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Ann. Inst. Henri Poincaré,

Vol. 40, n° 4, 1984, Physique theorique

ABSTRACT. - Scattering of a quantum particle by a time-dependent
zero-range potential is considered. The purpose of the paper is to give
a complete description of the asymptotic evolution of such a system for
large times.

RESUME. - On etudie la diffusion d’une particule quantique par une
interaction ponctuelle dependant du temps. Le but de 1’article consiste
en une description complete de 1’evolution asymptotique d’un tel systeme
pour des grands temps.

INTRODUCTION

For a quantum system, described by a constant Hamiltonian H, the
set of all initial states may be split up into two classes. The first of them
is the subspace R of states, generating the asymptotically « free » behavior
of the system for large times. One of the main results of mathematical
scattering theory consists in the proof (see e. g. [1 ]) of the coincidence of f!/l
with the absolutely continuous subspace of H. This result is called asymp-
totic completeness. Since the singular continuous spectrum of H is empty,
it ensures that the orthogonal complement to R (the second class) is spanned
by the eigenvectors of H. Thus, for initial data from the second class the
evolution of the system depends on time only in a trivial way.
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344 D. R. YAFAEV

For time-dependent Hamiltonians H(t) it is usually also possible to
construct initial states, that give rise to an asymptotically free evolution.
Moreover, if the perturbation decays sufficiently quickly in time, then
the corresponding subspace R coincides [2] with the whole Hilbert space H.
However, as shown in the author’s papers [3] ] [4 ], even for interactions,
decaying in time, there may exists states, which are asymptotically similar
to bound states in case H(t ) = H. More precisely, assume that the Hamil-
tonian H(t ) has an eigenvalue /)~), that tends sufficiently slowly and
smoothly to the bottom of the continuous spectrum, as t ~ oo. Then
under certain assumptions on the behavior of the associated eigenvector 
the time-dependent Schrodinger equation has a solution u(t) with the
asymptotics

The corresponding initial state fs is called pseudostationary. Its similarity
to an eigenvector of H in case H(t) = H is emphasized by the orthogonality
of fs to ~. As for H(t) = H, in the time-dependent case the problem of
the asymptotic completeness consists in the description of ~. The most
straightforward generalization of the stationary formulation may be

obtained if we replace the eigenvectors by pseudostationary states. In

fact it is physically relevant to expect that under suitable assumptions
the subspace ~f Q ~ is spanned by pseudostationary elements. 

"

In the present paper we consider the Schrodinger equation with a time-
dependent zero-range potential or, in other words, with a point interaction
of time-dependent strength. This model is especially well suited [5 ] for
the description of states with a small coupling energy. We treated this
model already in [6 ], where conditions for the equality ~ _ ~f were found.
The existence of a pseudostationary state was also proven in [6 ] under
proper assumptions. However, in this case the most difficult problem,
i. e. the problem of the asymptotic completeness, was left open. We fill
this gap here. Combined with the results of [6 ], this gives a complete
description of the subspace R for zero-range potentials that depend on
time in different ways. Thus, in such a model the classification of all quantum
states with respect to their asymptotic behavior is obtained.
Note that the case of the periodic dependence on time was treated in [7 ],

where the asymptotic completeness in the sense of G. Schmidt [8 ] was
established. Namely, in [7] it was proven that for several (possibly « inte-
racting ») zerorange potentials ~ coincides with the absolutely continuous
subspace of the so-called monodromy operator of the problem. This is
similar to Yajima’s result [9] ] for the usual potential scattering, but its

proof is somewhat more complicated technically.
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345SCATTERING THEORY FOR TIME-DEPENDENT ZERO-RANGE POTENTIALS

1 MAIN RESULTS

Let us describe our model. The Schrodinger operator with a three-
dimensional zero-range potential (or with a point interaction) is defined [10]
in the Hilbert space as one of the self-adjoint extensions of the
operator Hoo = - 0 with the domain = C~([~B{ 0 } ). The simplest .

