± ) which determines whether the
field is t/J I’ and a spinor index; each boson argument xi is simply a point

d ) the source « functions » are antisymmetric in their fermion
arguments and symmetric in their boson arguments;

so that sources and fields of odd fermion degree anticommute with each
other and commute with sources and fields of even fermion degree.

f ) repeated arguments are integrated/summed over.
Remarks 1. - In the body of this paper we shall concern ourselves with

the case of « second order » M’s, i. e. the case of source terms with

(however the Appendix treats the case of fourth order M’s).
2. In order to concentrate on the formalism we shall ignore questions

of rigour such as what spaces the Jm’s belong to (for a discussion of such
points, which entail Wick-ordering the sources, see Ref. [5].

3. As the need arises, it will be appropriate to place further restrictions
on M (see Definitions 111.5 and 111.10 for the notions of « gapless » and
« triangular » M).

4. We shall often write f = ( 1, 0), b = (0,1 ), f b = ( 1,1 ), etc.

The generating functional of Schwinger functions is

Annales de l’Institut Henri Poincare - Physique théorique



35LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

and the generating functional of connected Green’s functions is

The Schwinger functions and Green’s functions are generated by taking
functional derivatives of ZM and GM. For a complete discussion of deri-
vatives on a Grassmann algebra and in particular of distinction between .

left and right differentiation, see Berezin’s text [7] ] or § II; as examples
of the product rule we have for the left derivative (oc == 

and for the right derivative

where 03B4(x, y) is the appropriate product of 03B4-functions in the continuous
variables and Kronecker-03B4’s in the discrete variables. We shall denote

~
the left derivative of G with respect to Jm by both ðJ 

G and and the

right derivative of G with respect to Jm by both G ðJ 
and One part

m
of our attempt to organize chaos is the (arbitrarily chosen) convention
that whenever possible we shall apply only right derivatives to GM { J}.
Consequently we define the variable A~ conjugate to Jm by

where is chosen independent of J so that Am = 0 when J = 0.
Note that as in I-IV we use the « connected variables » as the conjugate

variables rather than the « Schwinger variables » (see Lemma 111.4
for the relation between the two). The Legendre transform rM of GM is
then defined by

where refers to the inverse of the map J ~ A defined in ( 1.16).
For derivatives of rM we adopt the opposite convention to that of GM,
i. e. we use only left derivatives. (This convention eliminates certain factors
of ± 1 from our formulas). In § III we interpret the definition ( 1.17) in
the context of fps and we work out the conjugate relations (expressing J
in terms of AmrM) and the Jacobian relation for rM.

In § IV we establish the irreducibility properties of (i. e. of the gene-
ralized vertex functions generated by rM) for various choices of « second
order » M. As in I-IV we employ an analytic notion of irreducibility due
to Spencer [72] ] which does not rely on perturbation theory. The basic

Vol. 43, n° 1-1985.



36 A. COOPER, J. FELDMAN AND L. ROSEN

idea is as follows (for more details see § II of I). Let 6 be a (d - 1 )-dimensional
hyperplane separating f~d into two half-spaces ~ and and let 
and C~ be the fermion [5] ] [7~] ] and boson propagators (1. 4) but with
Dirichlet B.C. on (7. For t = (t f, tb) in [0, 1] ] x [0, 1] ] we define the inter-
polating propagators

and

Note that at t = 0, So(t f) = and C(tb) = CQ.
We then introduce this t-dependence into the basic expectation  . ).

For a model defined by ( 1. 3) this is accomplished by replacing So 1 and C -1
in the Gaussian part of the measure by and 
The effect of this replacement on the graphs of perturbation theory is

to replace fermion lines So by and boson lines C by C(tb). At 
(Dirichlet B.C.)

where by we mean that x and y be on opposite sides of 0", i. e. the fermion
or boson line crosses (7. On the other hand, -

y) ~ 0 and y) ~ 0 if x03C3y (1.19 b)
since e. g. = C - C(1 and C does not vanish across 0". Now consi-
der a perturbation theory graph ~(r) with external vertices at x and y
with By (1.19) ~(O) = 0 if x and yare connected in ~, and = 0
if x and y are connected by at least r f + 1 fermion or rb + 1 boson lines in .
Thus the vanishing of t-derivatives of (t)-measures its degree of irredu-
cibility. This idea applies directly to more general objects than graphs
to yield an analytic definition of irreducibility independent of but consistent
with perturbation theory. For instance the cluster-irreducibility of hM
is expressed as the cluster-connectedness of t-derivatives at t = 0

(we write 0 ; see (1. 23) and Definition III . 3). A practical advantage
of this analytic definition is that the formulas for t-derivatives of GM and
rM have a fairly simple structure (see Theorem IV. 2).

Naively one would expect the irreducibility of rM to be simply that
0 for exactly those r’s in M. However, for M’s that are not « trian-

gular », this expectation is dashed by the presence of more than one basic
field (this has nothing to do with fermions per se as we illustrate at the end
of this section by looking at a Gaussian, purely bosonic, multi-field model).
On the other hand, the presence of fermions enhances irreducibility because
of « fermion symmetry » (the expectation of an odd power of fermi fields

. 

vanishes). As a result, the irreducibility results of Theorems IV. 2 and IV. 4,
are a little more complicated than originally anticipated.

Besides generating vertex functions (via degree one derivatives 20142014 and

Annales de l’Institut Henri Poincaré - Physique theorique



37LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

20142014), rM generates (via its higher degree derivatives) « M-field projectors »
_ -
PM, M-truncated expectations E~,n ==  0~(1 - P~C"), and Bethe-Sal-
peter kernels

We describe this generating role in § V and in so doing - derive Bethe-
Salpeter equations relating EM’s and KM’s. Given the irreducibility results
of § IV, we shall thus have completed one of the main objectives of this
paper, namely, to establish the analytic irreducibility of the various Bethe-
Salpeter kernels needed for the analysis of the spectrum of the Y2 model [5 ].
The irreducibility results of § IV can be extended to the case of certain

higher order M’s (see Theorem A .1), but the discussion of these extensions
has been banished to an appendix. ,

In our previous study of the transformation from G{J} to r { A }
for a single boson field we found that transforming more source terms led
to greater irreducibility of r. This same pattern more or less holds for the
more general transform considered here, but, as remarked above, some of
the irreducibility properties of rM turn out to be rather counterintuitive.
To illustrate this point we consider a free (i. e. Gaussian) multi-field model
where the fields are all bosonic. Define the partition function with linear
and quadratic sources by 

.

where

( ~ 1, ..., consists of n boson fields,
J == (J 1, ..., Jn) is the set of linear source functions,
L = i, j = 1, ... , n is the set of quadratic source functions y),

each symmetric under i ~ j, 
, ~=(~,...,~)e[0,ir,

= + Vtj where is a boson covariance as in (1.18 b)
and where the « interaction » = Xj).

Here ~ ~,~~ ~ is the set of coupling constants, and we set = 0.

By a straightforward Gaussian integration (we suppress the t )

Let P be a subset of the set 9 of unordered pairs (ij ). We transform all
the J’s to conjugate variables

Vol. 43, n° 1-1985.



38 A. COOPER, J. FELDMAN AND L. ROSEN

but only those with (ij) E P to the conjugate variables

For (ij) E P’ = &#x26;&#x3E;BP, we set Lij = 0. The Legendre transform rP is then a
functional of A and Bp = { E P } and it is easy to compute that

where in (1.22) we use the symbol to mean the functional
determined by (1.21 b) (we shall not attempt an explicit deter-

mination of Bp} !).
To illustrate the paradoxical nature of the irreducibility of suppose

first that P = {(11)}. Then, as we show below, t ~ is 2-cluster-
irreducible (2-CI) in t 1. However if we further transform G, say by taking
P == {(11), (22)}, then hP is no longer 2-CI in t1! By 2-CI in t1 we mean that

where we write F ’" 0 to mean that the functional F {A, B ; t ~ is cluster
connected, i. e.,

where = A(x) (in which case x E [R~) or = B(x) (in which case
x E ~2d ) ; « at 0 » means that t = 0 and

and A and B are in ~V’6, the class of Co functions that vanish in a neighbour-
hood of (5. The functions in %0- are insensitive to changes in B. C. in C -1(t )
so that (see Lemma V . 2 of II)

For general P, we have by ( 1. 22) and ( 1. 24) for A, Bp E 

Annales de Henri Poincaré - Physique " theorique "



39LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

where the restriction (ij) E pc arises because of ( 1. 24) (for (ij) E P, is an

independent variable in and the restriction (/7c)eP arises because

Clearly if there are no j and k with E pc and E P, then ~t0393P = 0,
is independent of ti. In particular, this verifies (1. 23) for P = {(11)}

and all r &#x3E; 1. On the other hand if there are j and k with (ij) E pc and ( jk) E P,
then is not 2-CI in ti in general. In particular, for P = { (11), (22)} and
for ~ 0 the perturbation series for r~~)B(22)(y) contains terms of the
form

where These terms are manifestly not 2-CI
in t 1. Of course, by enlarging P to {(11), ( 12), (22) } we would recover the
irreducibility ( 1. 23). In fact in the Gaussian model with n = 2 the expected
irreducibility statement

fails only for P = {(11), (22)} and P = {(12)}.
The conclusions of the above paragraph for the Gaussian model motivate

the results we obtain for the Yukawa model (see Theorem IV .1) and serve
as a guide for irreducibility results we expect for a general multi-field model.

§11 THE FORMAL POWER SERIES FRAMEWORK

The purpose of this section is to develop the framework of formal power
series (fps) for « functionals » whose moments are multilinear forms on

2õ x 2; that are antisymmetric on 2õ and symmetric on 2;. This
framework will enable us to define « functionals » like J } of ( 1.14)
rigorously as fps and to realize the structure ( 1.13) of anticommuting
source theory in terms of a rigorous fps calculus. In order to consider
an object like

which takes values not in C but rather in a space (see (1.10)-(1.11)) of
multilinear forms we need to generalize the definition (1.11) to allow our

fps to take values in a general vector space J~f:

DEFINITION II.1 (Formal power series). - Given topological vector

spaces e and  we define the space of -valued fps on by

Vol. 43, n° 1-1985.



