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On rotation

and vibration motions of molecules

A. GUICHARDET

Centre de Mathematiques, École Poly technique,
91128 Palaiseau, France

Ann. Inst. Henri Poincaré,

Vol. 40, n° 3, 1984, Physique theorique

ABSTRACT. 2014 In the second stage of the Born-Oppenheimer approxi-
mation, a moving molecule is considered as a set of points of the euclidian
space which represent the kernels of the atoms constituting the molecule ;
in books on Molecular Spectroscopy, under the title « separation of rotation
and vibration motions », one actually defines the rotational and vibrational
energies, but not the vibration motion. In the present paper we propose
a mathematical definition of these last ones, and we prove that they cannot
be separated from the rotation motions, in that sense that performing a
purely vibrational motion, a molecule can, at the end of a finite time, come
to a final configuration which is deduced from the initial one by an arbitrary
pure rotation.

RESUME. Dans la seconde etape de 1’approximation de Born-Oppen-
heimer, une molecule en mouvement est considérée comme un ensemble
de points de l’espace euclidien, representant les noyaux des atomes consti-
tuant la molecule ; dans les ouvrages de Spectroscopie Moleculaire, sous
Ie titre « separation des mouvements de rotation et de vibration », on definit
en realite les energies de rotation et de vibration, mais non les mouvements
de vibration. Dans Ie present travail nous proposons une definition mathe-
matique de ces derniers, et nous montrons qu’ils ne peuvent pas etre séparés
des mouvements de rotation en ce sens qu’en effectuant un mouvement
purement vibratoire, une molecule peut, au bout d’un temps fini, parvenir
a une configuration finale qui se déduit de la configuration initiale par
une rotation pure arbitraire.
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330 A. GUICHARDET

§ 1 INTRODUCTION

Most of the books on Molecular Spectroscopy begin with the so-called
« separation of rotations and vibrations » ; this is done in terms of kinetic
energy : one considers a motion of the molecule, a fixed frame and a conve-
niently chosen moving frame, linked to the moving molecule; the kinetic
energy then appears as the sum of four terms, interpreted respectively as
translational, rotational, vibrational and Coriolis energy the last term
being further neglected since it is smaller than the other three (see for ins-
tance [5], ~ 11.1). But apparently there is no theory of vibrational motions.

In this paper we give a simple mathematical definition of « vibrational
velocities » for a given configuration x ; they constitute a linear subspace

of the vector space Vx of all velocities ; it is defined as the orthogonal
subspace of the subspace of translational and rotational velocities, with
respect to a scalar product which corresponds to the kinetic energy ;

is naturally isomorphic to the « internal space of x » ; but it is worth
noticing that the internal space is more naturally defined as a quotient
of Vx than a subspace ; in this way its definition does not involve the masses
of the atoms constituting the molecule.

This being done, we propose a definition of vibrational motions : a
motion x(t), where t is the time, is called vibrational if its velocity belongs
to for each t ; physically this means that the angular momentum
with respect to the center of mass is identically zero. Now a natural question
arises : can one separate in some reasonable sense the translational and
rotational motions (the definition of which is clear) from the vibrational
ones ? Our answer to this question is « no », by virtue of a (theorem 1 below)
asserting that, if our molecule contains at least four atoms, one can start
from some initial configuration, then perform a continuous vibrational
motion, and get at the end a final configuration which is deduced from the
initial one by an arbitrary pure rotation. At this point two remarks can
be done : first, such motions seem to be familiar to cats who, as is well
known, always fall on their legs when launched in the air ; second, in the
case of diatomic or triatomic molecules, the situation is very different :
during a vibrational motion, a diatomic molecule will remain on some
fixed straight line, and a triatomic one in some fixed plane.
Our proofs will use various notions and results in Differential Geometry ;

the nonacquainted reader is referred to references [7] to [4] of our biblio-
graphy ; [3] ] is a very elementary introduction to the general theory of
manifolds, tangent spaces, vector fields, etc ; [4] does the same with more
physical intuition ; [7] ] and [2] ] contain all useful material on principal
bundles, connections, holonomy groups, etc.
We must mention that our study is purely kinematical, since we do not
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331ON ROTATION AND VIBRATION MOTIONS OF MOLECULES

introduce potential and Lagrange or Hamilton equations ; we hope to
return to more dynamical matters in a forthcoming paper. The author
thanks J. P. Bourguignon for valuable informations in Differential Geo-
metry, and M. Fetizon, H. P. Gervais and their colleagues chemists for
introducing him to Molecular Spectroscopy.

