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Ann. Inst. Henri Poincare,

Vol. 43, n° 1, 1985, Physique theorique

ABSTRACT. 2014 An algebra generated by abstract diagrams is defined

and studied. A homomorphism of this algebra into that of retarded func-
tions allows to give an algebraic description of the solutions of nonlinear
differential equations. As a result, explicit expressions of the Green func-
tions of these equations can be derived.

RESUME. - On definit et on etudie une algebre engendree par des dia-
grammes abstraits. Un homomorphisme de cette algebre dans celle des
fonctions retardees permet de donner une description algebrique des
solutions d’equations differentielles non lineaires. On peut ainsi obtenir
des expressions explicites pour les fonctions de Green de ces equations.

INTRODUCTION

The aim of this paper is to develop an algebraic formalism suited to
the explicit description of the Green functions associated with nonlinear
differential equations. In preceding papers, devoted to first-order equa-
tions with an arbitrary source, we showed that the Green functions could
be expressed as linear combinations of products of some standard
kernels [1 ]- [3 ]. These kernels were described by diagrams that we called
stars, and their products by diagrams (different from Feynman ones)
called star diagrams.
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2 J. C. HOUARD AND M. IRAC-ASTAUD

More particularly, the last paper emphasized the interest to adopt
an algebraic point of view [3 ]. In fact the relevant algebraic operations
can be formulated in an abstract framework which goes beyond the ori-
ginal problem, and thus admits a wider scope of applications.
The systematic study of this general framework constitutes the first

part of this paper. In Paragraph I.1, we introduce the notion of abstract
star diagram and of star algebra. For the applications we have in view,
the main point is that the star algebra possesses properties generalizing
those of the algebra of the formal power series. As exposed in Paragraph 1.2,
they result from the existence of two fundamental operators : a derivation a
and a linear operator M satisfying the commutation relation [~, M = 1.

. 

In particular, we define a right inverse of a that generalizes the primitive;
in the star algebra, the elements of Ker a act as constants, and the Taylor
formula holds. In Paragraph I.3, we define a homomorphism associating
retarded functions of a real variable t with the diagrams, so that the ope-
rator 3 corresponds to the derivative 2014. This correspondence is basic

for the treatment of the differential equations worked out in the second part.
Before entering upon that treatment, we complete the abstract part by
constructing operators allowing to replace, in the subsequent applications,
the general diagrams by tree diagrams. These constructions are all obtained
in Paragraph 1.4 with the help of a projection operator on the tree dia-
gram algebra.
The applications developed in the second part include successively

first order differential equations (§ II 1), higher order equations (§ II . 2),
systems (§11.3) and operator equations (§11.4). The general principle
consists in associating equations in the star algebra with given differential
equations with a source. Retarded solutions for the latter then correspond
to solutions of the former with convenient initial conditions. The iterative

expansion of the solutions in the star algebra furnishes the Green func-
tions for the retarded solutions in explicit form, thus generalizing the
previous results mentioned at the beginning of this introduction.
Finally, the solution constructed in a previous paper by using dia-

grams with dressed centres [2] ] is compared with the present one in an
Appendix. It appears that the star structure cannot be derived in a simple
way by classical treatments of the equations.

I. STAR ALGEBRA

1. Basic definitions.

Let us call star diagram a schema formed by a finite set of points and
crosses, together with a set of lines, each of them connecting one point

l’Institut Henri Poincaré - Physique theorique



3GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

to one cross, in such a way that two different lines have not the same two
extremities [4 ]. In such a diagram any subdiagram constituted by one
point and the set (eventually empty) of the crosses connected, to it will
be called a star (a v-star if the number of crosses in v), and the point will
be called the centre of the star. Let j~ be the free commutative algebra
with unity over the field of complex numbers, generated by the set of the
connected diagrams. In j~ the product of generators A 1 A2 ... Ak is iden-
tified with the diagram whose connected components are A1, A2, ... , Ak.
We denote by the finite dimensional subspace of j~ spanned by the
diagrams having n crosses and N points. Clearly j~ is the direct sum
A = O and is a bigraded algebra ; in what follows, we shall need

to consider also the direct product A = 03A0A(n,N) [5 ]. While A is the

(n,N)
set of finite linear combinations of diagrams, j~ is the set of non necessarily
finite ones. This latter is also an algebra.