40 A. COOPER, J. FELDMAN AND L. ROSEN

where m = (mo, me) runs through the index set ~ = {0,1,2, ... }2 and
~e ; 2) is the space of 2-valued jointly continuous multilinear

forms on x which are antisymmetric (symmetric) under per-
mutation of the first mo (last me) arguments.
Remarks 1. 2014 As indicated by the symmetry conventions, the space 20

(resp. will consist of functions which are associated with an odd (resp.
even) number of fermions and which we shall usually denote by Greek letters
(X, /3, ... (resp. Latin letters f, g, ... ). For example, to define the right side
of (2.1) as an element of ~ (~o, 2e ; when M = {(1,0), (0,1),
(1,1), (2,0)} = {~,/~} we would choose

and

2. We may occasionally split the test function space in different ways.
For instance instead of regarding the test function space in the above
example as with J=(Jo~)=(~/) we may write it as 
with J = C ~1,~2 = C ~2,~1 = (J/Jb)
and J2 = (Jfb, In general an element of a subspace of will be labelled
with the same subscripts or superscripts used to label the subspace.
The space .ff(20, ~e ; 2) is a topological vector space with the obvious

definitions of vector addition and scalar multiplication and with the
product topology. In the important case we can make F into
an algebra with multiplication defined as follows.

DEFINITION II . 2 (Products). - If u = { = { E 2e ; C)
then uv is defined by

where m’ runs over the ~)! 0  mo, 0  ~ ~ ~ },

(m m’) = (m0 m’0)(me m’e) and 0 denotes the tensor product of multilinear forms

antisymmetrized in the 0-arguments and symmetrized in the 
ments. Explicitly,

Annales de l’Institut Henri Poincaré - Physique théorique



41LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

where Aa antisymmetrizes in the oc’s, S f symmetrizes in the f ’s, and

Remark. More generally when u E ~(20, ~e ; 21) and v E ~(20, ~e ;
~2) and a jointly continuous product is defined on 21 x 22 then we can
define uv and vu as in (2 . 3) (see for example (2. 39) below where the product
is an operator product). Whenever we write a product uv we shall be
assuming this additional structure, and whenever we write formulas like
(2. 8) below we shall be implicitly assuming that the product on 21 x 22
is commutative.

Although we have cautioned the reader about the mathematical impro-
priety of « functionals » of « anticommuting sources, the motivation for
Defin II. 2 and for most of the definitions to follow comes from thinking of
u E $’(20,. 2e C) as the formal series

where the oc’s satisfy the multiplication rule

and differentiation rules based on (1.15), and the f’s are ordinary functions.
Note the order of the a’s in (2.4). Multiplying two series of the form (2.4)
together using (2.5) leads at once to the definition (2.3) (the binomial
coefficients in (2 . 3 a) arise from our convention of placing factorials in (2 . 4)).
In fact we shall generally write down a formal expression like (2.4)-(2.5)
in order to define a fps u, i. e. the formal series is to be interpreted simply
as a specification of each component um E 
We pause to identify the above multiplicative structure in terms of

Grassmann algebras. The Grassmann algebra [7 ] associated with the
finite set of generators {03B1k} 1  k  p } is the vector space of dimension 2p
having as a basis {1 } ... 03B1km | ~ m ~ p, k 1  k2  ...  km}.
The multiplication law in this algebra is the natural extension 
Hence there is a 1-1 correspondence between elements

and sets v = { of coefficients provided we impose the condition that
each function vm( k 1, ... , km) be antisymmetric under permutation of its
arguments. In terms of these sets the multiplication law is

Vol. 43, n° 1-1985.



42 A. COOPER, J. FELDMAN AND L. ROSEN

where A is the antisymmetrization operator. When the Grassmann algebra
has infinitely many generators the situation is similar. An element is a
set { = 0, 1, 2, 3, ... } with v0 ~ C and for m &#x3E;_ 1 vm is an antisymme-
tric « function ». But now there are topological considerations. One choice
of topology is the product topology :

By rewriting as ¿ 0} 0} we may view any
element M of /#’ { 20, ~; C } as an fps (in the sense of II) on 2e taking
values in /#’(20), In other words

(2 . 3) is nothing more than the natural multiplication law in (0)).
More generally when the values occur in a space Y we write

In general, ~(20 ; 2) is not an algebra but it is a module over the ring ~(2o)
since multiplication between an element of ~(20 ; and an element of

is defined as in (2 . 3). As a generalization of (2. 6 b) we have

The point of view implied by the right side of (2 . 6 d) is convenient for mul-
tiplication of fps and for carrying over results from II.
We also introduce the following notation to record the degree in the

0-argument :

and similarly go and It is easy to see that

and that if at least one of u or v is even (i. e. u or v E ~ e) then

Having a definition of product we also have a definition of the power uk

of an element u E e ; C), and, given a function F(z) = 03A3akzk
~ k=0

analytic atz = definition of F(u) = 03A3akuk. If u0,0 = 0, as we shall
k=0

Annales de l’Institut Henri Poincare - Physique theorique



43LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

usually assume, then we need never worry about the convergence of the
sum over k because the sum defining F(u)m will have only finitely many
nonzero terms. (Indeed this will be the case even if 03A3akzk has radius of
convergence zero.) A certain amount of care must be exercised when com-
puting with F(u) when u is not even. For example, by (2. 8 a)

so that in general

On the other hand, if at least one of u or v is even then (2. 8 b) entitles us
to use such familiar tools as the binomial theorem

and the product rules for exponentials and logarithms

The existence of multiplicative inverses is guaranteed by the next theo-
rem whose proof follows that of Lemma II.6 of II. Here the identity 1
in ~ (~o, ~; C) is defined by 10 = 1 with 1 m = 0 otherwise.

THEOREM 11.3 (Multiplicative inverse).

a) If u E ~ (~o, C) has 0 there exists a unique u -1 E ~ (~o, ~.
C) with = uu-1 = I.

b) If u is even, then so is 

EXAMPLE 11.4. - Consider the partition function for the renormalized
eY2 model [9]-[77] ] (corresponding to the unrenormalized form (1. 8))

where

(detren is obtained from det by Wick ordering and mass renormalization
factors [9 ]), and

where we have replaced by ~(~) = (~(~c) 2014 and where

Vol. 43, n° 1-1985.



44 A. COOPER, J. FELDMAN AND L. ROSEN

S = (1 + ~So ~) ~So acts on ~f-1/2 (8) C~. As we remarked after (2.4)-(2.5),
the relation (2.14 ~) defines a fps M = M(o,i) + 2! ~(2,0. where

Here St denotes the transpose of S with respect to both spatial and spinor
variables so that a _ . S~8+ = Sex - . /?+ and (2 .14 b) defines an antisymmetric
bilinear form on ~f = ~f_ 1/2 (8) C4. 

-+

The expression (2.14 b) is still only formal even for smooth since S
need not exist as a bounded operator on ~ f and so u f a, need not
be an element of ~y = ~(~~ Yfb; C). Nevertheless, we shall pretend u
is a well-defined element of FY for all interpret eu as explained above,
and then carry out the ~-integration. The justification for this formal
procedure is that the integration over 03C6 effects a cancellation [9] between
the « poles » of Sand « zeros» of detren, and so the resulting formulas for Zm
correctly define Z { J } as an element of  y. The advantage of this formal
procedure is that certain algebraic properties ofZ{J} become transparent.

Continuing with the example, we have Z = 1 + v where v is an even ele-
ment of ~ Y with vo = 0. Hence-

is a well-defined element Suppose we introduce a t-dependence into Z
and G as described in the introduction :

Here = d tb is the boson Gaussian measure with covariance C(tb)
(see (1.18)). At t = 0 the measure dvt decouples across cr [10 ] ; so does S(t f)
so that

where /±M is the characteristic function of the half-space [R~. From (2.17),
(2.10) and (2 .11 ) we then obtain the crucial decoupling relations
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Functional derivatives are defined as in II except that for an 

tional derivative it is natural to define both a right and left derivative. If
we formally apply the rule ( 1.15) to the series (2 . 4) we obtain

and

These expressions motivate the following definitions:

DEFINITION II . 5 (Functional derivatives). Given UE ~ (~o, ~e ; ~)

the left 0-functional derivative u = 03B403B1u ~ au is defined as a fps in $’(20, e;

-U(1,0)(0, e; 2)) by 

the right 0-functional derivative u  ~ u03B403B1 ~ u03B1 is defined as a fps in

~(~o~;~i,o)(~o,~~))by ~ .

and the derivative 2014 ~ ~M = u - u is defined as a fps in
. f .

~(~ ~; ~; ~)) by

In the case where 20 or 2e is a space of (generalized) functions 
8 

. 

8 bu .

or { f (x) } we write - u’ 
u 

8a(x) ’ - 
for the kernels of the functionals

(2 . 20). ðrx(X) ðrx(X) ðf(x)

Note that a multiple functional derivative
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is an element of ~ (~o, ~e ; ~~i+ j,k(~0~ ~e ~ ~)) where, on the basis of
(2. .9), we adopt the following sign convention for the form (2 . 21) :

Note also that if u ~ Fl then the above derivative is in Fl-i-j.
Another convenient way of defining a fps M {J} is thus to specify all its

derivatives ( ð ... ð) H 0 }
As examples of (2.22) we have for the fps Z {x,/} of (1.9) (V {0, 0}

means V 0,0 )

since ( - and for the fps ZM { J } of (1.14)

The following rules for computing with functional derivatives follow
readily from the definitions (2 . 20) and (2 . 22) :

TABLE II.6. Fps calculus.

Commutativity and associativity
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Relationship between left and right derivatives

Product rules

Derivatives o, f ’ multiplicative inverse
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Chain rule

,

As an illustration of the above manipulations consider the partition
function Z for the Y2 model in the MSS form dveu (see (2.12)). By (2.22)
and (2 . 26 a) J

Let denote the restriction operators from ~ f to ~f-i/2 (8) C2 defined
by 7r-(oc-, oc+) = (x- and 7r+((x-, oc+) = x+, and let

so that multiple derivatives (03B4 03B403B1+)i(03B4 03B403B1-)j yield (antisymmetric) functionals~a + ~a _
on (~_ 1~2 (8) ~2)~ x (~-1~2 (8) ~2)’. Then by (2 . 30) and (2 .14 b)

and

Hence by (2.29)

Annales de l’Institut Henri Poincaré - Physique ’ theorique "



49LEGENDRE TRANSFORMS AND Y-PARTICLE IRREDUCIBILITY

In this way we obtain

Identifying (2.23) and (2.34) yields the MSS formula for Schwinger func-
tions,

(As the computation (2 . 33) shows, vanish

DEFINITION II. 7 (Composition of fps). - Suppose that 03B2 E F0(0, 2 e;
~o), g E ~e(~o~ ~e ~ ’~e) with = 0, and Then
the composition u { ~ ~ . , . ~, g ~ . , . ~ ~ = u ~ (/3, g) E ~ (~o, ~e ; 2) is
defined by

where m’ - =(7~ are pairs of non-negative integers with

and the arguments of 03B2j03BA and k are (03B1j10 + ... j03BA-10 + 1, ..., 03B1j10 + ... + j03BA0;
~+.,+~-1+1,...,/~+...+~). Note that because we must

have~+~ ~ 1 for all k ; consequently and all sums
in (2.36) are finite.
A simple example of composition of fps is that of composition with a

linear operator. If and Ti is a continuous linear ope-
rator on ~~, then
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Just as in II we have :

THEOREM II . 8 (Chain rule). Let 03B2 E F0(0, e; V0), g È 

Ve) with g’o = 0, and M E )

d) If ~3, g, and u depend differentiably on a parameter t, then

Remark. The suppressed arguments in b), c), d ) and the second result
of a) are determined by the pattern of arguments in the first result a). An

expression like - - is to be interpreted as the value of 2014 (regarded as ag .f ~g

linear functional on ~’ e) at - (which takes values in Ye because g does).g .

