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Elliptic functions
in spherically symmetric solutions

of Einstein’s equations

G. C. McVITTIE

Mathematical Institute, The University, Canterbury,
Kent, CT2 7NF, England

Ann. Inst. Henri Poincaré,

Vol. 40, n° 3, 1984, Physique theorique

ABSTRACT . 2014 The metrics considered are of the form

where y, r~ are functions of z=ln Q(r) -In S(~), y -1 -1 and f, Q are

functions to be determined, S(t ) being left arbitrary. Previous work (Mcvit-
tie 1933, 1966, 1967) has shown that solutions of Einstein’s equations in
this case can be reduced to those of three ordinary second-order diffe-
rential equations, one of which the y-equation-determines y, and
hence 1], as functions of z, while the other two give f and Q. This last pair
have been dealt with in McVittie 1967. But hitherto only certain elemen-
tary function solutions of the y-equation have been found through the
trial and error discovery that dy/dz can be a quadratic function of y. In
Part I of the present paper, the y-equation, which contains two constants a
and /3 2, is solved under certain conditions in terms of elliptic functions.
When 03B1 ~ 0, this is only possible if 03B1 and [32 are related by 8a2 + 5x + [32 = 
where N = 2 or 14 ; for other values of N the functions satisfying the
y-equation are unknown. When a = 0, elliptic function solutions are

always possible. Previously obtained metrics, with one exception, are

shown to arise when the elliptic functions degenerate to elementary func-
tions and a number of new metrics of this kind are produced. The excep-
tional case, called the Peculiar Integral, can be shown to be the singular
solution of the y-equation when a = 0, but a proof that this is so when
x 5~ 0 has not been found.

In Part II, papers published between 1967 and 1980 by authors whose
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236 G. C. MCVITTIE

names occur in the subheadings, (i ) to (viii), of Sec. 8 are shown to include
metrics found in Part I, now called « McV-metrics ». Direct coordinate-
transformation is used to convert a Part II to a McV-metric, in all but
one case. This occurs in (iv) of Sec. 8 where an indirect procedure had
to be employed because the finite transformation equations were not found.

PART I

THE SIMILARITY METHOD
FOR SPHERICALLY SYMMETRIC METRICS

1. Introduction

The origin of this investigation lies in my having noticed early in 1980
that P. A. M. Dirac (1979) had rediscovered, by an ingenious method
of his own, one member of a class of solutions of Einstein’s field equations I
had found in 1933 (McVittie 1933; hereinafter McV33). This early paper
of mine had been used by Noerdlinger and Petrosian (1971) in their work
on the effect of cosmological expansion on self-gravitating ensembles of
particles and it received a favourable notice in A. K. Raychaudhuri’s (1979)
book on cosmology. Dirac makes an important comment about the Schwarz-
schild solution, which I would rephrase thus : If we believe that the metric
of the universe is of Robertson-Walker type, then at large distances from
the central body of the Schwarzchild space-time, the metric should tend
to that of a non-empty cosmological model universe and not to the empty
and flat Minkowski metric. Of course, to achieve this, the Schwarzschild
metric must be modified to some extent, as indeed happens in all the McV33
metrics. These may be expressed in physically dimensionless variables
(McVittie 1979) as

where r is the radial coordinate, and

de l’Institut Henri Poincaré - Physique theorique



237SPHERICALLY SYMMETRIC SOLUTIONS OF EINSTEIN’S EQUATIONS

m and 1/R2 are constants and g is an arbitrary function of t. The Dirac ( 1979)
result corresponds to setting 1/R2 = 0. However, as was shown later

(McVittie 1966 ; hereinafter McV66) a much simpler form of the metric
is obtained in terms of a constant k and radial coordinate r where

This turns (1.1) into

where

for the three values of k. It will be observed that in regions where Q/S is
small compared with unity, the metric (1.3) becomes a Robertson-Wal-
ker cosmological metric whose scale-factor is S and curvature constant is k.
A year later (McVittie 1967 ; hereinafter McV67) it was shown that (1. 3)
was itself a special case of a class of similarity solutions whose definition

. will be given in Sec. 2.
In correspondence with Professor Dirac (1980) he remarked a propos

of McV33, that had he known of this paper earlier, he would have been
saved a great deal of work. It occurred to me that this might be true of
other investigators also, especially as McV66 and McV67 are rarely referred
to in the literature. It turns out that a number of re-discoveries have taken

place since 1967 and they will form the subject of Part II. But I also wondered
if the lack of interest might be due to the trial and error methods employed
in both McV33 and McV67. Solutions appear out of the blue and reasons
for their existence are not apparent. Hence in Part II have completed
the investigation I began some fifty years ago, in so far as this can be done
in terms of known functions. These prove to be the elliptic functions and
their « degenerate » elementary function forms. A number of new solutions
have been found and, perhaps more importantly, the reasons for the
existence of the solutions in McV67 have been elucidated.

