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The reduction of symplectic structure
and Sternberg construction

Anatol ODZIJEWICZ
Institute of Physics, Warsaw University Division,

15-424 Bialystok, 41 Lipova

Ann. Inst. Henri Poincare,

Vol. 40, n° 4, 1984. Physique theorique

ABSTRACT. 2014 In this paper we show that a reduced G-symplectic mani-
fold Q, where Q is a G-invariant submanifold of a strong Hamiltonian
symplectic space such that the momentum map image ’(Q) is a coadjoint
orbit, is isomorphic to the one given by Sternberg construction.

. 

RESUME. 2014 Étant donne un espace G-symplectique hamiltonien propre
et une sous-variete Q de cet espace, invariante par G et telle que 1’image
de Q par 1’application moment soit une orbite de G, on montre que la
variété réduite G-symplectique est isomorphe a celle donnee par la cons-
truction de Sternberg.

§ 1. INTRODUCTION

Studying a classical mechanical system one often needs to construct
new symplectic manifolds (phase spaces in physical terminology) from
the given ones. The most typical examples of such constructions are the
Cartesian product of symplectic manifolds and the reduction of the sym-
plectic structure to a submanifold. The first case takes place when one
wants to describe a composed system, the second one, e. g. is crucial for
the integration of Hamiltonian equations. However, there are further
examples of constructions which differ from the mentioned above.

Briefly, our purpose is to present the construction of a G-symplectic
l’Institut Henri Poincaré - Physique theorique - Vol. 40, 0246-0211
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362 A. ODZIJEWICZ

manifold (§ 2) which is a discrete version of Sternberg’s one (see [8 ]) and
to show that the obtained structure is typical for many physical situations.
Namely, in § 3 we will prove a theorem which says that any strong Hamil-
tonian G-symplectic manifold mapped by the momentum map onto

a coadjoint orbit (!) := Ad # (G) of the group G is symplectomorphic with
a « G-symplectic bundle » (see § 2) over ~P. Finally we shall present some
applications of this theorem to physical problems.
At the very end, let us give some assumptions and notational remark.

We suppose that all objects considered here, i. e. groups, manifolds, forms,
maps are either real or complex analytical. If the symplectic form on mani-
fold P is denoted by a small Greek letter, e. g. co, then the homomorphism
of the Lie group G in the group of symplectomorphisms Mor (P, cv) of P
will be denoted by the corresponding capital Greek letter Q. So, by (P, Q)
we will denote a G-symplectic manifold.

§ 2 . SYMPLECTIC BUNDLE
OVER A HOMOGENEOUS SYMPLECTIC MANIFOLD

In the present section we shall define a G-symplectic manifold which
could be considered as a bundle over some G-homogeneous symplectic
manifold (M, y, r). 

’

Let H be the isotropy group of M, M = G/H. We suppose that H acts
in a discrete way on a symplectic manifold (K, ~p) preserving the symplectic
form ~p. This means that H acts on the manifold K, only through the cano-
nical projection H ~ D := H/H, where H is the connected component
of the neutral element e E H, composed with an action on K of the discrete
group D.
We can define the fiber bunder P ~ M, with base space M, and

fiber K, associated with the principal H-bundle 03C0 : G ~ M, and the
above described action of H on K.

In the particular case when H is connected, H = H, we have simply
P:=M x K.

In the general case, P can be easily obtained by the following construction,
which shows that it is a G-symplectic manifold. The quotient manifold
M := G/H covers M = M/D and thus it is a symplectic G-space, on which
the discrete group D acts by a symplectic action. The group D acts also
on the product M x K, by the action

and o we have 03C0D : M x K ~ P := (M x K)/D = G x HK.
The product of two symplectic manifolds (M x K, pr~ y + pr~ qJ) has

Annales de l’Institut Henri Physique théorique



363SYMPLECTIC STRUCTURE AND STERNBERG CONSTRUCTION

a D-invariant symplectic structure, therefore, we obtain the symplectic
structure 6 on P by quotient. We have