By imitating the proof of Lemma II .10 of II we have :

THEOREM 11.9 (Composition inverse). Let ~e ~ and

g E ~ e( ‘~o, ‘~e, ’~’e). If /3~ i o&#x3E; : ~o -~ 20 and g~o i ~ : ~’e ~ 2e exist as
continuous linear maps, then there exists a unique composition inverse
(Y~ h) to (~); i.e., and with

and

Here the right side a (and similarly k) represents the fps in ~e ;
whose components are all zero with the exception of the ( 1, 

nent which is the identity operator on 20.
The following theorem is a direct consequence of the uniqueness of the

composition inverse.
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THEOREM II.10 (Inversion of symmetry). Under the hypotheses of
Theorem II.9, if there exist continuous linear operators T~ on ~i and Ui
on ~’i with continuous linear inverses such that

then the composition inverse (y, h) to ( ~, g) satisfies

If we right-differentiate the two equations in (2. 38 a) with respect to oc

and f using the chain rule, we obtain 4 equations which can be written in
matrix form as

Here 1~ and I are the identity operators on ~e and J~o 0 ~e.
(2 . 39) is to be interpreted as an equality of fps in 0 !Ee))
where 0 is the space of continuous linear operators on J~o EÐ ~.
The first factor on the left side of (2 . 39) takes values in the space ~(~o 

of continuous linear operators from EÐ to J~o 0 ~.
and the second factor takes values in the space 0 Q ~’e).
Similarly we can left-differentiate (2. 38 a) or differentiate with respect
to a parameter :

THEOREM 11.11 (Jacobian relations). - Let y(h) be the composition
inverse to ([3, g) (assuming the hypotheses of Theorem 11.9).

a) As an equality in 0 ’~e))

b) As an equality in 1/0 0 ’Y~’e))
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c) If in addition ~3 and g depend differentiably on a parameter t then so
do y and hand

As an example of the application of Defn. II. 7 and Theorems II. 8-II .1‘1,
we consider the construction of the first order Legendre transform 
where M = {(1,0), (0,1)}. Instead of using the notation J = (J(1,O), 
and A = (A(1,o), A(0,1») for the basic conjugate variables (as in ( 1.17))

, 
we shall use J = (x,/) and A = (/~). From Example 11.4 (we suppress
the t-dependence) we know that

It follows that

and

where (see ( 1.10))

In order to apply Theorem II. 9 to invert the map (oc, f ) -~ ({3, g) of (2 . 41)
we first compute (using (2. 27)-(2. 29)) that

and

Assuming, as is true for e Y2 (see Ref. 5), that is a bounded operator
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from to H f and that is a bounded operator from ~b to Jfb,
we may invert (2.41) to get _

The first order Legendre transform is then defined by

as ari elemept of ~Y = ~b ; ~). The chain rule (Theor. 11.8)
together with the product rule (2 . 27 b) give the conjugate relations :

(in each case the first and third terms cancel as do the second and fifth).
Theorem 11.11 b) gives the Jacobian relation :

In the next section we generalize the above construction of to the case

of general M.
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DEFINITIONS AND BASIC PROPERTIES
OF THE LEGENDRE TRANSFORMS

We now set out to interpret the formal definition of rM given in ( 1.12)-
(1.17) in terms of the fps calculus of § II. We shall soon place some restric-
tions on M, but for now let it be any subset of

Since the components of m E ~~ represent numbers of fermi and bose argu-
ments, we find it convenient to denote m = (m f, mb) alternatively by
m=mffmbf or by a string of m f f ’s and mb b’s eg. (2, 
We shall order ~~ in the obvious way, and 
and norm it by + mf. We shall also adopt the familiar multi-
index conventions such as mn = mbnb), m! = mb ! mf!, etc.

In particular, as in (1.12), we shall consider the « direct sum » formal field
C = (~f, ~b ) _ ( ~, 4», and for xm = (x 1 . ~ .. g 1 ... gmb) (with y~ E ~
and xi ~ Rd x { +, - } x 
and we shall let (7= (-1, + 1 ) so that 
Now consider two « single field test function » spaces 2 and ~b along

with their direct sum ~1 - ~ f EÐ ~b. With each point m E M we associate
a « source function » space

Here the symmetric and antisymmetric tensor products and fmf
are defined in the usual way as subspaces of the corresponding tensor
product spaces and we shall also refer to the « appropriately symmetrized »
tensor product of (2. 3 b) in terms of which we have

and for N E N

For M c ~~ consider

as subspaces of ~~ and define PM to be the projector in j5~ on 
(We shall use the same notation, PM, regardless of the base spaces ~f
and ~b, with any necessary distinctions being inferred from the context.)
Whenever the superscript M is omitted, we are referring by convention
to the case M = ~.
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As in § I, for Jm E 2m we let

and

Our definition of the partition function then moti-
vated by (1.14) and the following formal calculation.

(The products all commute with everything, and if in the last step
we extract J’s starting from the right, then each is commuted past an
even total power of anticommuting objects on the way to its final desti-
nation.)

DEFINITION 111.1. - The partition function, Z, is the unique element
of obeying

for all N, ..., mN, ~i..... xmN .
Remarks 1. 2014 Here ( l&#x3E;m1(.) ... C~(.) ~ denotes an appropriate Schwin-

ger function. For Y2 without cutoffs the Schwinger functions are cons-
tructed in refs. [10] arld [77]. To introduce cutoffs and/or t-dependence (as
described in § 1) in Z we just repeat the above definition with the appro-
priately modified expectation.

2. The choices of b and f are dictated by the requirement that  . )
be sufficiently regular in t.

3. The vanishing of expectations involving net odd powers of 03C8 implies
that Z is always even.

Using a straightforward fps composition we now have

DEFINITION III. 2.

Vol. 43, n° 1-1985.



56 A. COOPER, J. FELDMAN AND L. ROSEN

DEFINITION III. 3.

Let

and

Then

(Here, in the same spirit as our previous notational conventions, by 

we mean

Remarks 1. - Am - is subtracted so that A = 0 at J = 0.

2. For Definition III. 3 to make sense as it stands it is necessary
for AM to have a fps composition inverse taking values in the domain

G - GJPM. In [ref. 5 J we shall establish that, for ~Y2, rM is a

well defined element 2;M; C) and COO in t for suitable test func-
tion spaces 2ÓM and 2;M.

3. Unless otherwise specified we restrict our attention to evaluation
of rM at arguments, A, with Am = 0 for m E MC.

We now explain how to interpret in terms of fps the discussion of irre-
ducibility given in § I.
To start with we let Pj, denote the projectors defined by

and Po = 1 - P+ - P-. We also let ~~ = P~.
The phrase « at 0 » and symbol o then denote restriction to both ~==(0,0)

and to smooth text functions J supported away from 03C3 with PoJ = 0.
So F = G at 0, means (F - G) o = 0. (It follows directly from the defi-
nition of fps derivatives and equality that if F = G at 0, then also

P 
5 5 5 

- 

~
± - F = ± a J G at 0, i. 

03B4Jm(xm)
F G at 0, whenever the

arguments of xm are all on the same side of cr.)
The same decoupling properties used to establish (2.18) now easily

generalize to yield the results that

and so
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By we shall mean that (the Rd component of) each component xi
of xm = (x 1 ... xm) is separated by 03C3 from all components of x’m’. It follows
immediately that

This is what we mean by the statement « G is cluster connected » which
from now on we abbreviate as « G ~ 0 » (we shall also write F ’" G whenever
F - G is cluster connected). More generally, we have the following definition.

DEFINITION 111.4. - For we say that F{A,~} is
r - CI ( « r cluster irreducible » ) if and only if for all s ~ r we have

(i. e. for all m, whenever The

property of being (0,0)-CI is the same as « cluster connectedness ».

Remark 1. ~. - Here, since the argument of r is A, 10 denotes res-

triction to t = 0 and PoA = 0. Fortunately, there is no confusion

here with the restriction to PoJ = 0 since, formally speaking, « at t = 0,
PoA=0 », i.e. at t=o, and 

(see (4.17) of I and Lemma II .11 of II).
2. The cluster connectedness of all rM follows easily from the above

remark together with (3.11) and (3.8).
In order to apply this definition and to investigate the other irreduci-

bility properties discussed in § I we must compute various t-derivatives.
A simple application of the chain rule (Theorem II . 8 d )) yields, for i = f or b

For the first term on the right, the explicit formula

with = will be derived in Theorem III.16.

As far as the second term is concerned, if rM had been defined using the
Schwinger functions Am = GJm for mE M as dual variables instead of the
connected functions Am = GJm - Am, then for k E M we would have

{ } = js’~ {A } } + Ak, independent of t, and so the
second term would drop out. But our « connected variables » Am are not
the same as the « Schwinger variables » GJm though they are closely related,
and the relationship bears looking at.
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In fact, by (3 . 5) and (2 . 24), for mE ~~l we have

But if

is now defined by the obvious rule

then from (3.15) we have, for 

where

is even. Hence by (2 . 27 e)

But

so that by (3.16)-(3.19) we obtain :

LEMMA III.5 (Relation between Schwinger and ’ connected variables).

where

and

Remark. 2014 F~ {~ } depends only on ak for k  m. So, as long as k _ m
implies k E M, we have Fm = PM and so

(independent of M).
We can now obtain the relation between the J-variables and 0 deriva-
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tives of rM that is « conjugate » to the definition of A in terms of deriva-
tives of G.