In j~ we define the derivation a as follows : for any diagram D the deri-
vative aD is the sum of all possible diagrams obtained by removing from D
one centre of star. It is obvious that a maps ~(n,N-1)’ This mapping
is in fact surjective that we prove by constructing a right inverse of a.
For that purpose, we introduce the linear operator M such that, for any
diagram D, the transformed M(D) is the diagram obtained by adding
to D a point connected to all the crosses of D. We easily verify the commu-
tation relation

Then we define the operator

This expression makes sense on any element A having a given bidegree

(n, N), for then aN + 1 A - 0. Since maps in ~~n,N+ 1 ) , it is therefore

defined everywhere in j~. By using the commutation relation, we verify that

so that ~ is surjective and injective.

Vol.43,n"l-1985.



4 J. C. HOUARD AND M. IRAC-ASTAUD

2. Consequences of the commutation relation [a, M] = 1.

The operator above introduced is a right inverse of a. Let us consider

then the operator

Due to (1-3), P is a projection operator, and satisfies the relations

Formulas (1-4) and (1-5) imply the equalities

From (1-1), it results that

This implies at first that M is injective. Then, by multiplying (1-7) on the
left by M and using (1-4), we obtain

and consequently, with the help of (1-4),

Let us introduce the operator

From this expression and the formula

we deduce the relations

Annales de l’Institut Henri Poincaré - Physique " theorique "



5GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

Thus the are projection operators and A is the direct sum

The subspace is the eigenspace of the operator Ma for the eigen-
value m, since we have the formula

The direct sum (1-13) leads to the following decomposition for any ele-
ment A of j~

where the summation contains a finite number of non vanishing terms.
This formula can be called the Taylor formula, because it becomes identical
to the usual one when A is replaced by the algebra C[x] of polynomials

d
in one variable x, and the operator a and M respectively by 2014 

and the

multiplication by x ; in fact in this case, the operator ( 1 - P) acting on
any polynomial f, then gives the value /(0).

All the operators above introduced have a given bidegree, namely (0, -1)

for ~, (0,1) for M and , and (0,0) for P and [6 ]. Moreover we have

n~j~N) = {0} for N  m. Consequently all the preceding formulas
00

are valid in ~, and we have ~ = 

yn=0

The preceding notions based on the existence of M such that [a, M] = 1,
can be generalized by replacing this operator by M - a, a E j~ n Ker a.
The commutation relation remains valid and, in particular, we may define

When A is replaced by the algebra C[x] of polynomials, with

. 

the operator represents the primitive vanishing for x = a. In j~, we
also have : 

a

Vol. 43, n° 1-1985.



6 J. C. HOUARD AND M. IRAC-ASTAUD

with 1~ = a, and the resulting £ Taylor formula « about a » :
Ja

The operator 1 - Pa plays in ~ the role of the operator / -~ f(a) in C [x ].
By analogy, we may define

and this symbol has properties analogous to that of the usual definite
integral. For example, we have

3. Correspondence between diagrams and retarded functions.

We introduce now a homomorphism of ~ (or j~) in a functional space.
Let a and ~ be two functions of a real variable t, both vanishing for t  0,
and continuous for t ~ 0. To any diagram D we associate the function ( D ~
called the value ofD, defined as follows : let us label the crosses of D ~
by an index i, 1 ~ i ~ ~ and associate with the cross i a real variable 
to the crosses and the stars constituting D, we assign the following factors :
the function to the cross labelled i
the kernel [a(t ) - ..., ’tv))] to the v-star

with a(t) = 
n

2014 an overall factor e(t - ’r).
i= 1

The value  D ) (t ) is then the integral over the 03C4i of the product of all
these factors [7 ]. The correspondence D -~ ( D ), completed by 1 ~ 1,
induces a homomorphism from A in the algebra of the functions of t.