§ 2. VARIOUS CONFIGURATION SPACES.
SEPARATION OF TRANSLATIONS

We consider a molecule as a set x of n atoms ..., xn, each xk being
identified with a point of an oriented euclidean affine space E od dimen-
sion d ; roughly speaking, E is the usual space IRd with its usual orientation
and scalar product, but without a choice of an origin ; of course any choice
of an origin in E yields a canonical identification of E with We always
assume n  2 and d  2 ; the cases of interest will be of course d = 3 but
also d = 2 because it leads to much simpler computations. Each atom xk
is endowed with a mass mk which is a strictly positive number ; moreover
two atoms cannot be at the same place ; so we take as our first configuration
space the set Xo of all n-uples x = (x l, ..., xn) with xk ~ E and xk ~ xk.

k’. This set is a manifold of a very special type, since it is an open
subset of the affine space En ; the tangent space to Xo at a point x, denoted
by Vo,x (the traditional notation would be Tx(Xo)), can be identified
with it is the set of all n-uples v = (t;i, ..., v") with vk E physically
it represents the set of all possible velocities.
We denote by ( I ) the usual scalar product in IRd and by II II the cor-

responding norm ; we define a scalar product Bo,x on the vector space by

it represents the kinetic energy in the sense that, if we have a motion

x(t) _ (x 1 (t), ..., xn(t)), the kinetic energy at the time t is

The family of all scalar products Bo,x is called a riemannian structure
on Xo. We shall now express in mathematical terms the well known fact
that translations can be separated from other motions. We first define
a vector subspace of 

Vol. 40, n° 3-1984



332 A. GUICHARDET

its orthogonal for the scalar product Bo,x is given by

We have

The family of all subspaces V|0,x,trans is a particular case of the notion of
distribution of tangent subspaces ; we recall that such a distribution (Wx)
is said to be completely integrable if for each point x there exists a sub-
manifold containing x and having as its tangent space at each point x’.
In the present case the distribution is completely integrable, the submanifold
containing x being the set of all x’ such that = Qx (here S~x denotes
as usual the center of mass of the configuration x). From now on we shall
restrict ourselves to such a submanifold and we shall identify E with ~
taking S2x as origin.

So our second configuration space is

In this space X 1 we let act the group G == SO(d) of rotations in 

with each x we associate its orbit G ~ x = {~’ x ~ and its stabilizer (or
isotropy subgroup) :

Gx can be described as follows. Denote by Fx the vector subspace of ~
generated by ..., xn and by Fx its orthogonal ; then an element of Gx
is equal to the identity in Fx and to an arbitrary rotation in in parti-
cular Gx is reduced to the identity if and only if dim Fx = d or d - 1 ;
this condition will be useful in what follows. So we define our third and
final configuration space X as follows.

DEFINITION 1. 2014 We denote by X the set of all n-uples x = (xi, ..., xn)
with xk E satisfying the following conditions :

iii) the dimension of the vector subspace Fx of IRd generated by x1, ..., xn
is equal to d 1; notice that this implies ~ ~ ~.

Poincaré - Physique théorique



333ON ROTATION AND VIBRATION MOTIONS OF MOLECULES

In the usual case d = 3, condition means that the configuration x
is not linear. In the general case, X is a manifold of dimension (n - l)d
which is still an open subset of an affine space ; one can prove, and we shall

admit, that X is always arcwise connected.
We shall denote by Vx the tangent space to X at a point x :

and by Bx the scalar product on Vx :

§ 3. THE ACTION OF ROTATIONS
AND THE SUBSPACES Vx,rot AND v

Some notations.