2. Basic equations.

The general spherically symmetric metric may be written

Vol. 40, n° 3-1984.



238 G. C. MCVITTIE

where all variables and functions are dimensionless and v, co, tf are func-
tions of ( t, r). If a « dot » denotes a partial derivative with respect to t and
a prime one with respect to r, the Tr, T~ components of the energy-tensor
vanish provided that

This is, of course, the condition that a co-moving coordinate-system be
possible. One way of integrating the equation is to assume that

which leads to

where f and T are arbitrary functions of their arguments. The adoption
of (2 . 3) also means that the 3-space t = constant in (2 .1) is conformal to

which is of constant curvature when

The discussion of (2. 3) will be resumed in Part II. In Part I the specia-
lization employed in McV67 will be adopted. It is equivalent to assuming,
in addition to (2. 3), (2.4) and (2. 5), that

where 11 and y are functions of the similarity variable z defined by

In these formulae ~, y and Q are functions of their respective variables
and are to be determined from Einstein’s equations while S is to remain
an arbitrary function of the time, a situation analogous to that in a Robert-
son-Walker cosmological metric.
The equations (2.8), (2.9) and (2.5) yield

where a suffix z, here and elsewhere, means the derivative with respect to z.
Thus in the metric (2.1) there occurs the combination

Annales de Henri Poincaré - Physique " theorique "



239SPHERICALLY SYMMETRIC SOLUTIONS OF EINSTEIN’S EQUATIONS

and therefore no generality is lost if the time-coordinate t is replaced by t
where .

Hence also, S may be regarded as a function of t. In summary the metric
of McV67 has the essential form

y and ~ being functions of z. In the sequel, use will often be made of the
integral ,,

where K is an arbitrary constant of integration.
The remaining components of the energy tensor that are not identically

zero are T~ and TY, Te, T~, the last three representing the stress in the
material. The only further use of Einstein’s field equations, apart from
the vanishing of TY, Tt, that will be made is the condition of the isotropy
of stress, namely, _ .. _ . _,

As is shown in the appendix to McV67 this leads to

where the suffix r denotes a derivative with respect to r. Since rand z are

independent variables their separation in (2.16) is possible by the intro-
duction of two constants ~ and ~. The equation breaks up into the three
equations

The success of this operation depends on preserving the form (2.6) for
the spatial part of the metric, in other words, it is not permissible to trans-
form r to r so that

in spite of the fact that such a transformation is mathematically possible.
This point is overlooked in the one-sentence reference to McV67 found in
Kramer et al. (1980).
The solutions of (2.17), (2.18) for the interlocking functions f and Q

are described in Sec. 2 of the Appendix to McV67 and are not repeated here,

Vol. 40, n° 3-1984.



240 G. C. MCVITTIE

though some further reference to them will be made in Part II. Attention
will be concentrated on equation (2.19) for y which, of course, carries with
it the determination of through (2.14). It has already been mentioned that
only particular solutions of (2.19) have hitherto been available. It is now
possible to find the sets of one-parameter solutions to which these parti-
cular solutions belong and also to find the primitive of (2.19) in certain
cases. Since elliptic functions will be involved, a summary of some of the
properties of these functions is given here (Abramowitz and Stegun 1972).
The elliptic functions in question are the Weierstrass P-functions which

arise whenever (2.19) basically involves the differential equation

Here Px = d P/dx and we shall be concerned with real values of x, g2 and g3 .
The roots el, e2, e3 of the cubic satisfy

The differential equation (2.21) possesses a « homogeneity » property,
the strict proof of which will be found in Whittaker and Watson (1920).
Suffice it to say here that, if P(x) satisfies (2.21) and if

where ~, is a constant, then P(x) satisfies

where

When g2 = 0 and g3 &#x3E; 0 it follows that g3 = 1 if ~, = ~3~, and the
relation between P and P may also be written as