This homomorphism extends to ~ provided that the value of an element
of ~ be considered as a formal functional series with respect to a and ~.

Annales de l’Institut Poincaré - Physique theorique



7GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

It is easy to see that, except for D = 1, the value of a diagram D is a
retarded function, i. e. is a continuous function of t, vanishing for negative ~,
and derivable for t 5~ 0.

Let us now call regular a diagram not having any connected component
reduced to a single cross. The regular diagrams span the subalgebra
- @ AR(n,N) of A generated by all the connected diagrams except
the single cross. As previously we introduce AR = AR(n,N).

n,N)
For any regular diagram D we have the formula

that we establish now: since every cross of D belongs to a star, the deri-
vatives with respect to the upper bounds of xhe integrals in D ) (coming

from the factor vanish because of the form of the integrand;

on the other hand, the derivative of any factor [a(t ) - a (sup ( ... )) ] asso-
ciated with a star, giving simply a(t ), corresponds to the term of aD obtained
by suppressing this star in D.

In particular, D is regular, ’v’D, so that (I-21) gives: ,

or equivalently

These relations are the key of the treatment of the differential equations
presented in Section II.
We shall say that two elements A and B E ~ are equivalent, and write

If A it results
from (1-21) that the two propositions 0 and A ~ c E are equi-
valent. In particular the relation 3A = 0 implies A ~ C, thus

In the next paragraph, we show that any diagram is equivalent to a combi-
nation of tree diagrams.

4. Tree operators.

In a previous paper we constructed, for any diagram D and any loop b
contained in D, a combination of diagrams equivalent to D, such that

Vol. 43, n° 1-1985.



8 J. C. HOUARD AND M. IRAC-ASTAUD

. each of these diagrams is obtained from D by suppressing some lines of b
(opening of b) [3 ]. We start from this result, that we first restate : after
choosing a circulation sense on b, let us call ( + )-lines (resp. ( - )-lines)of b those contained in b and beginning by a point (resp. a cross) and ending
by a cross (resp.-a point) according to the chosen circulation sense, and
let be the set of the ( ± )-lines of b; for any subset c of ±b with ele-
ments, we denote by DC the diagram obtained from D by suppressing
the lines belonging to c; lastly we define

It is clear that if D is regular, the same is true for D~ and thus for We first established the equivalences [3 ]

Next, when denoting the points of D by an index k, 1 ~ ~ N, and repre-
senting by akD the part of aD obtained by the derivation on the only point k,
we proved -

Let us now define

Clearly, tbD does not depend on the circulation sense above-chosen on b,
and satisfies the same relations as t±bD in (1-26). This allows us to introduce
the linear operator T : j~ -~ j~ such as

where ~(D) denotes the set of all the loops of D. When D is a tree, that
is when ~(D) _ 0. (1-28) has to be understood as TD = 0. Let v be the
« loop-number operator » defined by

(1-29) vD = vDD

where vD = is the number of loops of D. For a tree we also havevD = 0. Since T and v both have bidegree (0,0), they extend to ~, and
we readily verify that they are derivations on ~.

Annales de l’Institut Henri Poincaré - Physique theorique



9GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

Owing to (1-26), we have

Since the relation is equivalent to (1-30) gives

It follows that

and, by summing on k,

Let ~t (resp. be the subalgebra of j~ constituted by the finite (resp.
arbitrary) linear combinations of tree diagrams.

PROPOSITION 1. 2014 There exists a unique linear operator T: j~ -~ j~,
satisfying the conditions

Proof. 2014 We at first construct t on j~.
Let be the eigenspace of eigenvalue v of the loop-number operator.