Moreover, the symplectic action of G on M x K

commutes with the action of D on M x K. Thus, it defines, by quotients
the symplectic action E : G -~ Mor (P, (7).
For brevity we shall call (P, (7, E) a G-symplectic fibre bundle over (M, y, F)

with (K, ~p, C) as the typical fibre.
Finally, we notice that the action E defines an n-dimensional distribu-

tion J~ on P, n = dim M, where ~fp is the subspace of Tp(P) tangent to
the orbit p, p = (m, k) E P. J~ is transverse to the fibres of the pro-
jection P -~ M and = T(M). Thus, we can decompose every
two vectors 03BEp, ~p E Tp(P) on horizontal (tangent to H) and vertical (tangent
to = parts: 03BEp = 03B6vp + 03BEhp, ~p = ~vp + We have the -
formula which will be used later

where xm is the canonical map of TCp on the typical fibre K, := k.
Because of 1 = 03A6(h)  03BA, for and H-invariance of 03C6 the
second component of the right side of (3) does not depend on the choice
of m E 7c’~), where ~ : M ~ M.

§3 THE STRUCTURE
OF THE REDUCED SYMPLECTIC MANIFOLD

The G-symplectic manifold (P, c~ Q) is called a Hamiltonian G-sym-
plectic manifold if and only if there is map ~P : P ~ g* such that

for each X where G is the Lie algebra of G, Çx is the vector field on P
generated by the one-parameter group t E R, and eg* is the
dual of eg. According to Souriau (see [7 ]) one calls ’P the momentum
map of (P, cv, Q). For connected P the momentum map is defined up to
a constant c E If the map ’P is G-equivariant, i. e.

for each g E G, one says that (P, Q) is a strong Hamiltonian G-symplectic
manifold. For more exhaustive information on this subject (see e. g.

[~[~[7]).

Vol. 40, n° 4-1984.
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Let Q be a G-invariant submanifold of P. By  c T(Q) we denote the
distribution of the degeneracy subspaces of the symplectic form co with
respect to T(Q), i. e. { çq E = 0 }. We assume
that Q is chosen in such a way that  is of constant rank. Since dcv = 0,
f is locally integrable. If one assumes that the equivalence relation
c Q x Q given by  satisfy the assumptions of Godement’s theorem

(see [6 ]) and that R is closed in Q x Q, then (Q := Q/-, Q) is a G-sym-
plectic manifold, where (5 and Q denote the reduced symplectic form and
the reduced action of G on Q respectively. If the above takes place one
says that there is reduction of the symplectic structure of P to submanifold Q.
If one additionally assumes that (P, cv, Q) is a strong Hamiltonian space,
then (Q, Q) will be a strong Hamiltonian space, too. The existence of
the reduced momentum map 03A8 : Q ~ cg* follows from the constancy

on the maximal connected integral submanifolds of f, which is

implied by the condition (4).

THEOREM 1. 2014 Let (P, cv, Q) be a strong Hamiltonian space and let Q
be G-invariant submanifold of P such that :

a) there is reduction of the symplectic structure of P to Q,
b) ’(Q) := ~ is an Ad # (G)-orbit and a submanifold of ~*.

Then (Q, Q) is isomorphic to a G-symplectic bundle G x HK, where
H is the stabilizer of o and K is the H-symplectic manifold, given by
the reduction of the symplectic structure of P to n Q.

Proof - Let Intq f be the maximal connected integral submanifold
of y which contains q E Q. We have the following inclusion relations.

LEMMA 2. -

where Go is the stabilizer of o = ~I’(q) e ? and Go is the connected compo-
nent of the unit of Gn.