In view of the last remark, our task is considerably simplified if we
restrict to the case of « gapless » M, where we say

DEFINITION III 6. - A subset M of ~~ is said to be gapless if and only
if for m E M,

In fact we have

THEOREM III . 7 (Conjugate relation). 2014 If M is gapless, and mE M then

where

and the 0 appropriately symmetrizes the my-arguments of 1m with all
k-m arguments of 

Proof:

by the product rule (2 . 27). If m E M, then in the first sum only terms with
k E M survive (since AmJk = 0 for mE M). The first and last terms
now cancel because changing GJk to JkG introduces a factor of 03C3k (see (2 . 26))
and commuting GJk with AmJMk (by (2 . 8 a)) introduces so that the
total power of 03C3 adds up to mk + k + k2 - (0,0) mod evens.

So
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But by the remark following Lemma III . 5, we see that for k E M (assumed
gapless)

giving (3 . 24 a).
To obtain (3 . 24 b) we compute

Now the inside sum is empty if ~! ~ k. When ~  ~ we can combine the
combinatoric factors, noting that N choices of (for k~ to equal m) raises

_ 1 to 1 1) ! 
and ( k 1 

... k 

kN - 1 ) = ( k , to see that with
N!"(N - 1)! 
n = N - 1, the second factor on the right becomes

So

where F(o,o) = 1 and Fr == 0 if r,l. (0,0) giving (3 . 24 b).
If we now combine (3.14) and (3.23) we find

by (3 .14 b) and (3 . 24 a).
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Iteration of this formula yields formulae for higher derivatives 
in terms of derivatives Ci- 1, ëi- 1, ..., and for various p, r  I

s. Thus the study of general t-derivatives of rM is reduced to
the study of t-derivatives of A and of the moments Ar-
In particular, to study the second moments AAhM, we shall combine

the conjugate relation expressing ArM in terms of JM with the inverse fps
Jacobian relation (Theorem 11.11). To prepare for this
we shall first express the A/s in terms of a generating functional.

DEFINITION 111.8. - For we define

and

LEMMA 111.9.

(Here 0 appropriately symmetrizes the n’ rightmost arguments of Smn-
with all n - n’ arguments of 

Proof : ,

establishing (3 . 30 a). (3 . 30 b) then follows by (3 . 26). II

Remark. 2014 It is natural to interpret the Smn’s as operator valued fps in J
from 2n to 2; and to consider these operators as matrix elements of a
single operator valued fps S (in just the same sense that AmJn are matrix
elements of the Jacobian operator valued fps AJ).
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In the same spirit we also let

and

where

So, since K is « triangular » with identity operators on the « diagonal »
it is formally invertible. Also, if M is gapless, then (by the remark following
Lemma III. 5)

and

So for any M’ =) M we have

In terms of this matrix notation we have the following immediate conse-
quences of Lemma 111.9.

COROLLARY III. 10.

If M is gapless, then

If M is gapless, then

Remarks 1. Here S -1 denotes the operator inverse of S interpreted
for S an operator valued fps by the reciprocal rule (Theorem II.3).

2. Similar formulae hold with right and left derivatives interchanged
provided all products are also written in reverse order. In particular, if
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then part (a) has the « adj oint version »

We now compute

THEOREM III .11. - If M is gapless, then for n, mE M we have

where " ~Mk = 1 if kEM (Here [SM 0 represents the kernel of the nm
o if k~M

component of the operator inverse to JM considered as an operator
valued fps in the variable A.)
Proof - By (3 . 24 a)

where, since Jk E ~k, we do not need to make explicit the symmetrization
in the first term and so have dropped the 0. For the first term we now apply
(3 . 26) again, and in the second term we use (3 . 23) to write + A } PM
as K~ { JM { A } } and then apply Corollary 111.10 (b) to get

Now

and

So if n + m E M the first term becomes

If n + M the first term is zero.
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and

so the Jacobian identity (2.39) converts the second term to

But

and so we are done.

Remarks 1. 2014 At A = J = 0, (3.32) gives

2. If we define the reversal operator R applied to

and to any (appropriately symmetrized) function fm E 2m by

~20141) m(m-1) (~+~!)(~+~20141)
then, since 2 

+ 2014201420142014 ~ 2 + nm (mod 2), we have

The sign factor 6"m in the first term of (3.32) could thus be eliminated
by reversing the arguments of all A derivatives to write

3. We can also absorb the /" factor in the second term of (3. 32) if we
write our result in terms of the matrix .S. with entries

In fact, if 03C3 = Podd (which is the linear operator on L with eigen-
value ~m on ~m) then .S. = 6S, and so

so the matrix elements n [.S. -1 ]m of .S. -1 satisfy

So (3.32) becomes

The virtue of these ’ results is that by expressing AAr in terms of S (and o

so in terms of connected o derivatives of G) they provide " us with a tool for
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the study of decoupling properties of AAr (over and above its obvious
connectedness between the two A variables).
For the purposes of such a study we find it convenient to abuse the

notation a bit and to think (as we did in III) of a subscript r E ~~ as repre-
senting also a value of the corresponding argument xr. In fact, at any
point in our discussion, r may be being considered in any of several ways,
either just as the pair of integers (r f, rb) (as we have done up to now) or
as an ordered « r-tuple » xr = (x 1 ... y 1 ... Yrb) or as the (unordered)
set of points {xi} ~ {yj} (e. g. we write r c r’ to mean { x 1 ... 
is a subset of { x i ... ... 

In terms of this convention it follows from Definition III.8 that each
matrix element Smn is a polynomial in the variables

i. e. every point in m is connected to at least one point in n and vice versa.
(For example since G fb = 0 at J = 0 we have

This remark has the consequence that, at 0,

In fact we can say more. By (3.11) we see that, at 0

and so

So by (2 . 27) if we let M = M u { (0, 0) } and S = P S P with(-) (:t) (:t)

= 1 then, at 0

where sign (i’, i) is the sign of the permutation ( W which places
the primed arguments first but otherwise preserves the order But here

only one term contributes (namely that with i’ being exactly the set, f+,
of arguments on the + side of 7, and similarly for j’ = j +) and so we are
left with

Thus (apart from the y factor) S looks rather like a tensor product of S
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and S. In fact, if we interpret operator valued fps as operators on vector
valued fps, then a natural definition of operator tensor product is given by

[(AI (8) (8) ~)](~i, ~2) == [Ai/i (8) ~)

Keeping in mind the overall appropriate symmetrization of each group
of arguments in S, and the fact that for us the parity of a function valued fps
is always given by the total number of fermi arguments, we are lead to define,
for kernel functions with appropriate symmetry and parity, the fps operator
tensor product, ~), by

If we now recall Remark 2 following Theorem III. 11, we see that at .0,

or (keeping in mind the survival of only one term in (3 . 37 a)) at 0,

Let S = 1 C S C ~ and S = 1 + S. _

Following § 3 of III we rewrite (3 . 37) in matrix form so as to represent S
as a « tensor » product of S and S. If 03C0 denotes the map from  + 0  -

to which simply extends each function using the appropriate symmetry
it is natural to define, for A:J~± -~ J~,

The relationship between the kernels of A, A and A x A is

Hence we may rewrite (3. 37) as
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where F is the operator on  (or 2:t) with Fij = i ! Consequently

by (3.38). However since the projections that restrict S to do not

commute with taking either tensor products or inverses (3.40) is of little
value. But for certain M’s we do have a decomposition formula analogous
to (3.15) of III.

DEFINITION III. 12. - M c ~~ is said to be decomposable if there is
a (finite) strictly increasing sequence Mo, ... , MN of subsets of M with
Mo = 0 and MN = M such that for i = 1, ..., N,

(So if 111 E M~ and 111’ E Mi with i + i’  N, then 111 + m’ E M.)
For example, decomposable with

LEMMA 111.13. - a) At 0,

b) If M is decomposable, then, at 0

Here, by another of our many abuses of notation we view as

being defined to be zero off 2ri = (or C when i = 0).

Proof 2014 part a) has already been proven. To prove part b) we compute
that the product of SM times the right hand side of (3.43 b) is PM. Let

Ti = (SMi ) -1. By (3 . 39) and our condition on M this product is
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The proof now continues as in Theorem 111.4 of III using the fact that

with

As we remarked after Definition III. 12, any M defined by an upper
bound on the « particle number » |m| is decomposable. More generally,
so is any « triangular » M, where

DEFINITION III.14. - M is said to be triangular if there exist positive
numbers ab, and ao such that

Remark. There are precisely two gapless subsets of { + ~  2 }
that fail to be triangular, namely {f,b,fb} M?}, and these
are precisely the two gapless second order M’s with anomalously poor
irreducibility properties. (See the end of§I and beginning of 9 IV.)

LEMMA III .15. - If M is triangular, then M is decomposable.

Proo, f. - For E [0, ao ] define

Clearly M(,u) increases with , M(0) = 03C6 and M(ao) - M. Let
 ~2  ...  be the points of increase of M(,u) and set

= It is obvious that the complements CM(m) decrease
with  in the sense that

Let ~,1  ~,2  ’ - -  be those for which the inclusion above is

proper if j  j’ and let ~,N = ao. We then define Mo = 0,

M. = M(~,) and D. = 

for i = 1, ..., N.
It remains to show that for k = 1, ..., N

Since there are exactly N distinct CM’s and M/s (0  i ~ N - 1 ) it suffices
to show that for any m E M

Since CM(m)  M this amounts to the claim that if n E D1 is in CM(m) and
n’ for some i’ ~ i then n’ ECM(m) too. It i’  i it is obvious that n’ ECM(m)
because nfa f + nbab  n fa f + nbab.

-
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If!’=! i

The properties of ArM and AA0393M established so far will suffice for our
r - pI results with r ~  2. For higher irreducibility properties we shall
need to study ANrM for N &#x3E; 2 but since the majority of our results involve
just r ~  2 we relegate the study of higher order derivatives to the Appendix.
We now turn to the calculation of t-derivatives. Formal differentiation of

the (unrenormalized) expression

with Cb = C and Cf = BSo -S+0 0 yields for f = b or/

where

is formally the derivative with respect to ti of Ci- 1 (but in fact must be
interpreted as a quadratic form).
Of course, for Y2, in order to make sense of (1. 3) in the absence of cutoffs,

it is necessary to renormalize V with counterterms that depend on t.