We- have A(0) n= A03C4, and A = 0153 A(03BD). The operator T maps in
vo-l v=0

EÐ so that t can be obtained by an inductive process : indeed, r is
v=o

uniquely determined on due to (1-34); let us assume that the same
03BD0-1

is true on Q ~w~ ; by applying (1-35) to D E 1, we get
v=O -

vo-1

Therefore tD is determined since TD E 0153 ~w~. We easily check that ’t’

v=0
has bidegree (0,0), so that it extends to j~. Finally we verify that the so
constructed operator satisfies (1-35). Q. E. D.

PROPOSITION 2. The operator t has the following properties :
a) ’! is a projection operator,
b) .

c) C ~
Vol. 43, n° 1-1985.



10 J. C. HOUARD AND M. IRAC-ASTAUD

d) 
e ) L is an algebra  homomorphism,
f ) ~ satisfies the commutation relation

Proof 2014 ~) i2 satisfies (1-34) and (1-35), and is then equal to ’! from

Prop. 1.
b, c, d ) The definition of T implies that c ~R and that TD ~ vDD

(or, more generally, vA, VA E ~). Properties b, c, d then immediately
result from the construction of ’! by the inductive relation (1-36).

e) The relation = i(A 1 )i(A2) is true when A 1 and A2 belong
03BD0-1

to Let us assume that it is true for 0 ~w~, and let D1
v=O

and D2 be two diagrams such as D1D2 E We have, from (1-35)

vo-

Since vo, i = 1, 2, we have TDi ~ 0 
v=0

If, for example, vD2 = 0, the second term in the last member of (1-38)
vanishes, and we get

If vDi and vD2 are different from zero (and then  vo), we have

~0

Since 03C4 is linear the result for D1D2 is valid for A1A2 E 0 A(03BD), and thus
by induction for Ai, 

v=O

Finally, it extends for any two elements Al and A2 of j~, because L
has bidegree (0, 0). Q. E. D.

f ) The relation = is valid for A E ~~°~. Let us assume

Annales de Poincaré - Physique theorique



11GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

that it is true in @ ~~‘’~ ; for we have, using (1-33) and (1-35),
v=0

Vo

As previously this establishes the result in EÐ ~~‘’~, thus in j~, afterwards
~ Q. E. D.

Let us note that a more detailed form of (1-37) holds, namely

(1-42) 

where D is any diagram and k the index of a point of D.
The operator r being a projection operator onto allows to define

operators leaving invariant, and having properties similar to those of

paragraphs 1 and 2. In particular, to a, M and correspond 9, M. = TM t

and T i. This last operator is a right inverse of a in ~~, that is satisfies

the relation

Moreover, a commutation relation identical to (1-1) holds in ~~, because

From that relation we can repeat the constructions of paragraphs 1 and 2,
and more particularly define the operator

It is too a right inverse of ~ in A03C4. Furthermore, just as , the two opera-
tors i i and satisfy (I-23), so that we have the equivalences

Let us stress, however, that the operators f and ’! It are different;
for example we have t 

Vol. 43, n° 1-1985.



12 J. C. HOUARD AND M. IRAC-ASTAUD

The difference between these two expressions is a combination of regular
tree diagrams, belonging to Ker a, having a vanishing component in 
and consequently equivalent to zero.

II APPLICATION TO GREEN FUNCTIONS

In this section, we are going to show that the solutions of one variable
differential equations with an arbitrary source can be constructed with
the help of solutions of differential equations in d, or in some generaliza-
tions of it. In fact, the star algebra structure is suited to the explicit des-
cription of the Green functions, namely to their algebraic construction
in terms of standard kernels, those associated to the stars in Para-

‘ 

graph 1.3 [3 ] .
1. First-order differential equations.