way to construct all these extensions is to decompose previously LZ((~3)
into the orthogonal sum of subspaces corresponding to different
values of the orbital quantum number 1, = 0, 1, 2, ... (in spherical func-
tions). The subspaces are invariant with respect to Hoo and its res-
trictions Holo to are defined by

After the substitution ~p = x- lu, generating the unitary transformation
onto the operator is reduced to - d2/dx2 + l(l + 1)x- 2

with the domain C~(~+) in L2(~+). The operators Hoc are essentially
self-adjoint for &#x3E; 1, and the deficiency indices of H(0)00 equal (1, 1). As is
well-known, all self-adjoint extensions 03C9 ~ [R, of H(0)00 are determined
by a boundary condition at x = 0. Namely, H03C9= - d2/dx2 with the
domain ~(H~’), which consists of functions from the Sobolev space ~~(~+)
obeying u’(o) = DM(0). The operator - d2/dx2 with the boundary condi-
tion u(o) = 0 (i. e. OJ = oo) will be denoted by Ho. Let us consider now
the self-adjoint operator in which equals the closure of Hoc on
the subspaces 1 ~ 1, and coincides (after the substitution 
with the operator H~’ (or Ho). This operator will be also denoted by Hw
(or Ho). Clearly, the operators (D E [R, and Ho exhaust all self-adjoint
extensions of Hoo.

In the original notation the operator H~’ acts as 2014A, and its domain
~(H~’) in L2(I~3) may be described in the following way. A function
03C6 E D(H03C9), if 03C6 belongs to the Sobolev class W22 outside some neighbourhood
of the point x = 0 ; in the neighbourhood of the origin ~p- should satisfy

where = 0 and a2 = cval. The operator Ho = 2014 0 with
the domain £ð(Ho) = ~’2(f~3) corresponds to the free particle. Since the
operators Hw are different from Ho only on the subspace it is equi-
valent to study H~’ in L2(~3) or in L2(~+). The Hamiltonian H~’ has a
negative eigenvalue for cv  0, and 0 for 0. However, for any
OJ the quadratic form of H03C9 is smaller than that of Ho, i. e. the zero-range
potential is always negative. Thus, for 0 a « depth » of a zero-range

Vol. 40, n° 4-1984.



346 D. R. YAFAEV

potential well is not sufficient to bind a particle; for (D  0 this well contains

precisely one bound state. For OJ = 0 the strength of a zero-range potential
is critical, and the operator H° has a zero-energy resonance at the bottom
of the continuous spectrum.

In the present paper we study the quantum system with a time-dependent
zero-range potential. Namely, the Hamiltonian is given by the relation
H(t) = The evolution of the system is described by the function u(t)
which satisfies the Schrodinger equation and the initial condition

For any locally bounded function the problem ( 1.1 ) has (see section 2)
a unique solution, and the propagator U(t ), defined by U(t)f = u(t),
turns out to be unitary. We study the asymptotics of u(t) as t ~ oo . In

scattering theory it is natural to compare the evolution of our system
with that of a free system, corresponding to the Hamiltonian Ho. This
is convenient to perform in terms of a so-called wave operator

If the limit ( 1. 2) exists, then the operator W is necessarily isometric, and
the initial data f from the range R(W) of the operator W give rise to the
solutions of ( 1.1 ) with the free asymptotics as t ~ oo, i. e.

So the problem of scattering theory is to obtain an effective description
of the subspace R = R(W). The operators U(t) and Uo(t) coincide on
the subspaces 1 &#x3E; 1, and the wave operator (1.2) is identical on

these subspaces. Therefore it is sufficient to consider H(t) and Ho in the
space L2(~+). Moreover, since the limit

exists and is unitary, the considerations of the operators Wand

are equivalent. More precisely, the existence 0 one of the limits (i. J)
ensures the existence of the other ; thereby W = WWo and, in par-

ticular, R(W) = R(W). From a technical point of view it is more convenient
to study the operator W.