We denote by AW the second exterior power of i. e. the set of all

antisymmetric tensors of order 2 on for x, y E IRd we set

There is a unique scalar product ( I ) on such that if ..., ed)
if an orthonormal basis in the elements ei ^ ej with i  j constitute
an orthonormal basis in In the case d = 3, x is identified with
a vector in the usual way (vector product).
We denote by g = so(d) the Lie algebra of the group G = SO(d) ; this

is the set of all antisymmetric d x d real matrices ; there is a unique iso-
morphism ç H Rç of AW onto g such that

if ... , ed) is an orthonormal basis of IRd and if

then Rç is the matrix with entries In the case d = 3, is nothing
but ç n x, A21R3 being identified with 1R3 as mentioned above. We note
for later use the following formulae :

Vol. 40, n° 3-1984



334 A. GUICHARDET

Action of rotations. Internal spaces.

We let the group o G act on X as § ’ 2 and o we recall that this action is without
fixed o point : ~ _ _

As a consequence of this property, the orbit X/G can be considered as a
manifold which will be denoted by X ; its dimension is

it is now an abstract manifold, not naturally embedded in an affine space.
Physically X represents the set of all molecule forms independently of
their position in if x is a point of X and x its image in X, we denote
by Yx (the traditional notation would be T :x (X)) the tangent space to X
at x ; it is called the internal space of the configuration x. One calls internal
coordinates any system of local coordinates on X in the neighbourhood
of x, and also any system of coordinates on Vx. As an example we take
the molecule H20 (d == 2, n = 3); the usual internal coordinates are

rl, r2, 0 on X and dr1, dr2, do on Vx.

Other definition of Vx .

The orbit of any x is a submanifold of X, isomorphic with G ;
its tangent space is , _ ... _ . _ ., _ a ~

On the other hand the differential at x of the projection X ~ X is a linear
mapping Vx which is surjective with kernel Vx,rot; so Vx can be
identified with the quotient space 

Definition of .

We define it as the orthogonal of Vx,rot in Vx for the scalar product Bx ;
using formula (3 .1 ) one immediately gets

Annales de Henri Poincaré - Physique ~ theorique ’
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Clearly depends on the masses ..., mn; but it is canonically iso-
morphic with Vx which does not depend on the masses : in fact Vx,vib being
a supplementary of Vx,rot in Vx, the restriction to Vxwib of the projection

Vx is an isomorphism.

Definition of vibrational curves.

We first define a smooth curve on a manifold X as a mapping y from some
interval (a, b] to X which is continuously differentiable ; its derivative at
a point t is an element y(t) of We then define a curve as a mapping y
which is continuous and piecewise continuously differentiable ; thus it

has for each t a left derivative and a right derivative which are

distinct only for a finite number of t’s.

DEFINITION 2. 2014 We say that a curve y on X is vibrational if and

belong to for every t ; physically this means that the angular
momentum with respect to 0 is identically zero.
The main aim of this paper is the following result :

THEOREM 1. - We assume that n &#x3E; d. T hen every two points of an arbi-
trary G-orbit in X can be joined by a smooth vibrational curve ; every two
points of X can be joined by a vibrational curve.

Its proof in the general cas will be given in § 4 ; a more elementary proof
in a particular case (d = 2, n = 3) will be given in § 5 ; this case is simpler
because SO(2) is abelian.

In the case where n = d the situation is quite different, as the following
result shows :

PROPOSITION 1. - If n = d and if smooth vibrational curve, then

the hyperplane is constant.

Proof 2014 We first remark that dim Fx = d - 1 for every x E X.
a) We claim that for each v E Vx,vib we have vkEFx Vk. To prove this

we can assume ... , is a basis of Fx; we take a basis (ei) of f~d
such that

we decompose vk on this basis, with coordinates condition 03A3mkvk = 0

implies

Vol. 40, n° 3-1984
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on the other hand, since

condition vk = 0 implies

(3 . 3) and (3 . 4) together imply = 0 Vk, whence vk E Fx.
b) To prove our proposition we choose a unitary vector y(t) orthogonal

to and depending continuously on t ; = 0 implies

the second member is zero by part a) ; y(t) is orthogonal to y(t), hence
belongs to being orthogonal to all which generate Y(t)
is null. Q. E. D.