The t-dependence of V leads to additional terms in our derivative formula.

This result will be derived rigorously for a suitable cutoff version of (2 .13)
in a separate paper. But alas, the individual terms on the right diverge as
the cutoffs are removed. In fact, to write down a well defined expression for
the t-derivatives in terms of uncutoff quantities requires a rearrangement of
terms which destroys the locality properties and so is less suitable for

proving irreducibility results. Thus all of our irreducibility results are
proved first with cutoffs in place and then carried to the limit. For this
approach to work we must of course introduce the cutoffs in such a way
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as not to interfere with the decoupling properties that we aim to establish.
We may, for example, cutoff the fermion covariance through the intro-

duction of a small second order derivative 
.

The cutoff covariance with Dirichlet boundary conditions on cr, Sg(0),
and interpolating covariances are then defined in the usual way.

Sg(0) is the inverse of the Friedrichs extension of .

It is a simple exercise in abstract nonsense to verify that Sg(0) is indeed a
bounded everywhere defined (on L2) operator that decouples across 6.

In the course of the rigorous argument it will be apparent that what

really occurs where we have written C  is the quadratic form defined by

Our previous warnings [7]-[2] about the singular nature of apply
equally well to S; 1. In particular, although SE 1( f, g) is equal to zero if
either f or g is in C~°(~dB6) x .C2 x ~Ld/2] (and so is zero on a dense domain),
it is also defined, and not identically zero (see e. g. Remark (2), p. 168 of I)
on EØ(S8(0)* - 1 x ~(SE(o)-1).

(This despite the fact that the quadratic form closures of SE(t ) -1 are

all defined and independent of ton D(Cb(0)2) x D(Cb(0)12) which includes
EØ(S8(0)* - 1) x ~(S,(0)’~)!). We shall not in the rest of this paper indicate
the presence of cutoffs explicitly in our formulas. We shall also drop the

extra d dti Vren terms so recently introduced, remarking only that their

locality renders them harmless in so far as our irreducibility arguments are
concerned.
We now apply (3.42) to compute derivatives of G and r.

THEOREM 111.16 (t-derivatives). For i = b orf(and  i = f or b resp.)
we have
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d ) Furthermore, if M is gapless and if + i - (- i) E M,
then for m E M and A supported away from 6 with PoA = 0 we find that

Remarks 1. 2014 In fact A° = 0 for all t if i f is odd (and also if ib is odd for

PsY2 by Furry’s Theorem).
2. The condition mE M  m + i - (- i) EM in (d ) requires that M

be a union of sets of the form { m E j8, m ~ ~  a }.

Proof - a) From (3.42)

and by Lemma III. 5,

b) Follows directly by combining part (a) with (3.27)
’ c) From part a) we have

d ) It follows from c) and (3 . 37) that, at 0

where 03C0 is the permutation which reorders the fermion arguments 
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to 2im. (Here we are letting m, and ~+ denote the actual sets of arguments
as well as the numbers thereof.)
Now if M is gapless and includes i + m± then both of are

polynomials in = Ak + A2 (k EM). So if we restrict to argu-
ments A with PoA = 0 and supported away from (7, then we find by virtue
of the discussion following (3.45) that Ci-1Ak = 0, so

Finally, we check that i + ~+ E M. Since ~+ are both nonempty both are
strictly less than m. So either ~+  m - i or ~+  ~ 2014 ( ..r i ) and so
i + ~+ is less than or equal to either m or m + i - ( ~ i ). But then our
assumption on M forces i + ~ E M and we are done. II

§IV IRREDUCIBILITY OF r~

We now study the irreducibility properties of first order and second order
gapless Legendre transforms hM. By nth order we mean that max |m| = n.MeM

( « Gapless » is defined in Def. III. 5). The irreducibility properties we shall
prove fall into two categories. The first consists of general irreducibility
statements

that apply to the generating functional rM. The second consists of special
irreducibility statements about specific moments of TM (evaluated at A = 0)
of the form,

0,~ } is /3-irreducible between x and v
where

and

DEFINITION I V.I. - A function y(x, y; t ) is r-irreducible between the
variables x and y (r - I between x and y) if

whenever x and y are separated by 6.
These special irreducibility properties arise from the fermion symmetry

« every graph must have an even number of external fermion lines ».
One might expect that (4.1) applies whenever a E M. If so one should
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reread the part of § I dealing with the Gaussian model. On the basis of
the Gaussian model one expects that (4.1) holds for all a E M whenever M
is triangular and only for I = 1 when M is not triangular (i. e. if
M = {~, bb} or { f, &#x26;,/b}). However the Gaussian model does not
take into account the above-stated fermion symmetry. This symmetry
is responsible for the applicability of (4.1) in the following cases:

We shall see that (4.1) holds in case (i ) because 0 for all t. In
the latter two cases M is purely bosonic so that no graph from rM can have
external fermion lines. Consequently the number of internal lines cut in
disconnecting such a graph must be even.

THEOREM IV. 2 (Irreducibility Let M be first order or second
order and gapless. Then

for the set of a’s listed below.

Remark. A nonzero multiple x4)
4

occurs in the perturbation theory expansion of (TI rM { 0 } for
i= 1

M = { ~ ~ ~ so the restriction (x 5~ bb,ffis indeed necessary for this M.

Proof The tools we will be using here are similar to those we used in
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the case of a single scalar field [7]-[~]. Before getting into the details of
the proof we present a brief resume of our principal tools.

RESUME. - Our goal is to prove the connectedness of various t-deri-
vatives of The t-derivatives are evaluated by (possibly repeated) appli-
cation of

with =~ b. (See Theorem 111.16). There are three main tools used in
handling J-derivatives of G.. Firstly the connectedness (2.18) of G implies
that for a product of J-derivatives each localized on one side of cr

In fact we have equality m (4 . 4) if both P + and P - appear m theðJ ~J
left-hand side. Secondly, since Ci-1(ti) and Ci 1(ti)* are independent of t
when applied to functions supported away from 6,

for all/whenever mE M and Am E Thirdly when M is purely bosonic
(cases (b) and ( f ))

The reason for this is that is purely bosonic so that no matter
how many additional derivatives are applied to the left-hand side of (4. 6)
every term must contain a moment of G having odd fermion number.
Hence every moment of the left-hand side of (4. 6) is zero when evaluated
at A = O.
There are three principal tools used in handling A-derivatives of 

Just as for G the connectedness of rM (see remarks following Defini-
tion 111.4) implies that

Consequently we may insert projections Po :

Annales de l’Institut Henri Poincare - Physique ’ theorique ’



75LEGENDRE TRANSFORMS AND r-PARTICLE IRREDUCIBILITY

Secondly the conjugate relation (Theorem III. 7) expresses ArM as a « linear
combination » of J’s so that

Thirdly the Jacobian relation (Lemma 111.9) is used to express AArM
(in Theorem 111.11) and AAA0393M (in the Appendix, see (A . 8)) in terms
of A } } via the matrix Si~ of Definition III. 8. It is also used

to express JM {A } } in terms of S via

First order derivatives. Let and consider the formula (4. 3)
for atirM. We always have

and

Consequently

If i E M this is zero for all A E .~V’Q by (4 . 5). The case i ft M occurs only when
i = f and M is purely bosonic (cases b) and f )). But then GJf|JM{A}0 = 0

by (4 . 6).

Second order derivatives. The general second order derivative of is

for any i, j E ~ f b ~ .
We first consider those cases for which we can choose 2i E M (namely
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all cases except a = f b, M = { b } or {~~/&#x26;}). Then by (4. 5), (4.11)
simplifies to

To get rid of the GJjGJj term we have observed that either j ~ M or (in the
case M = { b, M? }) GJj {JM {A } } = 0 by fermion symmetry.

Now M: {JM {A}} - 2 -1j) is independent of A and
hence OCI unless This happens only when f ~ j and M = {f, b,
/~ 2f} or M = { }. Then if f denotes ?(/) when f =/(b)

(by Theorem 111.16 c) and (4.10))

since contains a factor which is
in ~V’~ for M == { ~ b, fb, 2f } and is zero for the purely bosonic M = { b, bb }.
That leaves the second term in (4.12) :

by Theorems III. 11 and III. 16,
-0.

We now return to those cases for which it is not possible to choose i so
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that 2i E M, namely ~tf~tb0393M with M = { b } In both these
cases we have P0Am0 = 0 so that (4.11) leads to

The atf may act either on the or on the A}. In the former case
we get, by Theorem III .16a)

In the latter case we use

to get

and hence

Now

for any n E M. Hence {A } } = 0 and A } }
depends only on P:tA so that GJ2b Jm{ JM{A}}~tfJMm{ A } - 0 too.
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order derivatives. There is only one third order derivative to consi-
der, for M - { b, ?}. By (4.11).

and by (4.3) and the fact that GJf{JM { A } } = 0

so that

We have used (4. 8 a) and (4. 9) to get rid of the Am0393M term and (by Theo-
rem 111.16 c))

and

to get rid of the AmAprM and AmAnrM terms respectively. We now consider
each of the remaining terms in turn,
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by Lemma A. 3. (Note that n is purely bosonic.) Suppose firstly that at

least one of is not hit by a Po. We may assume without loss

of generality that the is hit by a P+. But then it follows from the defini-

tion (A . 7 (c)) of T that

P+ (8) I (8) = P+ (8) P+ (8) + P+ (8) Po (8) 

The P+ (8) P+ (8) P+ term gives a cluster connected contribution to

- - GJ2 {JM{A}}. All contributions to 20142014 20142014 Gj2 { JM {A} from~

P+ (8) Po (8) Po term contain a factor of A }} (either in 

or in and hence are zero. Suppose now that both - 
and are

hit by Po’s. Then by Theorem III 16 d ) we obtain a cancellation of the « live »
factors S,;/ and 

1

If the C-1f is hit with a Po we always get a factor of = 0.

If the 1 is hit with a P+ (e. g.) then P-A dependence may enter only
through JM{A}} = Abb + A0bb all of whose A dependence is destroyed
by a C; 1. Hence

This leaves only

as in the T bb,bb,k discussion above. tt
The remaining irreducibility properties we shall consider (cf. (4.2))

are motivated by the fact that in perturbation theory if no fermion line is
allowed to cross 6 (i. e. if t f = 0) then every graph must have an even number
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of external fermion lines in IR~ and 1R1: . We find it convenient to express
this fact in terms of the symmetry operators

where m + (m _ ) is the number of the m f fermion arguments x 1, ... , xmthat are in ~~ ((~a ),

LEMMA IV. 3. - If t f = 0

, hence 
we need 0 only observe . that, when t f = 0,

because the fermion integral is zero if m + or m_ is odd
From = we get

then

and finally

Remarks 1. 2014 If we were being completely rigorous, even to the extent
of worrying about which spaces things lived in, A and J would live in diffe-
rent spaces each with its own projectors E+.