Let us consider in J~ the equation

where ~ is a polynomial, and the « initial condition »

Poincaré - Physique theorique



13GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

By applying £ the operator J to (II-1), we obtain the integral form

Due to (1-3) and (1-5), this equation is equivalent to (11-1) and (11-2). Taking
its value, as defined in 1-3, using (1-23) and the fact that  ) is an algebra
homomorphism, we now get

The function  X ) (t ) will be identical to the retarded solution of the equa-
tion

provided that the following condition be satisfied

or, in other words,

Since 0, the solution of this last equation is not unique.
However, due to the classical existence theorems, the retarded solution x(t)
is uniquely defined in a neighbourhood of the origin. Thus it is sufficient
to choose [8] ]

(11-8) c = x

To the resolution of (11-5) is therefore substituted that of the equation

The solution of this latter can be obtained by an iterative process. Let us
introduce the expansion

Vol. 43, n° 1-1985.



14 J. C. HOUARD AND M. IRAC-ASTAUD

where XN is a combination of diagrams, each having N points. Since fhas bidegree (0, 1), equation (11-9) gives 

so that the XN’s are recursively defined. It is clear that XN is homogeneous
of degree N with respect to the coefficients of the polynomial Moreover,
the induction defined by (11-11) implies that XN has a finite number of terms,
VN. So we have : XN E 0 By writing

n

the first few terms of X are

In particular, for 9(X) = aX, the complete solution is

In the general case, however, although the are well defined by (11-11),
it seems difficult to express them in closed form. Let us simply give two
alternative forms of (II-11)." Firstly, the formal similarity between (11-9)
and the integrated form of (11-5) implies that their iteration schemes are

l’Institut Henri Poincaré - Physique théorique



15GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

identical. As it is known, the second one can be described with the help
of a series of Feynman diagrams of the form

in which the number of lines starting from each vertex is equal to one of
the exponents appearing in ~. For the equation (11-9), the analogous

expansion, written for example in the case ~(X) = a X2, is represented by

that means

A second o way to iterate 
’ (11-9) uses the explicit expression of the operator :from (11-1) yie 

’ easily derives the formula  
"

where the polynomial ~(x) is defined by

Vol. 43, n° 1-1985.



16 J. C. HOUARD AND M. IRAC-ASTAUD

the equation (11-9) then reads

For ~(X) = aX, this expression reduces to (11-14). For ~(X) = a 2 X2 it gives

The iteration of this equation furnishes the series

that can be diagrammatically written

As previously explained, the expansion of X in terms of star diagrams
furnishes for the retarded Green functions of Eq. (11-5) explicit algebraic
expressions constructed with the help of the kernels associated with the
stars [3 ].

Following the results of Paragraph 1.4, the solution x(t) of (11-5) is as
well represented by ’!X, which only contains tree diagrams. In particular
(11-22) is equivalent to

Due to the properties of the tree operator, LX still satisfies equations of
the type (11-1) and (11-2), and is thus well determined by them; however
the corresponding element Co = ( 1- differs from x (although
being equivalent to it), and does not seem likely to be easily predetermined;
nevertheless, it remains true that (11-1) and (11-2) are able to furnish a tree
solution with a convenient choide of Co. Two others ways of obtaining
tree solutions, keeping the simplicity of the initial condition (11-8), consists
in solving either of the equations 

.

Annales de Henri Poincare - Physique theorique "



17GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

The corresponding integrated forms of these equations, from which the
iterative solutions result, are respectively

It is easy to prove that the tree solutions ’!X, Y and Z are equivalent.
To end this paragraph, let us remark that the preceding method allows

to treat the case where the initial condition is different from zero.

If x(0) = ;co, it suffices to replace r~(t ) in (11-5) by r~(t ) + while main-

taining the condition x(t ) =0 for t  0. In this substitution the values
of the diagrams are only modified by the change of the factors associated
with the crosses. Finally, the classical Cauchy problem for ~ 0, is recovered
by putting afterwards ~ = 0.