Thus, the operator H(t) acts as - d2/dx2 in the space Jf = L2(R+);
Annales de Henri Poincaré - Physique theorique



347SCATTERING THEORY FOR TIME-DEPENDENT ZERO-RANGE POTENTIALS

functions from its domain obey the boundary condition 
The operator H° corresponds to u’(o) = 0. With detailed notation the
problem ( 1.1 ) reads

For the study of the asymptotics of u(t), t ~ oo, the choice of to in ( 1. 4)
is inessential, and one can take arbitrary large to . So all conditions on 
arising below, contain only restrictions on its behavior at infinity. If a~  0,
the operator H~’ has a negative eigenvalue ~,~’ - - a~2 with a normalized
eigenfunction = (- Set ~,(t) = ~,~’~t~, = The

following assertion was proven in [6 ].

THEOREM 1. - a) For any function 03C9(t) the limit ( 1. 3) exists. b) T he
operator W is unitary = y &#x3E; 1 2. c) The operator W is unitary

Then the ’ limit

= 1 is orthogonal to R(W).
Let us discuss the results of Theorem 1. The part a) means that for any

zero-range potential there exists a large set of initial data (namely, R(W)),
giving rise to the asymptotically free evolution. The parts b) and c) imply
that all states are asymptotically free in two physically different cases.
In the part b) it is assumed that the interaction vanishes with time suffi-
ciently quickly. This is similar to the J. Howland’s result [2] for the usual
potential scattering (i. e. for the perturbation of Ho by the operator of a
multiplication). In the part c) Hamiltonians H(t) do not have discrete
spectrum. In potential scattering it is known [77] that the wave operator
is unitary for the repulsive potential. In the latter case the quadratic form
of H(t) is greater than that of Ho. On the contrary, the zero-range pertur-
bation corresponds always to the attraction of particles. Thus, not only
for the time-dependent potential hump but also for the well with the
« undercritical » depth all states are asymptotically free. The part c) is

Vol. 40, n° 4-1984.



348 D. R. YAFAEV

applicable, in particular, to the periodic function D(~). Compared to [6 ],
we god rid here of the assumption on the polynomial boundedness 
Let us proceed to the part d ). In the power scale conditions ( 1. 5) imply
that cc~(t ) ~ ccy  0, y  1/2, t ~ oo . So the bound state of

the Hamiltonian H(t) with the energy ~,(t ) vanishing sufficiently slowly
(or growing to - oo) with time generates the « quasibound » state of the
system. The corresponding initial state fs is called pseudo stationary.
Thus, parts b), c) and d ) exhaust all possible versions of a power behavior
of c~). For the sake of completeness the proof of Theorem 1 (with excep-
tion of part a)) is given in section 3.

In the case = 03C9  0 the element fs coincides with the eigenvector
of the Hamiltonian H(t) = H, and the subspace ~f e R(W) is spanned
by fs . The purpose of the present paper is to prove the analogous result
for the time-dependent case. Namely, we will show that for ’" 

(Uo  0, y  1/2, the codimension of R(W) equals 1 and consequently
j~ e R(W) consists only of the pseudostationary element. This solves
the problem of the asymptotic completeness in the scattering of a quantum
particle by the time-dependent zero-range potential. Let us now give the
precise formulation of our main result.

THEOREM 2. - Let

and let the relation ( 1. 7) be three times differentiable. Assume further that

where I satisfies I &#x3E; 2v + 7 with

Then the subspace ~f e R(W) has dimension 1.

Theorem 2 contains assumptions on the behavior of a rather a large
number of derivatives Most probably, this number is rather exagge-
rated and we did not try hard to lower it.

Let us now summarize shortly the content of our paper. In section 2
we introduce and study the Volterra integral equation, which is equi-
valent to the problem ( 1. 4). The results given there are necessary for the
proof of Theorems 1 and 2 in section 3. Our proof of Theorem 2 requires
an investigation of the asymptotics of the solution of the Volterra integral
equation with a kernel, that slowly decreases or even grows at infinity.
This is done in the author’s paper [12 ]. Necessary extracts from [72] are
contained in section 2.

l’Institut Henri Poincaré - Physique theorique
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2. THE INTEGRAL EQUATION

The proofs of Theorems 1 b), c) and 2 are based on the reduction of the
problem ( 1. 4) to the Volterra integral equation for the function v(t) = ux(O, t ).
In our case the domains of the operators H(t) depend on t. Thus, even
the existence of the solution of the problem (1.1) does not follow from
well-known theorems [7~] ] [7~] ] of abstract character.