2. It follows immediately from that

and hence that (Il ~)F {O} is zero unless m + and m _ are even.

m

3. The Yukawa model actually obeys a much stronger symmetry than
this. Any graph with no fermion lines crossing 6 must have the same number
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(fermion) and t/1 + (antifermion) external vertices in ~. This symmetry
may be expressed in terms of the operators

where /+ (/j,) is the number of fermion (antifermion) arguments in 
We will not discuss, in this paper, the extra irreducibility that results from
this symmetry.

Consider a graph contributing to be perturbation theory expansion of

m

Define x f to be 03A3( j)f, the number of fermion arguments in x. Sup-

j= 1

pose + is odd. Then no matter where in fR" we place its
vertices our graph must have strictly fewer than ~3 f fermion propagators
crossing (1. For otherwise the subgraph consisting of everything in (!~L)
would have an odd number of external fermion lines. Hence if 0

for all ~3’ obeying ~3 f  /~ f we would expect (4 .17) to be zero.
The intuition, combined with Theorem IV. 2, suggests

THEOREM IV. 4. - Let M be first order or second order and gapless.

a) If at least one of xf and yf is odd then the following hold.

i ) For all M 0, t } and 0, t } are oob-1 between x and y
(i. e. m-I for all m with m f = 0).

ii) If f E M, then is 2fI between x and y.
iii) b,fb } c M, then xy0393M {0, t} is ffb-I between x and y.

b) If at least one of x f and y f is even then the following hold.

i ) For all M, GM ~ 0, t ~ and 0, t } are f I between x and y.
ii) If b E M, then is f b-I between x and y.
iii) If { c M ~ ~ f, b,ff, bb}, then 0~ } is f bb-I between

x and y.

iv) If { c M ~ { f, b,ff, bb}, then 0~ } is 3fI between
x and y. n

Proof. 2014 We may immediately dispense with a) i ) thanks to Lemma IV. 3.
(Note that tb is not set to zero in Lemma IV. 3.) Furthermore we need
not consider derivatives with m f  mf in our proofs of m-irreducibility
because these have all been taken care of in Theorem IV. 2. We now consi-

der the remaining first, second and third order derivatives in turn.
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First order derivatives (part b) i), b) ii))

Now apply Lemma IV. 3. From now on applying Lemma IV. 3 (and in
particular remark 2 following it) will be referred to as fermion counting.

Count fermions.

Second order derivatives (parts a) (ii), b) (ii), a) (iii) and o b) (iii)).
with j EM. Then from (4.11)

We consider each of these terms in turn, starting with the last one. By
part b) (i ) ~tfAm0mP0 is zero unless m + - m _ = f and by parts a) i ) and b) i )

Hence we need only count fermions in AmAn0393M { A }.
To get a nonzero answer from the second term (~tfA0mP0) must be nonzero,

which implies m + = m _ =fwhich impliesff EM. Either j = fin which case

- [G J2j{JM{ A } } J is mdependent of A or j - b m which case we needðAm J 

ð
only count fermions in - [GJ2 {JM {A} } J.ðAm f
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since j E M and Po commutes with SM .1 and at zero. Because there must
be one J~ in I~+ and one in ~ we may now count fermions. For example let

m

,~~ ( ~+ ~ ,~+ ) be the number of fermions in those of the deri

~=1 1

vatives that are applied to Po / o .
Then to get a nonzero answer we must have all of n f, + + n f,+ +,u+ ,

n f + ~ 1 + ,u+ and (/)~+ + nf,+ + ,u+ even and hence

even.

Third order derivatives (cases a) iii), b) iii), and b) iv )). We merely sketch
the argument. First we consider those cases involving only derivatives of
the form c M (possibly with i = j ). (This covers
all but those cases of part (a_) for which 2f ~ M.) Iterating (4 . 3) and throwing
out all those terms which either vanish for by virtue of a C -1
hitting a factor of for mE M (see (4 . 5)) or which are mani-
festly connected (such as we find that for 

It turns out that, when the external (x and y) derivatives are applied and
the result evaluated at 0, all of these terms vanish for the relevant choices
of i,j and M. This involves essentially a case by case analysis with fermion
counting taking care of all cases not covered by the tools of Theorem IV. 2.
We illustrate this by considering just the first term.

If 2j E M this is independent of A, so we may restrict to M. Now m
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is either 2b or 2f (by fermion counting applied to on each side of cr)
and the 2b case is okay by fermion counting. But if m = 2f then, since m E M,
we must have j = b. The only such case is i =f,j = b, M = {~ b, f b, 2/}.
But then for m’ E M, 8~2.7 {J~ {A}} Po contains a factor of Afb E ~V’Q
which is annihilated by the ë  1.
For the cases of part (a) (involving 2f + b derivatives) with 2f ~ M, we

get a different pattern of terms dropping out by virtue of (4 . 5). In particular,
if we compute by using (4 .11 ) for and then apply the second

using (4 . 3) when it hits a r factor, we find after the usual reductions

For the case M = {~ b,fb, 2b ~ all of these terms can be handled along
the lines we have already discussed. But for the case M = {~ the
first term (alone) requires a more subtle analysis : after expanding out
a;fG JbJb it is necessary to effect cancellations between some of the resulting
terms in addition to invoking all of our standard tools including fermion
counting. The computation proceeds as in Theorem IV. 2 to get

Applying the second atf derivative then results in an expansion which
includes in particular the terms

and
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These can be shown by our standard techniques to give the same connected
contribution to (for x, y not both even) as

and so these contributions cancel. All other terms can be shown to give
zero contribution individually. ~

§V THE M-FIELD PROJECTORS
AND BETHE-SALPETER KERNELS

In this section we develop the relationship between the Legendre trans-
form rM and the M-field projectors PM and Bethe-Salpeter kernels KM
in analogy to the results for boson models in I. One major difference for
fermion models is that the Euclidean expection ~. ~ is not associated with
a positive measure and a related Hilbert space in which the PM’s are self-
adjoint operators. Nevertheless we can obtain sufficient algebraic structure
to define PM, KM, etc., by equipping the formal vector space r of all poly-
nomials in the fields with the bilinear form

Our manipulations will be purely formal; for instance, we write,

for an element f ~V, f = I for suitable family of

(distribution) kernels (with only the appropriately symmetric parts
of fm having a nonzero contribution). One way of attaching rigorous meaning
to such expressions is to identify eachf E  with its family of kernels 
with fm E 2m (so that might be thought of as a suitable completion
of U ~~ in 

Me~
M finite

Even after restriction to kernels of appropriate symmetry, the bilinear
form (5 .1 ) is still not positive definite or even symmetric. But writing
f = P° f ’ + Pe f where Po/(Pe/) is the part of f of odd (even) fermion degree,
we have (since ( = 0) 

-

It follows from (5 . 2) =0 for all g ~ V if and only if  g, f&#x3E; = 0
for all g e l~. Hence it is natural to define the orthogonal complement of
a subspace 0/1 c ~ as
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Throughout this section we assume that M is gapless (i. e. m E M,
0  n  ~n ~ n E M) and we let i/" M be the subspace of i/" generated by

~eM=Mu{0,0}}. The physically Wick ordered powers
are defined by

It is easy to see that for all m

and

with coefficients cmn depending on the variables in mn. Hence : pm : E 1/ M
and {I&#x3E;m 1m E M } also generates 1/M. Note that the matrix Sm,n { J } of
Defin. III. 8 is related to the Wick powers by

Since (...) is not positive definite there is always the danger that
~M ~ { 0 }. However as we are making the basic assumption that rM

exists, Smn must be invertible (see (3.32)). It follows that there cannot be

a polynomial in -ý/ M which is orthogonal to all m E M.

neM

Hence ~M = { 0}, (.,.) is non-degenerate, and the decompo-
sition f = fM + fM where E fM E VM must be unique (if
it exists). We now establish existence by showing that fM can be explicitly
given in terms of the Legendre transform as fM = PMfwhere:

DEFINITION V.I. - For each f ~ V define
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THEOREM V . 2. - a) The range of PM is 1/M.

Proof 2014 ~), b) Since c 1/"M it suffices to show that 1 ’i/M is the
identity, i. e. that 0’~ == ~ 0~ for all r E M. The case r = (0,0) is obvious
from (5 . 3 b). When r E M we have from (5 . 4) and the Jacobian relation (3 . 33)

c) From the definition (5. 5) with 0 }

The equality of the two sums follows from the observation that Tmn satisfies

For suppose that f is of pure fermi degree d. Then nf and m f must have
the same parity as d and the sum in (5 . 6 b) equals

which agrees with the sum in (5 . 6 a) since cr~" ==/". II
Properties a)-c) of Theorem V . 2 ensure that both and

(1- PM)f E 1/ J thus giving our decomposition. By virtue of the uniqueness
of such a decomposition, these properties completely characterize PM.

LEMMA V . 3. - If Q: 1/ ~ 1/’ satisfies

a) the range of Q is 1/ M,
~ Q2 = Q,
c) Q/;~=~Q~ &#x3E;

then Q = PM,
Just as in the case of a single scalar field (see Theorem IV .1 of III) we

can characterize the matrix elements of ( 1- PM) in terms of the partial
Legendre transforms hM viewed as a functional of { A03B1| a and

{ Ji|i~ M } (here we use the convention that Greek letters run over M
and Latin letters over M").
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THEOREM V. 4. -  l&#x3E;i, (1 - &#x3E; = = d 1, M.
When M replace rM by G.

Remark. Since the conclusions of Theorems IV. 2 and IV. 4 apply to
the partial Legendre transforms, we can read off the irreducibility properties
of ( (1 - from those theorems.

Proof. The case M is the well-known identity

So consider M # Since J {A } } = F(X { A 0 + A } is independent
of Ji, we have 0393MJi = + GJ03B1J03B1Ji = GJi and

But

so

and

where E’ refers to the polynomial C’ - ( C’ ). Hence it suffices to prove that

Define to be the right hand side of (5 . 8). It is straightforward to verify
that Q obeys the hypotheses (a) and (b) of Lemma V. 3. As for hypothesis c)
we note that the matrix Tay = (E~) satisfies (5. 7), and hence by
Lemma V . 5 below so does its inverse. Thus by the argument of Theo-
rem V. 2 c) Q satisfies hypothesis c) of Lemma V. 3 and thus Q = PM, II

LEMMA V . 5. - If { is an ordinary (i. e. not Grassmann
algebra valued) invertible matrix/operator satisfying (5 . 7) then so is T -1.