Proo, f ’ of lemma. 2014 Because Intq J is connected, a) is a consequence
of 03A8 = 0, for ç E 

The point b) results from the G-equivalence of the momentum map T.
It is well known that for a given point pEP, the kernel der (~’*)p of

the linear map tangent to the momentum map is the symplectic orthogonal
orth Tp(G p) of the space tangent at p to the G-orbit of p. When p E Q,
by the assumption made in theorem 1, that ’P(Q) is a coadjoint orbit,
we see that
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365SYMPLECTIC STRUCTURE AND STERNBERG CONSTRUCTION

and because Q is G-invariant

This leads to

But Tp(Q) north Tp(Q) is the space tangent at p to Intp J, and
ker (~I’*)p n Tp(G p) is the space tangent at p to the orbit Go p, o = ~F(~).
This implies c) of Lemma 2. ~
The reduced momentum map ~P : Q ~ (!) is a submersion because

B{1 is submersion, too. Hence, ~I’ -1 (o) _ (~’ -1 (o) n Q)/ ~ , is a sub-
manifold of Q. It is evidently clear that ci~ ~~ _ 1 ~o~ is a Go-invariant and
closed two-form on ~P’~(c). We have

where 03B6v E F(T(Q)) is such that *v = 0 and the vector field 03BEX is generated
by X E For each vector 03BEq E Tq(Q) one has the following decomposition
q = vq + (X)q. Using this decomposition, the non-singularity of 
and the formula (6) we find that the two-form 03C6 := (5 is non-singular
on K :_ ~-1(0). Hence, is H := Go-symplectic manifold on
which, by the point c of the Lemma 2, H acts in a discrete way. On the
other hand, in virtue of Kirillov-Kostant-Souriau theorem (see [1 ], [3 ], [7])
the orbit (?, oc, Ad*) is a G-homogeneous symplectic manifold, the sym-
plectic form a is given by the Kirillov construction (see [3 ]). This allows
us to construct the G-symplectic fibre bundle ~ : G x (9, which
is isomorphic to Q as a G-fibre bundle. The symplectic form where
I : G x Q, is identical with the one given by ( 1 ). In order to see
this it is enough to decompose 03BEp E Tp(G x HK) on the vertical and hori-
zontal (with respect to ~f) parts and apply the formulas (3) and (6). 

N 
II

We define the equivalence relation on Q : ql ’" q 2, q 1, q2 E 
‘~(q 1 ) = ‘I’(q2) and if there is such that SZ(g)q 1 = q2. If one assumes
that the quotient space / ~ := Q, is a manifold then, from Q(G)-in variance
of , (Q, Q) is the strong Hamiltonian symplectic manifold isomorphic
to the Cartesian product of the symplectic manifolds K/H and (9. K/H is
the space of orbits of the group H in K. In order to prove this isomorphism
we observe that each orbit of the action Q : G ~ Mor (Q, has a one
element intersection for any This relates Theorem 2
to a similar result given in [4 ].
Now, let us consider some concrete instances of our theorem. We begin

with the case when G is semisimple Lie group. Then, (see [1 ], [7]) any
G-symplectic manifold is a strong Hamiltonian space. Additionally, by
the Cartan-Killing form we have the canonical identification 

Vol. 40, n° 4-1984.
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group E(2). All of them are connected Lie groups. Hence, if we assume that
all states pEP have the same masses, spins and energy signums we will
have from the Corollary 3 that P is symplectically isomorphic to the Carte-
sian product of with the symplectic manifold (K, ~p) which describes
the internal degrees of freedom of the relativistic mechanical system.

B Systems with constant square of the angular-momentum.

Let us consider a classical mechanical system such that all states pEP
have defined angular-momentums M(p) and M2 - const on P. Using the
symplectic geometry language we assume that P is a connected SO(3)-sym-
plectic manifold. Because of the simplicity of SO(3), P is a strong Hamil-
tonian space. By the identification ~C~(3) ^--~ ~(3)* ~ ~ we can write
T(~)=Mi(~+M~)~+M3(~)~, where ~e~(3) generates the
rotation with respect to i-axis of the Cartesian system of coordinates in ~3
and M(p) = [M1(p), M2(p), M3(p)] is the angular-momentum vector. The

~ condition M2 - const means that BJl maps P on an Ad (SO(3))-orbit,
i. e. on the sphere ~ in ~3 with radius equal to M 2(p). The small group
for §M is U(l). It follows from Corollary 3 that P factorizes as the Cartesian
product of symplectic manifolds Here, K denotes a (dim P - 2)-
dimensional symplectic manifold on which SO(3) acts trivially. The sym-
plectic structure of ~~ is given by the canonical volume two-form of ~~.