Let us introduce some notations. Let f be the Fourier cosinus transform
of a function fe Jf, i. e. 

_

Operators T, T : L2(to, oo) = and L, L : ~ -~ ~ are defined by

Zt is multiplication by the characteristic function of an interval (to, t)
in A. Note the identity

Taking complex conjugation of (2. 2) we get that T1T*1 = L + L*, where T1
is an operator with the kernel [ip2(t - ] (cf. with (2.1)).
This ensures accretiveness of L :

By C we denote generic constants.
The following assertion is proven in [6] ] (see also [15] ] where several

zero-range potentials in fR3 are considered).

THEOREM 3. - Let 03C9 ~ C21oc(t0, (0), f E C~0(R+), f (0) = 0, and let v(t)
be the solution of the equation

T hen the function

belongs to ~(H(t )) for t &#x3E; to, is strongly differentiable in ~ with respect
to t and satisfies (1.1).
The equation (1.1) and self-adjointness ofH(t) ensure that ~u(t)~ = II f~.

This, in particular, implies uniqueness of the solution of the problem ( 1.1 ).

Vol. 40, n° 4-1984.
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Comparing £ (2.4) and 0 (2.5) we find the following £ expression for the pro-
pagator U(t ), U(t )_ f = u(t ) :

The Volterra integral equation (2.4) has a unique locally bounded solu-
tion for arbitrary locally bounded functions and (T f )(t ). However,
in the general case the function (2 . 5) satisfies ( 1. 4) only in a rather a weak
sense. Without going further into technical details, we simply take the equa-
lity (2 . 6) as definition of the propagator U(t) for an arbitrary locally bounded

The identity (2 . 2) permits us to verify that for any oo)
the operator (2.6) is unitary in ~f. For simplicity we assume later to &#x3E; 0.

The representation (2 . 6) for U(t) is rather convenient for scattering
theory. It allows us to check that U(t)fhas a free asymptotics as t -~ 00

in terms of the behavior of the solution v(t) of the equation (2 . 4). Since
for every E &#x3E; 0 the operator is bounded in A, by (2 . 2)
the operator is bounded from ~~ to Jf. Consequently, taking
into account (2.5) we have

LEMMA 1. - Assume that for somefE Jf the solution v(t) of (2 . 4) satisfzes

T hen there exists

Note that, if the limit (1.3) exists, then the existence of the limit (2.8)
is equivalent to the inclusion f E R(W).
The kernel of the integral operator in (2.4) has a singularity at the dia-

gonal t = L. For the proofs of Theorems 1 b) and 2 it is convenient to replace
(2.4) by an equation with a smooth kernel. For this purpose we apply the
operator I - (DL to both sides of (2 . 4). Then we receive the equation

where

and

Now we summarize some necessary information on the asymptotic behavior
of solutions of Volterra integral equations. We do not assume here that a
kernel G of (2 . 9) is defined by (2.10). Suppose that G(t, ~), t &#x3E; i, satisfies

The numbers a and 03B2 are called respectively an order and a type of a kernel G.

l’Institut Henri Poincaré - Physique theorique
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For kernels of a negative order the behavior of as t ~ oo can be easily
controlled by estimation of the absolute values of the terms of a series of
iterations

(G is a Volterra operator with a kernel G(t, L’)). The following assertion
is well-known.

LEMMA 2. - Let the bound (2.12) be fulfilled for 03B1  

For kernels of a positive order the series (2.13) is again convergent for
any fixed t but in this case it gives only an exponential bound for v(t ).
This is not sufficient for our purposes. For the proof of Theorem 2 we need
the asymptotics of v(t) for kernels of a positive order. Such results are
obtained in [12 ]. Here we give some extracts from this paper.
Assume that

where g(z) and its derivatives obey the condition

and G satisfies

Assume further that

Let us introduce the Mellin transform

of the function g(z). Then (Mg)(p) is analytic in the halfplane Re p &#x3E; ~,
and(Mg)(p) = + 0( ( p 1-2),asp ~ /3 + &#x3E; 0. Denote

by po the maximum of the real parts of its zeros. If (Mg)(p) does not have
any zeros for Re p &#x3E; 03B2, then we set po = 03B2. Now we define

~ = max{~}, ~ = (2.19) .