This is the equianharmonic case of the P-function.
The discriminant of the cubic on the right hand side of (2 . 21 ) is

When two roots of the cubic are equal ¿B vanishes, and conversely. The
P-function then reduces to an elementary function in three different ways :

Annales de l’Institut Henri Poincare - Physique ’ theorique 



241SPHERICALLY SYMMETRIC SOLUTIONS OF EINSTEIN’S EQUATIONS

then

ii) 
then

iii) when g2&#x3E;0, ~3  0 : (~1 = ~2 == ~ ~3 = - 2~ s &#x3E; 0)
then

The three P-functions just listed follow the convention of textbooks
on elliptic functions, namely, that the constant of integration in the solu-
tion of (2.21) is zero. However, in the sequel it will be necessary to extend
the definition (2.30) by the use of the addition-theorem for elliptic func-
tions (Whittaker &#x26; Watson 1920) which states that

If P(x) = x - 2, Px(x) _ - 2~ ~, and correspondingly for xo, it follows

after some calculation that

which can replace (2 . 30) in case (i ).

3. The equation for y. First integrals.

The manipulation of the equation (2.19) for y is simplified if y, a and b
are respectively replaced by V, a and {32 where

y being a constant to be determined later. Nevertheless certain results will
be expressed in terms of a, b since the expressions for f and Q found in
McV67 involve these constants. The equation (2.19) then reads

Vol. 40, n° 3-1984.
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and it resembles the equations (6.30) to (6.35) in Kambe’s compendium
( 1971 ). He appears to have found them in the works of P. Painleve and
E. L. Ince 2014 at the references he gives but warns the reader that he has
either not verified the solutions he quotes or that he has had to correct
errors and misprints. It has therefore seemed best to derive the solutions
of (3.2) ab initio by noticing that the equation is identifiable with one or
other of Kamke’s equations if y is chosen to satisfy

whence

The equation for y becomes

In the determination of y from this equation a and 03B2 (or a and b) will
be regarded as given constants. The primitive of the equation for V will
therefore involve two additional constants its constants of integration.
When a and /3, and therefore C, have arbitrary values, the functions satis-
fying (3.5) are apparently unknown. Nevertheless, a particular first inte-
gral does exist, and is called (A. 29) in McV67, which is

from which V is obtainable by quadratures. This differential equation will
be called the Peculiar Integral. It will be shown in the sequel that the pri-
mitive of (3 . 5) is obtainable for certain values of C and, in these cases, the
Peculiar Integral leads to the singular solution of (3.5). It had also been
found by trial and error that, for certain values of C, other particular first
integrals existed, called (A. 26), (A. 27) and (A. 28) in McV67. These were
of the form

where the A* were constants. It is convenient to begin by showing that all
the particular first integrals of the form (3.7) are those found in McV67.
The treatment is, however, different according as oc 7~ 0 or a = 0.

i ) When x 5~ 0 it is possible to introduce U, Z and the constants zo
and N by

Annales de l’Institut Henri Physique theorique
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The equation (3 . 5), the Peculiar Integral (3 . 6) and equation (3. 7) become,
respectively,

where the Ai are constants. By evaluating Uzz in terms of U from the last
equation and substituting into (3 . 9) one finds the algebraic relation

which must be satisfied for all values of U. The coefficient of U3 vanishes
if A2 is either -1 or 1/2 and then the coefficient of U2 can vanish only
if A1= -1, since 3A2 + 1 ~ 0 for either value of The constant term
is zero if Ao = N - 2 and finally the coefficient of U vanishes provided that
either A2 = - 1 and N has any value, or A2 = 1/2 and N = 2, Ao = 0.
Hence the possibilities are :

N arbitrary, Ao = N - 2, A1 - - 1, A2 = - 1 ;
or

N=2,Ao=0,A,= -l.A~l/2.
The corresponding particular first integrals are

the first of which is the Peculiar Integral. It is the only particular first
integral when N #- 2, but there are two such integrals when N = 2.