C . The dual pair (0(1, 3), SL(2, R).

First we define a dual pair of Lie groups in the relativistic case. For the
general notion of a dual pair (see [2]). Let us consider the cotangent bundle
T*(M4) to Minkowski space M4 with A A dp as symplectic
form. Here, one can interprete q = q) as the position of a scalar rela-
tivistic particle in spacetime and p = p) as its four-momentum vector.
The linear symplectic group Sp(8) of T*(M4) ~ 1R8 contains the Lorentz
group 0(1, 3) and the real unimodular group SL(2, R) as subgroups in
such a way that each one of them is the centralizer of the other. According
to Howe we will call (0(1, 3), SL(2, R)) a dual pair. Thus, consequently,
we have the dual pair (Qo, QsJ of actions :

Vol. 40, n° 4-1984.
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where ’ 
q 

E T* ( M 4), and o oorres
’ 

p onding to them t h e dual pair of momentum
mans : ~

By the definition q ~ p := q°p° - q ~ p, where L, 
and x°, E [R. Because the two groups are simple we made the identifi-
cations : ~(1, 3) ~ ~(1, 3)* and If t(2, R) ~ ~~(2, R)*.

Let Q c T*(M4) be given by the conditions: q2 + p2  0, q ~ 0, p ~ 0,
q ~ p and p) := det p) = q2p2 - (q . p)2 - O. A simple compu-
tation shows that Q is both SL(2 - R) and 0(1, 3)-invariant submanifold
ofT*(M4). The images ~o(Q)= {L,M):L-M=0=M’-L~ 
and = { xl, x2) : (x0)2 - (x1)2 - (x2)2 = 0 and x0 &#x3E; 0 } ==: C2 are
coadjoint orbits, thus, they are G-homogeneous symplectic manifolds
isomorphic to (To (~ 2), dy) and (C~(7) respectively. Here To (~ 2) is the
cotangent bundle of ~2 with removed null section, y is the canonical
one-form on T~(S~) and o- is the S0(l, 2)-invariant volume two-form on
the punctured two-dimensional half-cone.
The maximal connected integral submanifold of  c T(Q) which con-

tains the point (q°, po) E Q has the following form

Thus, 7?o) ~ (?. p) if and only if

for some ~ E !R. Now, after application of Theorem 1 twice (in the SL(2, R)
and 0(1, 3) cases) we find that the reduced symplectic manifold (Q, , Q)
is isomorphic to symplectic bundle SL(2, R) x HSL CÕ(~2) ~ c~ and
to the symplectic bundle 0(3, 1) x HoR2* ~ T*0(S2) respectively. Where

= ~ t + ~ _ : ~ E ~ } c SL(2, R) and Ho is the subgroup of

0(1, 3) generated by the subgroups:

Annales de l’Institut Henri Physique theorique
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and

The connected component of unity of Ho is (f~2, + ). The action

Co : H0 ~ Mor(R2*, 03C60 = dx A dy) is defined by 0(A) x - sign Ao x ,L~J L~J

and 0 = (p°)2 - p2 ~ is the bundle of punctured two-dimensional cones

with axis normal to S2 and OgL 
,

is the action of HsL on C20(S2). The two-form where -

7T: C20(S2) ~ C20(S2)/03A6SL(HSL) ~ T*0(S2) is the two-fold covering of T*0(S2),
y is the HsL-invariant symplectic form on CÕ(~2). Additionally we proved
the isomorphism SL(2, R) x HSL CÕ(~2) ~ 0(1, 3) x 

D Other applications.

We can study situations similar to that in point C for any dual pair of
Lie groups. In general we obtain a double fibration of a reduced symplectic
manifold over coadjoint orbits which correspond to the dual pair. This
could have interesting physical applications, e. g. to the Kepler problem
if one considers the dual pair (0(4), SL(2, R)).

It turns out that Theorem 1 is also useful in twistorial mechanics, which
will be discussed in a further publication.
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