We say that a bound of the type (2.12) is J times differentiable if

for all j1, j2, 0 ~ j1 +72 = j ~ J. The following theorem is proven in [12 ].

THEOREM 4. - Let conditions (2.14)-(2.17) be fulfilled and II &#x3E; po - 1

Vol. 40, n° 4-1984.
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Assume , that (2 .16) is three times differentiable and that the bound (2 .12)
for G(t, T) may be differentiated J times, where , J &#x3E; 2v + 7 and ,

Suppose further that vo is locally bounded, twice differentiable for sufficiently
lar e t and ’

Then the solution v(t) of the equation (2.9) has the asymptotics

where

G1(t, i) _ 
aG(t, , , = l(vo) is a constant and E is an arbitrary positive

at
number.

The verification of the assumptions of Theorem 2 for the kernel (2.10)
relies on the following technical

Suppose that

Then F(z, i) satisfies

and (2.25) is K times differentiable.
The proof of Lemma 3 is given in the Appendix.
To check the condition (2.21) of Theorem 4 for the function (2.11) we

need the elementary.

LEMMA 4. - Set

1 s &#x3E; 0, then w(~) = 0(r~~). 7/; moreover, y(t) is twice
differentiab le and = = 1, 2, then w(t) also has two deri-
vatives for t &#x3E; to and ’ = = 1, 2, for t &#x3E; to.

Proof 2014 At first we make ’ the change of variable L = ts in (2. 26) .Then

Annales de Henri Poincaré - Physique theorique
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The integral in (2 . 27) clearly does not exceed which proves the
first assertion. In contrast to (2 . 26), the expression (2 . 27) for w(t) may be
directly differentiated :

The integral in (2. 28) is quite similar to that in (2. 27). Thus, the first sum-
mand in (2 . 28) is O(t - 3~2). The second summand is evidently bounded
by t - 3~2 if t &#x3E;_ t 1 &#x3E; to . Differentiating (2 . 28) once more, we can estimate
w"(t ) in precisely the same way.

3. UNITARITY AND COMPLETENESS
OF THE WAVE OPERATOR

For completeness of exposition we repeat here the proof of the uni-
tarity of the wave operator under the assumptions of Theorems 1 b) and
1 c). The proof of the existence of W (Theorem 1 a)), which is quite stan-
dard, is given in [6 ], and we omit it here.

Proof of T heorem 1 b). 2014 By Lemma 1 it suffices to show that for any

f E C~+) the solution v(t) of the equation (2 . 9) satisfies (2 . 7). Integrating
by parts in (2.1) we find that the functions (T f )(t) and
hence cc~(t )(T f )(t ) decay quicker than any power of t -1 as t ~ oo . Lemma 4

now ensures that for the function (2.11) the estimate 
holds. Under the assumption (D(r)=0(r~ y &#x3E; 1/2, the kernel (2.10)
satisfies the bound

This proves the estimate (2.12) for G(t, -r) with a=1- 2y 0 and ~_ -1/2- y.
So Lemma 2 implies that the solution v(t) of the equation (2 . 9) is bounded
by Since y &#x3E; 1/2, this proves (2 . 7). It follows that R(W) = ~f.

Proof of T heorem 1 c). 2014 Let c~) ~ 0. In this case the proof of uni-
tarity of W is based on the accretiveness of the operator L (see the rela-
tion (2 . 3)). Suppose that ~, and 0, be orthogonal to R(W).