In order to compare these results with their McV67 versions a return
is made to y, z, a and b. From (3. 5) and C = N03B12 it follows that for any N

The equation (3.13) becomes

Vol. 40, n° 3-1984.
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which is therefore the ( y; a, b) form of the Peculiar Integral. Since ~ 5~ 3,
this integral is (A. 29) of McV67 when a + b - 2 # 0, and is (A . 27) when
a + b - 2 = 0, or N = 8 (1). On the other hand when N = 2, it follows
from (3.15) that .

the Peculiar Integral is

and the equation (3.14) is

which is (A . 26) in McV67.
ii) When a = 0, the equations (3 . 5) do not require the use of V and it

is also possible to introduce the constant Zo and to write

Then the equation for y is

where /32 ~ 0 since b may have any value. The Peculiar Integral (3 . 6) and
equation (3. 7) may then be written respectively as

where the Bi are constants. Proceeding as was done for (3 .11), it turns out
that

or

The first set of values reproduces the Peculiar Integral (3.21); the second
provides another first integral of (3.20), namely,

Since a = 0 is a = 3 and 03B22 = b + 1 it follows that (3 . 21) is (A. 29) of
McV67, while (3 . 23) is (A. 28).
The four cases in McV67 in which y is expressible in terms of elementary

(1) The metric obtained from (3.13) with N = 8 was analysed in detail in McVittie
and Stabell (1967).

Annales de l’Institut Henri Poincaré - Physique theorique
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functions are therefore covered by the equations (3.13), (3.14), (3.21)
and (3.23). These are all the elementary function solutions of the basic
equation (3.5) when yz is a quadratic function of y.

4. The functions y and ~ for 03B1 ~ 0.

This is the general case and is the most intractable. The primitive of (3 . 9)
for U, and therefore for y, has not been found but one-parameter solutions
can be determined. In the first place, there is the set obtainable by inte-
grating the equation (3.13) which defines the Peculiar Integral, and also
by integrating (3.14) for which N = 2. Many of these can be found in the
literature, fQr example in McVittie and Stabell ( 1967, 1968). A complete
list is given below, in which items (a) to (c) refer to the Peculiar Integral
while (d ) refers to (3.14). Once U is obtained, y follows from y = oc(U 2014 2)
and ~ from (2.14). The values of 03B22 and b, derived from (3.15) are also listed.

Vol. 40, n° 3-1984.



246 G. C. MCVITTIE

In these solutions N is fixed as soon as (a, /32) are given. Thus they contain
only one arbitrary constant, r, and are therefore one-parameter solutions
of the basic equation (3.5).

It will now be shown that there are other one-parameter solutions
obtainable by a method suggested by Kamke’s treatment of his equations
(6.30) to (6.35). Let

so that

Substitution into (3.9) then gives

Let it be assumed that

where v(~) is the Weierstrass P-function with invariants g2 and g3, h(~)
is a function to be determined and the prime is introduced for brevity.
The assumption means that

Making use of these relations one finds that

After substitution into the equation for w in (4.4) and re-arrangement
of terms there comes

Annales de l’Institut Henri Physique theorique
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If now h is chosen so that the coefficients of vv’ and of v2 vanish, it follows
that ~ .. ,

The coefficients of v and of v’ become, respectively,

while the term independent of v and v’ reduces to

Therefore the equation (4.6) is satisfied if

g2=0 and N=14 or N=2.

The first condition means that v(~) is the equianharmonic P-function of
Sec. 2. The values N = 14 and N = 2 correspond to the only two cases
for which the solution of the equation (3 . 9) for U is free of movable critical
points (Ince 1956a). Detailed results for the two cases are given below.

i ) CASE N = 14

Here, by (4.2), (4.5) and (4.7), it follows that

Reference to (2 . 26), (2 . 28) shows that (is replaceable by ( and v by v where

and v satisfies

It is easily seen that

But by (4. 2) and (4. 9)

and therefore U(z) involves the independent constants g3 and Zo always
in the combination If this combination be denoted by r, then

Vol. 40, n° 3-1984.
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the functions y and ~ are obtained from (3 . 9) followed by (2.14) and they are

This method of solution fails when g3 = 0 if v, by analogy with (2. 30),
is defined as ,- 2, for then U is indeterminate. However v can be defined
by analogy with (2. 33) as

where r is a non-zero constant, Zo = 0 and’ = in (4 . 2)-since only
one arbitrary constant can occur in the expression for y. Then U is obtained
from (4 . 8), y from y = oc(U - 2) &#x3E; 0 and ~ from (2 .14) to achieve the result