Proof. The condition (5.7 a) can be restated as Tmn = or as

T = oT(7, where the matrix (1 has elements 6m" _ Inverting we have
T -1 - 6 -1 T -16 -1 - (1T-1~, as desired.
We now establish (5 . 7 b) for T -1 by computing that the matrix

inverts T. By (5 . 7 b)

But by (5.7 a) applied 0 to T and 0 T-1, m and 0 r must have " the same " fermion
parity and 0 so = 1. Hence ’ UmnTnr = Trn(T-1)mm = 03B4rm . II
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We turn next to the construction of projectors Pm onto single powers 
The natural definition of Pm given PM is

where [~] and (m) consist of those n’s in ~~ that are, respectively, « smaller
than or equal to » and « strictly smaller than » m. In fact we have a choice
in interpreting the notion « smaller » at this stage ; it can refer to the natural
partial ordering on ~~ (~  ~ =&#x3E; and ~~;~~~&#x3E;~~
and n ~ m) or to a total ordering by some « weight » :

DEFINITION V. 6. Let &#x3E; 0, /4 &#x3E; 0 with irrational. Then n is less

ordering by weight, denoted n  m, if fnf +  + 

if +  ufmf + 

Remarks 1. 2014 We require irrational to prevent ties. Hence exactly
one of n  m, n = m or n &#x3E; m holds.

w w

2. Ordering by weight is consistent with the natural partial ordering
and with addition (i. e. ~ ~ m, r E ~~ ~ n + r _ m + r).~ w w 

’

3. Given any total ordering on ~~ consistent with the natural partial
ordering and addition and given any finite subset M of ~~ it can be shown
that there exists an ordering by weight that agrees with the given ordering
on M.

Since PMPN = PNPM = PN if N ~ M it follows that whichever definition
of [~] and (m) we choose P~ = Pm and PmPn = 0 if n  m. However, while

= 0 if n  m, it is not the case that = 0 if m  n. Moreover it

is not true as in the single field case that

for all gapless M. Of course (5.10) does hold (with the ordering by weight
definition) for any M of the m}. To see that (5.10) cannot
hold in general for all gapless M we note that the consistency condition

is violated. For choose M={/}, m=ff, n=b. Then none 
or l&#x3E;n &#x3E; contains a contribution whereas

does.
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’

Explicit expressions for Pm can be given in terms of the Legendre transform.

THEOREM V . 7. - a) Let Pm = where the sets [~] and (m)
are defined either in terms of the natural partial ordering on ~~ or by an
ordering by weight. Then

b) Define Rm =  Then

Proof. 2014 ~) By the definition (5.5) of p[mJ

We obtain (5.11) by noting that (1 - P~m~)~~m~ = 0, ~i E ’~’~,n~ if i E (m)
and : l&#x3E;m : - E ’~~"t~ .

b) By part a)

But (1 - = SO that

and the theorem follows once we prove that Rm is invertible. Now

where Vii = 1 and Vij = 0 unless j E [i ]. Then letting all indices run over [m ]

V and Vt are invertible by « triangularity » and is invertible by the
hypothesis that exists. Hence the left side of (5.12) is invertible. It

follows that Rm is invertible. II
We now consider the Bethe-Salpeter kernels. In any model involving

only one field, the « n to n Euclidean Bethe-Salpeter kernel », ~),
consists, in perturbation theory, of all graphs from the 2n-point Schwinger
function -S2n(xn, yn) that are connected and n-irreducible between the
clusters xn and yn.
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In models involving more than one field there is no one obvious desired
degree of cluster irreducibility. For example in a 2-fermion to 2-fermion
kernel one can imagine wanting 0, 1, 2 or even more boson irreducibility
in addition to two fermion irreducibility. Hence there are many « m to m
Euclidean Bethe-Salpeter » kernels. However one would want any such
kernel to be connected and to be n-cluster irreducible for any n « smaller »
than or equal to m. The question is : what is the most general reasonable
definition of « smaller » ? As the following proofs show it is desirable to

define « small » in terms of a total ordering on On the basis of Remark 3
after Defin. V. 6 we shall determine such an ordering by a fixed ordering
by weight. Such a determination is physically reasonable; for example f
and might be chosen as the (bare) fermi and boson masses.
As in the bosonic case (§ V of III) we can now define Bethe-Salpeter

kernels Km inductively by

where

fØm = set of decompositions of m into summands from M without regard
to order

Kp = appropriate symmetrization of Q Kn
nEp

n p(n) = number of times n occurs in p.
Remarks.

1. The induction is well-defined since  m.
" 

w

2. The order of the factors in (8) Kn is irrelevant since each Kn must
nep

contain the same number of outgoing fermion arguments as it does incoming
fermion arguments.

3. When J = 0 (as in the conventional definition of Km) Km may be
expressed directly in terms of the Legendre transform as
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4. The subtractions in (5.13) have no effect on the cluster irreducibility
properties of Km: if Km is n-irreducible for each n  m then Kp is m-irre-

w

ducible. The role of the subtractions is to ensure connectedness (not just
cluster connectedness) of the Km’s i. e. to eliminate « lower body scattering
processes ».

5. Different choices of ordering by weight (i. e. different will

give different Km’s. The principal differences will be in cluster irreducibility
properties that are not comparable in the natural partial ordering (see the
discussion after Theor. V .10).

THEOREM V . 8. - Km is connected. In other words K"" = 0 whenever
there are arguments on both sides of 6.

Proof 2014 We use induction on m in the order given by our ordering by
weight. The result is trivial for the smallest m, which must be one of f or b,
thanks to the connectedness of S~m~. Assume the result for all n  m. s[m]

w

commutes with P+ , P- and Po as do (by the induction hypotheses) all K~s
with j9 E So it suffices to prove that for any decomposition ml + m2
of m with mi ~ (0, 0)

But there is precisely one term in the decomposition formula (3.41 b)
that can have m 1 + ’s and m2 - ’s. Hence

By the induction hypothesis each nonzero factor in Kp with p e Dm2 must have
arguments of pure sign. So x is zero unless /? = pl ~ p2
with ~, e ~~.
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si ’n c e there are wa y s of assi g nin g si g ns to the factors) since there . are ) ) np(r)! ways of assigning signs to the factors

So (5.15) and (5.16) cancel precisely. II
From (5 .14) and the known irreducibility properties hM (Theorems IV. 2

and IV. 4) we can now read off the irreducibility properties of the second
order BS kernels m ~ = 2, J = 0). The second column in the following
table gives the (triangular) set [~] induced by a choice of ordering by weight
and the third column gives the allowed set of t-derivatives in the relation

as authorized by Theorems IV. 2 and 0 IV . 4 (referenced in columns 4 and 0 5)

TABLE V . 9. Irreducibility ofKm.

For an alternate and possibly more concrete description of the kernels Km
we next consider the « Bethe-Salpeter equations » they satisfy. These equa-
tions are simply Jacobian relations for partial Legendre transforms, as
we now explain. Given two gapless subsets M c M’ of ~~ we may regard
the transform as arising from first transforming G { to

and then transforming the remaining J’s. (We adopt the
convention that unprimed (primed) indices belong to M (M’BM) and that

etc.) More precisely, define
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Note that AM and are independent variables. As in the proof of Theo-
rem V .4, Sm = } + is independent ofJ
so that

Now transform the sources to connected variables defined in
terms of the Schwinger variables 

Here F-1 is the inverse of the mapping F of (3 . 22); like Fm

F,; 1 { = Sm + terms involving Sn’s with n  m .

The definition (5.19) agrees with the direct definition in terms of G,
i. e.,

and so by (5.17) and (5.18) the iterated transform agrees with the direct one :

The conjugate relations for the iterated transform are (by the usual cancel-
lation)

Now suppose that no two different indices m’, n’ E M’BM are comparable
with respect to the partial ordering on i. e. neither m’  n’ or m’ &#x3E; n’.

From (5.18) and (5.19) and the definition (3.22) of F we see that

rM , ~ AM, An, + A, + terms involving Aa’s with a  n’ .

~m’,n’ and so from (5 . 21)

Moreover, from (5.19) and (5.18),

Am- + A~ = + terms involving Sn’s with n  m’ .

Since Sn with n E M is independent of Jn. we conclude that
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Evaluating at A = J = 0 we obtain from Theorem V. 4

where

is the « M-truncated expectation between C" and 0"".
From (5.22), (5.23) and the Jacobian relation

we arrive at the following result :

THEOREM V .10. - Suppose that M c M’ are two gapless subsets of ~~
such that no two indices in M’BM are comparable (with respect to the partial
ordering on Then

where m’, n’, r’ E M’BM.
Equations (5.24) constitute the Bethe-Salpeter equations. Consider for

example the ff kernel of case ii) in Table V . 9 which we denote by K~,
where M’ = [m] = {~ For i = for b, is diagonal at A = J = 0 -

whatever [i ] is, and so

Hence by (5.14)

Taking M = { f, b } and letting Eo = 2GJfJf O G JfJf we can write (5 . 24) as

(as operators on the two-fermion space), or as

The BS equation (5 . 26 h) has a simple interpretation in perturbation theory
which is best seen by writing it in amputated form. With Eo 1

the equation becomes

All graphs contributing to have at least two lines (f or b ) j oining the
left and right ff clusters. The first term on the right of (5.26 c) consists
of the disconnected graphs contributing to The second term consists
of the connected graphs in Edmp visualized in factored form as follows.
Either the graph can be channel-disconnected by cutting two f lines or not.

Vol. 43, n° 1-1985. 4



96 A. COOPER, J. FELDMAN AND L. ROSEN

If not, it is a graph in - If so, consider the first place starting from the
left where it can be channel disconnected by cutting two f lines. Such a

graph will have the form

, 
where -@- (i = 1, 2) is a graph contributing to GL is a graph
contributing to - and tS) a graph with only M-irreducibility which
contributes to Summing up all these graphs gives - (the
2/-channel irreducible graphs are captured by the singular contribution

Consider next case iii) in Table V. 9 where m = ff and M’ = [m ] = { f, b,
ff, b~ bb }. Choosing M = M’B { ~ } = { ~ we obtain an equa-
tion of exactly the same form as (5.26) except that now the M-trucated
expectation EM enjoys more irreducibility (since bf, bb E M) as does K~.
The interpretation in perturbation theory is exactly the same with the
factorization displaying the place at which a contributing
graph may be channel-disconnected by cutting two f lines (no graph can
be disconnected by cutting two b lines or one b and one f line).