Since the limit (1. 3) exists, weakly to zero
and, in particular,

Vol. 40, n° 4-1984.
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Set

Let us show that ~vt~ I ~ 0 as t ~ oo . The inequality (2 . 3) ensures that

Comparing (2. 2) and (3 . 2) we find that

Now we compose a scalar product of both sides of (3 . 5) with vt and take its
real part :

On the other hand, by (3 . 3)

According to (3 .1 ) this expression vanishes as t ~ oo . Therefore on
account of (3 . 4), (3.6) ~ = 0( 1 ), t ~ oo . The definition (3 . 2) implies
that 0 and consequently vt = 0 for t° .
Thus, (3 . 3) is reduced to the equality V(t)f = f, which contradicts (3.1).
This concludes the proof.
Now we apply to the proof of Theorem 2. In virtue of Theorem 1 d)

(its proof will be given at the end of the paper) under the assumptions of
Theorem 2 the pseudo stationary element ( 1. 6) exists and belongs to the
subspace ~f e R(W). Thus it suffices to show that the dimension of
~f e R(W) is not greater than 1. Besides the results of section 2 we need
here an elementary

LEMMA 5. - Let H be a Hilbert space and 1 be a linear functional defined
on some linear set ~, dense in ~f. Let £ðo c ~, consist of elements f,
for which l(f) = 0. Then the dimension ~f e ~° does not exceed 1.

Actually, if 1 is bounded, then by the Riesz theorem l(f) = ( f, t/J 0) for
some ~. In this case the subspace Jf Q ~° is spanned by so that
its dimension equals 1. Let 1 be unbounded. Then there exists 03B6n ~ D such
that l(03B6n) = 1 and ~03B6n~ ~ 0. Moreover, taking some subsequence of 03B6n
one can secure that for any ~n &#x3E; 0 the estimate II  ~n holds. Let now

then l( f °) = 0 so that f0n E One can choose 03B6n in such a way that
-!! 0 oo . It follows that lim fn = Thus,

in this case the set £ðo is dense in ~f, which concludes the proof.
Let us check that the kernel (2.10) satisfies the assumptions of Theo-

rem 4. We begin with a verification of the estimate (2.12). Let the condi-

Annales de l’Institut Henri Poincaré - Physique theorique
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tion ( 1. 8) hold. After the change of variable s = rcr (2.10) takes the form
G(t, -r) L), where F(z, -r) is defined by (2 . 23) withf(s) = 

By Lemma 3 the bound = implies the estimate (2.12) with
a = 1 - 2y, ~ = - 2y for G(t, -r). Moreover, since the 
is differentiable J times, the same is true for the estimate (2.12). To check
conditions (2.15), (2.16) we need the assumption (1.7). Set 

and let G(t, r) be defined by (2.14). To prove (2.15), (2.16) for g(z) and

r) it only remains to apply Lemma 3 for f(s) = s- Y and for f(s) = w(s).
In our case G(t, r) is purely imaginary for all t and 03C4 so that (2.17) holds.

By easy computations we find that for the function (3 . 7) g(l) = 

g’(1) _ - 37~~/2, ~ = = - 3y/2. In particular, it follows

that the definition (2 . 20) of v is the same as ( 1. 9).
For evaluation one needs to compute the Mellin transform (2.18)

of (3 . 7) :

In virtue of the equality

each of the integrals in the right-hand side of (3.8) can be evaluated in
terms of the r-function:

The zeros of are real, and the greatest of them equals

Therefore, for y  1/2 the function (Mg)(p) does not have zeros in the

half-plane Re p &#x3E; j8 = - 2y so that po = (~. Thus, the definition (2.19)
gives the equality 5 = ~(y) = max ~ - 3y/2, - 2y }. The condition a &#x3E; 

of Theorem 4 is equivalent to y  2/3.
Let us consider the free term vo(t) in the equation (2 . 9); vo(t ) is defined

by (2.11). As in the proof of Theorem 1 b), we assume 
Then and its two derivatives decay quicker than any power

Vol. 40, n° 4-1984.
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oft-1 as t -~ 

Thus, the condition (2.21) also holds.
In our case 5 2014 a  - 3/4 and therefore the relation (2 . 22) of Theorem 4

reads

For the kernel (2.10) and, conse-
quently, 

2

Note, however, that in our proof of Theorem 2 the concrete expression
for a(t ) is inessential.