§4 PROOF OF THEOREM 1

IN THE GENERAL CASE

Let us first formulate a natural question : is the distribution of tangent
subspaces Vx,vib completely integrable in the sense defined in § 2 ? The
answer is provided by Frobenius theorem : a distribution of tangent sub-
spaces Wx is completely integrable if and only if for every pair of vector
fields v(x) and v’(x) satisfying v(x), v’(x) E Wx for every x, their Lie bracket
[v, v’ ] satisfies the same condition. Lemmas 2 and 3 below will show that
in our case the answer is « no » and in some sense « definitely no ».
We begin with a lemma giving the explicit form of the orthogonal pro-

jection Px : Vx  Vx,rot (« orthogonal » is always with respect to the scalar
product BJ. We first recall the definition of the inertia operator Ax of the
configuration x : Ax is the linear operator in AW defined by

in the case d = 3, Ax(~) is the angular momentum with respect to 0 of the
velocity corresponding to the infinitesimal rotation Rç. Using formula (3 . 2)
one ets

which shows that Ax is symmetric and positive definite; therefore it has
an inverse A; 1.

Annales de l’Institut Henri Poincare - Physique theorique
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LEMMA 1. 2014 For every v E Vx, Px(v) is given by

(we write here R( ç) instead of Rç for notational convenience).
Proof Calling vk the righthand side, we must prove that v’ - v belongs

to that is ,_. 
-

But

LEMMA 2. Let us consider two vector fields v(x), v’(x) satisfying v(x),
v’(x) E Vx,vib for every x. Then

Proof. 2014 We recall the formula giving, for an arbitrary manifold X,
the Lie bracket of two vector fields v, v’ in local coordinates (x 1, ..., xm) : if

then

In our case one can take as coordinates of a point x E X the numbers ~ ~
cartesian coordinates of xk in a given basis of the proof is now an easy
but tedious computation.

LEMMA 3. - Let x E X be such that 
..., xn generate Then the

elements 03A3mk.vk n vk generate when v and v’ run over Vx,vib.
Proof 2014 Since the set ..., xn) generates it contains a basis and

Vol. 40, n° 3-1984 14
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we can suppose ..., xd) is a basis ; then the set of elements xk /B ~

with basis of Clearly it is enough to prove that
xl /B x2 is of the form Emk.vk n vk with v, v’ E 
To do this we decompose on the basis ..., 

and we set

we take three arbitrary real numbers a2, a3 and we define ..., ~

as follows :

It is easy to check that v belongs to We define similarly v’ by means
of numbers ai. We have 

-

where

~ We have to prove that c 12, c 13, c2 3 cannot be simultaneously equal to 0 ;
but if c 13 - c2 3 == 0 we have

which is clearly strictly positive.
Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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LEMMA 4. - Let jc E X E G == S0(d). Then x and g’ jc can be joined
curve.

Proof. - a) We denote by 7c the projection X ~ X; since G acts on X
without fixed points, the triple (X, X, 7r) is a bundle with group G
and is locally trivial, as easily seen; on this bundle we have a connection:
the differential 1-form 03C9 on X with values in g such that for every x in X
and v in Vx, is the unique element T ~ g satisfying T(jc) == by
lemma 1 we have

Our connection 03C9 has a curuature Q: the differential 2-form on X with

values in g characterized by the conditions :

and

if v and v’ belong to and are extended to vector fields satisfying
v(x), v’(x) E vxwib for By formula (4.1) and lemme 2, formula (4. 2)
becomes

b) Let us now consider a smooth curve 11 on X with parameter t in some
interval [a, b ] ; set xo = r~(a) and choose xo in it is known that

there exists a unique smooth vibrational curve y on X above 11 and starting
from xo, i. e. satisfying , , , , , , , .

this y will be called the vibrational lift of ~ starting from xo .
N. B. Differential geometers would say « horizontal lift » instead of « vibra-

tional lift »; they call V x,rot and respectively « vertical » and « horizon-
tal subspaces » of Vx, because of the opposite picture.