2. Higher order differential equations.

The preceding methods can be generalized to higher order equations
in the case where = 8(t ) (or simply = 1 if P(0) = 0). Let us first
examine in j~ the second-order equation

with the initial conditions

which, corresponding to the conditions (11-2) and (11-8), represent the

simplest choice for our purpose. By applying twice the operator to (11-24)
we get "

Taking the second derivative with respect to t of the value of (11-26) gives
the equation

Like that of (11-9) in the first order case, the iterative solution of (11-26)
furnishes an expansion of the retarded solution x(t) of (11-27), involving
explicit expressions of the Green functions.

Vol. 43, n° 1-1985.



18 J. C. HOUARD AND M. IRAC-ASTAUD

If for example, ~(X) = - X2, the iterative solution of (11-26) is represented

by an expansion analogous to (11-15) or (11-16), the operator replacing
and 2014x replacing x . That gives for the first few terms " "

(11-28)

Here, to simplify, the schema

Annales de Henri Poincaré - Physique " theorique ’



19GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

stands for a set of p stars of order v having the same extremities. That
expression is rather complicated as compared to the result (11-22) for
the first-order equation. Let us remark however that these two expressions
are constructed with the help of the same pieces, namely the stars, the same
star corresponding to the same value in both cases. On the contrary, the
Feynman diagrams associated with (11-5) or (11-27), though identical

(since coming from identical iteration schemes) have to be evaluated with
propagators of different values.
The most general equation that we treat now is

with

We need to introduce the operator

It satisfies the relations

Let us apply on (11-29) the product of operators ... on account

of (11-30) and (11-32), this gives

The first term in the right hand side can be explicitly calculated. For
any element C of Ker a, we have the formula

Furthermore the following composition law is valid

By induction this implies

Vol. 43, n° 1-1985.



20 J. C. HOUARD AND M. IRAC-ASTAUD

By using (11-36) and (11-34), the first term in the right hand side of (11-33)
can be written under the form

If, for example, ~==0, 1  k  n, it simply remains

Finally, as in the previous cases, the equation for x = ( X ~ corresponding
to (11-29) is obtained by differentiation of the value of (11-33), and reads

Of course, the same treatment can be applied to the equations of the form

in which ~ denotes a linear differential operator with constant coefficients,
and f an entire function.

In the last paragraphs, we sketch the extension of the preceding methods
to two other cases which require some generalizations of the star algebra j~.

3. Systems of differential equations.

Let us consider the system

in which the K functions are arbitrary sources, and the ~ some given
polynomials in K variables. To describe the Green functions of (11-41)

l’Institut Henri Poincaré - Physique theorique



21GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

we need to generalize the preceding diagrams by admitting the occurrence
of K types of crosses, distinguished by an index i, corresponding to the K
sources 1 ~ i ~ K. The notions introduced in Section I are immediately
generalized ; in particular, the rule defining the value of a diagram now
involves the correspondence

In the algebra, the system of equations associated with (11-41) is

with the initial conditions

The corresponding solution is determined by

and one easily verifies that the retarded solution of (II-41 ) is given, in
terms of this one, by = ( (t ),1 ~ i ~ K. The diagrammatic expan-
sions are still obtained by iteration of (11-45). For example the expansions
associated with the system

are

Vol. 43, n° 1-1985.



22 J. C. HOUARD AND M. IRAC-ASTAUD

Let us note that our treatment of (11-41) works because, for any i, the
coefficient of is the same function For 5~ 9(t ) however,
these systems correspond to differential equations slightly more general
than (11-39), obtained from (11-39) by the replacing