In this second example there are other possibilities for, M such as
M = { ~ }. With this choice M’BM = { //; fb, and (5 . 24) yields a set
of coupled BS equations for kernels

and

where 2GJfJfGJfJf, E0,bb=2GJbJbGJbJb and E0,fb=GJfJfGJbJb. In
matrix from (5.24) becomes (the 0 entries result from fermion symmetry)
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The fb, f b entry decouples from the others to give a BS equation of the
form (5.26) whereas the other kernels satisfying the coupled BS equations

These equations have an obvious interpretation in perturbation theory.
For example the second and third terms on the right of the first equation
display the connected graphs in which can be channel disconnected

by cutting two f and two b lines, respectively.
We remark that by developing tree graph expansions (e. g. for in

terms of vertex functions analogy to the bosonic case (see I,

§ VI), it is possible to characterize the vertex functions as appropriate irre-
ducible parts of The analysis is complicated by the sign factors

arising from fermi statistics and by the occurrence of lines of two types,
and so we choose to omit it.
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APPENDIX A :

HIGHER DERIVATIVES

In this appendix we develop and apply the tools needed to prove irreducibility results
involving more than two t-derivatives. Our main result deals with M’s determined by « total
power of the field ». In fact, if for N E 7~ we let MN =  N and r(N) == rMN,
then we have 

.

THEOREM A.I. - For all r E M4 if N &#x3E; then the generalized vertex functions

are r-CI for all ik if r  4, and provided ik ~ ~ 2 if r ~ = 4.
The proof of this theorem is similar to that which we gave in IV for the case of a theory

with just one scalar boson field. In that case the proofs proceeded in three main steps:
first expanding t-derivatives of r in terms of A-derivatives of r and t-derivatives of A°,
secondly using « tree graph expansions » to express the A-derivatives of r in terms of 
and connected Greens functions and the t-derivatives of A° in terms of these and 
and finally using the factorization properties of Sand S -1 to obtain expressions in which
the applied C-1’s could be seen to « kill » the « live » (i. e. A-dependent) part on at least
one side of the hyperplane Q. In fact, in the present situation, for M of the form MN, the
decomposition property (3.17) and derivative formulae of Theorem 111.16, are so closely
analogous to the corresponding results of IV that we shall not follow through all of the
argument in detail. The only new point on which we might need to elaborate is the control
of 03C3 factors. For N  3 this is of little significance as the terms arising in our expansion
of ~rt 0393 are all controlled individually and an overall cr factor does not affect connectedness.
But for N=4 our argument involved a partial cancellation between and 

It is therefore important to keep track of the cr factors that are associated with the various
terms in our « tree-graph » expansions.
We first recall the previously stated results for n = 1 and 2, namely (3 . 24)

and (3.32’)

Note that we prefer to work with the 03C3 factors of (3.32) suppressed by an appropriate
rearrangement of arguments as in (3.32’). Also we shall augment the notation of (3.32’) 1
by defining (in the obvious way) operators ..S with matrix elements

To compute we start by iterating (A.2) to get
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Next, motivated by the « tree-graph » expansions of III we extract « external » S -1 fac-
tors by means of the following two lemmas (analogous to Theorem III . 7 a), and Lemma III . 6
in III).

LEMMA A. 2. - If M is gapless, then

with

Remarks 1. -Here the left hand side is interpreted as the kernel of the operator as in (3 . 32),
and as usual we include arguments in subscripts with ./== 71 +...+./’~ representing the
j-tuple consisting ofyi up to jn listed in the order written in the sum.
2. The « tensor product » 0 on the right is the fps operator tensor product introduced

in (3.37).

3. The sign factor in each term in U is exactly that required to reorder the arguments
from their positions as occurring on the right side of (A. 4 b) to the ordering on the left side.

4. Aside from the R’s in (A. 4 a) and 7’s in (A. 4 b) and the distinction between left and
right derivatives in the definitions of .S. and ..S, this Lemma is of exactly the same form
as the result used to prove Theorem III. 7 a) of III.

Proof. - Following our convention of regarding the variables xm as included in a sub-
script m, and in particular considering variables corresponding to a sum as occurring
in the order in which the sum is written (so that Yn)) we have

Here in the last step we have used the fact that

Vol. 43, n° 1-1985.



100 A. COOPER, J. FELDMAN AND L. ROSEN

But now, since

we find that

with

But for each term in this sum, the j’ integrals yield factors of 5,’~. So for any function
A/i....Jn) we have 

I I

In particular, with f (jl, ...,7n) = t J 
we get

with

Since + ... + j 1) = (R~1 + ... + RjJ, the statement of the Lemma now follows
immediately. []
At this point we find it useful to introduce some graphical notation for our various

functions and integrals. In particular, we follow the usual procedure of representing the
variables associated to a function by lines (or « legs » ) emanating from a location (or « ver-
tex ») that is labelled by a symbol representing the function itself. For m E lines corres-

ponding to variables x", will terminate at a label m in the name of the function, and if there
is no such label then it is considered to be part of the variable. In that case m will run over A

for a smooth line and over ~l for a wiggly line. (The legs associated to a function’s variables
will generally project downwards from the function name on either the left or right but
will do so consistently for a given function. The choice of sides has not been formalized
and is made according to the taste of the authors. In particular, for example, for a (left
or right) functional derivative of a fps, the corresponding variables will (usually) be on the
same side of the fps name, and kernels of integral operators will often be split with
« incoming » variables on the right and « outgoing » on the left.) As usual, sums and inte-
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grals of products will be indicated by joining legs that correspond to the same integration
variable and removing the label. (So, for example

Because of the anticommuting fermi calculus we do not feel free to arbitrarily rearrange
the positions of vertices in a graph, and in fact will always arrange the vertices in a line
in the order in which the product is to be taken and will terminate the unintegrated ( « exter-
nal » ) lines in a row below in the order in which we wish them to be considered as argu-
ments of the product. This process may involve crossing of lines. The presence of a .dot
on such a crossing of lines representing variables xi and yj will serve to indicate a factor
of So, for example, for the @ tensor product we have

(i. e.

Sometimes (as in the above Lemma) a product is to be thought of as a function of which
a single argument xi corresponds to several factor arguments xil. This will be indicated
by joining the corresponding lines in the obvious way (with the order of components Xil
in xi being that in which the corresponding lines come together). Appropriate symmetri-
sation of such a product will be indicated by joining the lines via a hollow blob, and the

occurrence of a cominatoric factor.. in such a symmetric product will be indi-
li, ..., ln

cated by filling in the blob. So, for example

where sign (xi, xi, xi) is the.sign of the permutation which puts the odd arguments of xilxil xiz
ahead of those of x~2 but otherwise respects the order of xi. As another example, the defi-
nition (A . 4 b) of U becomes

and the statement of Lemma A. 2 then reads
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If .A. and .B. are function valued fps with « appropriate parity » (i. e. same fps parity
as total numerical parity of all fermi arguments) then

and

Also the particular symmetry properties of Sand S -1 are conveniently represented in
this notation. For example,

and

These ingredients (together with SM-1 SPM = PM) provide a simple graphical version of
the proof of Lemma A. 2.

LEMMA A. 3. - If M is gapless, and i E M, then

a)

and

b)

where, in the graphical notation just introduced,

Remark. - These results are also true with the R’s omitted (since the R’s occur in exactly
the same locations on the two sides). In fact they play no role and we shall prove the results
without them. (We keep them in the statement of the lemma because this is the form that
is most compatible with our factorization results for S-1).

Proof of Lemma. - Starting with the case M we compute
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(since by (A. 6 a), = 

Reversing the xi argument on both sides then gives (a) for M = M.
Now we turn to the cases with M 5~ ~ where instead of S J we consider S (and to

avoid confusion denote the argument by AM). By the chain rule (Theorem II.8) we have

But now, by Corollary 111.10, jA= and if M is gapless, then

Also = PM&#x3E;|PM so 0 ()B M)- 1(.&#x3E;1) = pM. Thus if i E M, we have "

Since .8.- 1 = 8 - lQ:, this gives

as required.
For part (b) we start by using (2.28) to get

Vol. 43, n° 1-1985.



104 A. COOPER, J. FELDMAN AND L. ROSEN

Using the graphical notation we have introduced, this gives

By applying these two lemmas to the last two terms in (A. 3), we find that

where

and so, by the comments preceeding (3 . 34), is a sum of products of G’s with each factor G"
connecting more than one cluster of variables. (The symmetry properties of V(3) that are
obvious from (A . 8 a) are less apparent in the explicit formula (A . 8 b) but can be restored
to view either by expanding each S as a product of G’s, or by defining generating functionals
~ and U’s and T’s with ?~ + ~’- appropriately symmetric in its arguments as we did
in III and IV for the boson case.)
To illustrate (A. 8 b) we consider the case of with |i| = I j I = I k I = 2. Writing

1 = (ll, l2) for 1 = i,j, k we have
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At 0, since PoSPt = 0 and P+SP- = 0 we have

If we now apply (3.29) we see that, at 0,

In fact (A. 2) and Lemmas A. 2 and A. 3 provide us with a machine with which to express
arbitrarily high derivatives of r in terms of first derivatives of r and integrals (of tree graph
type) involving factors of [. SM ] -1 (for the legs) and sums of products of G’s (for the vertices).

For example

where

(i. e. the sum over « topologically distinct » assignments of variables to external legs with
appropriate 7 factors included).

ii) .. V(3~ and are defined in the same way as ... V(3) but with appropriately
modified S factors (i. e. variables on left or right of V(3) corresponding to left or right deri-
vatives on ~), and

iii) .... V(4) is a polynomial in the G’s with each G factor in a term connecting at least
two clusters.

This result follows quite easily by differentiating the right hand side of (A . 8 a) (using (A. 2)
and Lemma A. 2 on the first term, Lemma A. 3 b on the S -1 factors in the second term,
and Lemma A. 3 a with (A. 8 b) to compute A V(3»), and then collecting terms in the manner
indicated. ’

With (A. 2), (A. 8) and (A 10) in hand, the proof of Theorem A.1 is, as remarked earlier,
so similar to the pure boson case of IV that we omit the details.
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