Vol. 40, n° 3-1984
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c) Now suppose ~ is a loop, i. e. r~(b) = r~(a) = then

let us denote y(b) by /(~, xo); we want to prove that when xo is fixed but
the loop ~ varies, the point f(~, x0) runs over all of G’ xo.

d) There exists a unique element g(~, x0) in G such that

one can show that, when xo is fixed but ~ varies, the elements g(~, xo)
form a Lie subgroup of G ; this subgroup is called the holonomy group
at xo and will be denoted by H(xo) ; its Lie algebra is a Lie subalgebra 
of g. Now the holonomy theorem (actually its easiest part) asserts that 
contains all elements of g of the form v’) with t;, v’ E on the
other hand, if xo is such that -’ ’.~on generate formula (4 . 3)
and lemma 3 show that = g, whence H(xo) = G ; but since X is
connected, all holonomy groups are conjugated, hence H(xo) = G for
all xo E X. This proves our assertion.

N. B. In general books on Differential Geometry define the holonomy
group by taking curves ~ on X which are piecewise continuously diffe-
rentiable instead of smooth ; but one can prove that both definitions are
equivalent.

Proof of theorem 1. 2014 The first assertion is precisely lemma 4. To prove .

the second one, take x and y in X, and a smooth curve ~ on X joining x
to y ; its vibrational lift y 1 joins x to some point y’ of G ’ y ; by lemma 4
there is a smooth vibrational curve y2 joining y’ to y ; it is now sufficient
to take the union of yl and y2 ; notice that at the point y’, the left and right
derivatives are not necessarily identical.

95. OTHER PROOF OF THEOREM 1

IN THE CASE WHERE d = 2, n = 3

We fix an orthonormal basis (el, e2) in 1R2.

a) Here the manifold X as defined in definition 1 is the set of all triples
x = x3) with xk E R2 such that and Emkxk = 0.
But what actually interest us is to give a more elementary proof of lemma 4
in the case where xl, x2, x3 generate 1R2; then (xl, x2) is a basis. Thus
we can redefine X as the set of all bases x2) in 1R2, and x3 is defined
by x3 - - 1 + here G = SO(2) ; X can be described as
the set of all pairs y == ( y 1, y2) where

thus the coordinates on X are ’ q 3 with ’ &#x3E; 0, q 3 ~ 0.

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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b) Let us now consider a smooth curve ~ on X :

and look for the vibrational lift y on ~; y(t) is of the form

where

and 0 is an unknown function of t. The curve y is vibrational if and only if

an easy computation shows that this relation is equivalent to the elementary
differential equation

where

we notice that D(q) is strictly positive.
Relation (5.1) implies

where co is the following differential 1-form on X :

this co is more or less equivalent to the 1-form OJ introduced in the proof
of lemma 4.

c) Let us now suppose ~ is a loop, i. e. ~(a) = ~(b); Stokes theorem says
that

where E is an arbitrary surface in X bounded by ~ and conveniently oriented,
and
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An easy computation shows that

If we take a curve 11 such that q3 is a constant k, (5.2) becomes

clearly the righthand side can take arbitrary values, which proves lemma 4
in our particular case.

§ 6. REMARKS ON SIMILAR SITUATIONS

Given a differential 1-form co on a manifold X, one can call horizontal
(by analogy with 94 above) any curve on X annihilating (D; we shall illus-
trate this notion by two familiar examples.

Firstly, in Thermodynamics, taking for cc~ what is usually denoted by 5Q,
a horizontal curve will be what is called adiabatic process ; but in that case,
M admits an integrating factor since cv = T’ dS where T is the temperature
and S the entropy ; moreover in every neighbourhood of any point M
there are points which are not accessible from M by an adiabatic process.
In our case the conclusions are the opposite ones.

Secondly, let us take for X the set of all triples (x, y, 0) where x and y
are real numbers and 0 is an angle ; we identify such a triple with the point
M = (x, y) and the straight line D through M with angle 0; let us further
take the 1-form cc~ == cos 0’ dy - sin 0’ dx. Then a curve (M(t), D(t)) is

horizontal if and only if D(t) is tangent to the curve M(t) ; in that case the
conclusion is the same as in our case, since every two pairs (Mi, D1),
(M2, D2) can be joined by a horizontal curve.

. 
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