4. Operator equations.
Let us now examine the case of an equation, for instance (11-5),

in which the source ~ and the solution x(t) belong to a non-commuta-
tive algebra, for example an operator algebra. The diagrams we have
to consider here are defined similarly to those of ~, with the additio-
nal condition that the set of the crosses of each diagram be totally ordered.
Accordingly, the product D 1 D2 of two diagrams is obtained by putting
the crosses of D 1 before those of D2, i. e. to the left of the drawing. The
corresponding star algebra is then non-commutative. For example, the
diagrams x20142014x20142014x and x ’2014x ~ have to be distinguished,
just as the products x x2014~ and x2014 x. Lastly, the value of a dia-
gram is given by the same rule as in 1.3, taking care to write the factors ~(i)
in the same order as the corresponding crosses, and the formulas (1-21)-
(1-23) remain valid.
Under these conditions one immediately verifies that, as previously,

the solution of (11-5) is given by x = ( X ), where X is the solution of (11-9).

For example, if &#x26;&#x3E;(X) = a 2 X2, the first few terms of the expansion of X are

The expansion reduces to (11-22) when the algebra is commutative.
These methods can be easily extended to the cases of higher order equa-

tions or systems. For example, the equation

is solved by the formulas

Annales de l’Institut Henri Poincare - Physique ’ theorique ’



23GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

the corresponding expansion, that must be compared to (11-28), being

The solution q(t) of (11-49) is as well obtained as the first component
of the system

provided that ~ = ~’1 + ~2, that corresponds 
with

The expansions read

Vol. 43, n° 1-1985.



24 J. C. HOUARD AND M. IRAC-ASTAUD

When the sources have the form

where q0 - x and p0 = 2014 are the q uantum operators, and 03BE1 and 03BE2

classical sources, the expansions (11-54) furnish the Green functions of
the Heisenberg equations corresponding to the Hamiltonian with sources

In particular, these expansions contain the solution of the usual (i. e.
without sources) Cauchy problem, namely

These equations are simply obtained from (II-54) by the replacing

Annales de l’Institut Henri Poincaré - Physique theorique



25GREEN FUNCTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

APPENDIX

COMPARISON WITH PREVIOUS RESULTS [2].

The retarded solution jc(t) of the e q uation (11-5) with the choice P(x) = a 2 + b 6 x3,
was previously obtained under the form [2] ]

where X and Y are solutions of the equations

The iteration of these equations naturally led to diagrams analogous to present star dia-

grams, but in the value of which the function a associated with the centres had to be replaced
by a functional of the source function ’1 (star diagrams with dressed centres) [2 ]. Then, the

expressions so obtained for the Green functions were not completely explicit. Hence the 
.

question is posed to obtain an explicit result analogous to those of Paragraph 11.1 from

. 

the equations (A-1) and (A-2). To this end let us introduce the following graphical repre-
sentation

The formulas (A-l) and (A-2) (after multiplications by ’7(t) for these last) then may be written

in which the cross * means a factor 9(t - (without integration on i).
At this point, we assume that the diagrams appearing in (A-3), (A-I’) and (A-2’) have the

star structure, the label t or T’ written inside the blobs being the variable attached to the

Vol. 43, n° 1-1985.
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centres according to the rules given in Paragraph 1.3. With these conventions, Formula (1-23)
reads

the symbol being that defined in I. 1. Moreover, for t  ’r, we find

Formulas (A-2’) then become

In these formulas, only the part of the diagrams lying on the right of the symbol have

to be integrated. In all the preceding formulas, the diagrams represent in fact the values.
We now make the additional hypothesis that they remain true for the abstract diagrams.
Compared with the diagrams of previous paragraphs, these last have a distinguished cross *.
It is then not difficult to prove that, by substituting the diagrammatic solutions of (A-6)

a b
in (A-r), we obtain a solution of (11-1) with ~(x) = 2 x2 + 6 x3.

Formulas (A-6) can be iterated and furnish :
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this finally gives for the diagrammatic solution corresponding to x(t):

Thus the star structure can be extracted from the equations (A-l) and (A-2) provided
that it be explicitly postulated. Let us remark however that, although equivalent to it,
the solution (A-8) differs from that resulting from the method of Paragraph II. 1.
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