Let £ð be a set of elements, for which f ~ C~0(R+). For f ~ D the constant 1

in (3 . 9) depends obviously linearly on vo and therefore onf Thus, 1 = 
defines a linear functional on ~. As in Lemma 5, a subset £ðo is deter-
mined by the condition l(f) = 0 for f E ~o . By (3 . 9) for f E £ðo the solution
of the equation (2. 9) obeys (2. 7). Thus, by Lemma 1 the limit (2._8) exists
so that ~o c R(W). Since by Lemma 5 the dimension of ~f e ~o does
not exceed 1, the same is true for J~ e R(W). Theorem 1 d) ensures now that
the subspace ~P e R(W) is precisely one-dimensional. This completes the
proof of Theorem 2.

In conclusion we give

Proof of T heorem 1 d ). 2014 To show the existence of the limit ( 1. 6) we
replace previously the function

in (1.6) by a better approximation to a solution of the equation (1.4).
It appears that a proper approximation may be defined by the formula
w(x, t) = (1 - where ~)=4’~~)~)’’. At first, we
nrove the existence of - 

. _ . _ _

Since w(t) E ~(H(~)), to that end it suffices to check that

After differentiations we find that

Annales de Henri Poincare - Physique theorique
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Since 03C8xx = the third and the sixth summands in the right-hand side
cancel one another. Taking into account the explicit formula

we receive = = 2~~r + It follows that

the convergence of the integral ( 1. 5) ensures now the inclusion (3 .11 ).
This proves the existence of the limit (3.10). By ( 1. 5)

so that the limits (3.10) and ( 1. 6) exist simultaneously.
Let us show finally that the pseudostationary element fs is orthogonal

to R(W). It is sufficient to check that

for/e C~0(R+). Let b = inf supp  &#x3E; O. Integrating by parts in the relation

we find that for any n &#x3E; 0

We need (3 .12) only for n = 1/2. Let us now consider

By (3.12) the tirst summand in the right-hand side is bounded by
C( ~ cc~ ~ t ) -1 ~2. In virtue of the Schwarz inequality and the unitarity of

the second summand may be estimated by

According to (1.5) --+ oo so that both sides of (3.13) tend to zero
as t ~ oo. Thus the pseudo stationary element is necessarily orthogonal to
the range of the wave operator.
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APPENDIX

Proof of Lemma 3. - Set s) = (z - s)- 1~2(S - 1)-’~ and define functions Q,(z, s),
n &#x3E;- 1, z &#x3E; s, by the recurrence relation

It follows that

where an = ( - 1)"(2n - 1) !![2"(~ - 1) ! ] -1. In particular, (A . 2) implies that

To obtain a bound for S2n(z, s) we rewrite (A. 2) as

with

Since  Cx"- 1/2(1 _ x)-1~2, satisfies

For the proof of Lemma 3 one needs to show that under the assumption (2. 24)

To take a derivative of F(z, T) (see (2.23)) with respect to z, we must beforehand integrate
by parts in (2 . 23) :

The last relation may be differentiated directly. On account of the definition (A.1) for Qi
and the identity (A. 3) for S2o . we get

Repeating this procedure (of integrating by parts and differentiating with resnect to 2~_ _ _ _ 

- 
_____

n times we find that

Taking here m derivatives with respect to T, we finally receive
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Now we can insert bounds (2 . 24) and (A. 4) for S2" into (A. 6) :

Since the integral in (A. 7) is 0((z - 1)") as z ~ 1, the inequality (A. 5) for T &#x3E;_ To and
z E [1, zoL where Zo is any fixed number, is an immediate consequence of (A. 7). Thus, it
suffices to prove (A. 5) for r ¿ To and 2 &#x3E; Zo &#x3E; 2. By (A. 7), to that end it remains to show that

On account of the bound (s - 1, the proof of (A.8) is reduced to the case n = 0.

Let us split the integral in (A. 8) into the sum of integrals over ( 1, - ) and 2 , z . Thus, theleft-hand side of (A . 8) does not exceed 2 2

This concludes the proof of (A. 8) and, consequently, of Lemma 3.
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