It is not included among the elementary solutions of McV67 because they
pre-suppose that yz is a quadratic function of y whereas here a more compli-
cated relationship occurs. In fact the expression for y may also be written

whose derivative produces

Equating the right-hand sides results in

A second elementary function solution is (4 .1 a) with N = 14 7/2
and so is derived from the Peculiar Integral. Also N =14 in (3 .15) means that

which, of course, is associated with (4.11) and (4.12) as much as with (4. la).

ii) CASE N = 2.
In this case h = 0 by (4. 7) and (4.2), (4. 3) lead, by a method similar to

that used for N = 14, to

Hence the expressions for y and ~ are obtainable from (4.11) by omitting

Annales de l’Institut Henri Poincare - Physique theorique
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the terms in which represent h. Thus, with y = a(U - 2) also

with r = as before. These therefore provide a third set of one-
parameter solutions which, with one exception, were not found in McV67.
The exceptional one occurs when g3 = 0, (1B = 0). If by analogy with (2 . 30)
the choice v = ~ is made, the trivial solution y = 0 of (2 .19) is reached
via (4.14). But if v is identified with

where r is a non-zero constant, and in (4 . 2), then (4 .1 d )
is recovered. Thus (4 .15) and (4 Id) are connected by a particular choice

of the value of g3. The special case of ( 4 Id) in which a=1 2, b=0,(03B1=-1 2,
[32 = 1) is labelled (A. 30) in McV67 and was there used to investigate a
collapse problem.
The other elementary function solution arises from the Peculiar Integral

and is (4.1~) with N = 2 ± -. 1 Substitution + - 1 in (4 .1 a)
produces 2 2

The corresponding results for ’ - - ~ 1 2 are obtainable from these by writing
r for 1/r and K = K/r2 thus producing no essential difference. Compa-
rison with (4 .1 d ) shows that, though the values of b are the same, the solu-
tions are otherwise different.

In this section therefore it has been possible to obtain one-parameter
solutions of the basic equation (3.5) for y when 0 which involve the
equianharmonic P elliptic function. It is also shown how the elementary
function solutions of McV67 apart from those produced by the Peculiar
Integral are deduced from them. But the one-parameter solutions only
occur when a and 03B22 depend on one another in the two ways represented
by the values 2 and 14 of the constant N = Ca - 2 . Evaluation of the Pecu-
liar Integral provides further elementary function solutions. But whether
this Integral does or does not lead to a singular solution of (3.5) has not
been established.
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5. The functions y, r~ when a = 0.

In this case (3.19), (3.20) apply, namely,

This equation for y is also one which is free from moveable critical points
(Ince 1956b). It will shortly be shown that y is expressible in terms of a
P-function w(z) where

and n, m, g2, g3 are constants. In the course of the proof it will turn out
that m and g2 are related by

Accepting this for the moment, certain results useful in the sequel can be
established. By (5.2) and some calculation

Hence

Thus when it is known a priori that g3 + 8m3 = 0, (5.5) yields an equa-
tion of type (3.22). But if this constant does not vanish, (5.4) and (5.5)
yield a first integral of the equation (5.1) for y, namely,

provided, of course, that consistency with (5.2), (5.3) has been secured.
It also follows from (5 . 3) that the discriminant of the equation for w in (5 . 2) is

and therefore vanishes if

Annules de l’Institut Henri Poincaré - Physique theorique
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To show that (5.2) provides a solution of (5.1), the first two derivatives
of yare calculated; they are

Substitution into (5.1) turns this equation into

Non-trivial solutions for y occur when each term in the square bracket
vanishes by a suitable determination of the constants n, m, g2 and g3.
Two sets of values are possible, namely :

Since the constants of Case B imply that g3 + 8m3 - 0, equation (5. 6)
is not derivable; instead (5.5) yields

which is the Peculiar Integral (3 . 21 ) when a = 0. It is also evident that in
both cases g2 cannot be negative and (5.3) holds.
The primitive of the equation (5 .1 ) must clearly arise from Case A as

this contains the arbitrary constant g3 to accompany the other arbitrary
constant - Zo. The first integral (5 . 6) is now derivable from (5 . 4) and (5 . 5)
and it will also be assumed to hold « in the limit » when g3 + 8m3 tends
to zero. The identification of the Peculiar Integral with the singular solu-
tion of (5 . 6) may be established as follows. Let the constants in (5 . 6) refer
to Case A and let

so that (5.6) becomes

Vol. 40, n° 3-1984.
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This is one of the three necessary conditions for the existence of a singular
solution (Ince 1956c). The other two are

The three equations can be satisfied only if

The values of n and m yield

and (5.7) indicates that the elliptic functions reduce to elementary ones;
they will be found in subsection below. The equation (5.9b) is clearly
the same as the Peculiar Integral (3.21) which is therefore shown to be
a singular integral of the equation for y.
With the constants n =1, ~=~/12, ~==/~/12, the equations (5 .1),

(5.2) give the primitive as

Hence, with the aid of (2.14) for ~

The equations (5.4), (5.5), (5.6) are, respectively,

It is clear that (5.12) is not identifiable with the Peculiar Integral (3.21)
by assigning some particular value to the arbitrary constant g3 in the
primitive, thus confirming that (3 . 21) is indeed singular. On the other hand,
the first integral (3.23) is obtainable from the primitive by setting
~3= -~/216 in (5.13).
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In the formulae (5.1) to (5.14) the constant /32 may be positive, nega-
tive or zero. These possibilities may be illustrated by considering those
cases of the general elliptic function solution (5.11) that satisfy (5.7),
which now reads

and also those cases obtained from /32 = o.
i ) ~32 &#x3E; 0.- Consider first the value ~3= -~/2160 so that (5 .10) is

Since g2 &#x3E; 0, g3  0, it follows that (2. 32) applies and that

Thus finally, with the equations (5.11) become

in all of which (3 can be taken to be the positive square root of/~==b+l&#x3E;0.
The last result, with K = 16F~ is the same as (A . 31) of McV67 which is
now shown to arise by the degeneration of the P-function solution (5.11)
to elementary functions. The same is true for the further specialization
{32 = 1, which makes (5.18) identical with the metrics of McV33 in their
McV66 form ( 1. 3) since a = 0 and 03B22 = 1 can produce the expressions ( 1. 4)
for f and Q.
With {32 still kept positive, the second value of g3 which makes A = 0 is

and so by (5.10)
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Hence (2 . 31 ) applies with

and it follows that

It is possible to replace Z by

and to obtain finally

This solution was not detected by the methods of McV33 and McV67
because does not depend quadratically on y. Instead (5 . 21)

connects yz with y by (5.6) with n = 1, m = f’ ~2 and g3 = 20142014 which is12 216

~2
/32  0. - If 03B22=-03B22&#x3E;0, it follows that m = - 2014 and that the

primitive (5.10) is given by 12

The discriminant of the equation for w vanishes by (5.7) if

Annales de Poincaré - Physique theorique
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Consider first the value g3 = - 20142014. . Comparison with the equations
216

for w in (5.16) and (5.17) shows that

_ but the expression for y is

and thus, with the aid of (2.14),

The equations corresponding to (5.12) to (5.14) contain - 712 in place
of 03B22 and the right-hand sides of the first two cannot vanish if g3 = -03B26/216.
The third equation, of course, reads

The results (5.24), (5.25) are the analogues of (5.21), (5.23) when ~32
has a negative value. They remained undetected in McV67 because of
the yZ, y relationship (5.25).

Secondly, consider the value g3 = + 20142014 so that the P-function w(Z)
satisfies 216

Comparison with (5.19), (5.20) shows that

and hence

Since the constant Zo may be altered to zo by
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no generality is lost by employing (z - zo) which will also be denoted by Z
in the formula for y, so that

Thus, with the aid of (2 .14) there comes

which is the analogue of the solution (5 .18) for a negative value of /32.
The equation (5.13), with - 732 in place of (32 and g3 = /36/216, is

Thus the result (5 . 26) could have been deduced from (A . 28) of McV67
had negative values of (b + 1) been considered. The formula for y in (5.26)
is to be found, with Z = z, in Knutsen and Stabell (1979).

iii ) /32 = 0. - The equation (5 .10) now shows that w(Z) is the equianhar-
monic P-function that satisfies

With a notation similar to that used in (2. 28) it follows that

where

Again from (5.10)

and hence by (2.14)

Therefore the functions which occur in the metric (2.13) are

where C1, C2 are the two arbitrary constants of integration in the primitive
of the equation for y, which is now (5.1) with [32 = 0.
The condition for the degeneration of w to elementary functions is

g3 = 0 and it gives with the aid of (2.33)
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Thus, also using (2.14), we have

This expression for y also occurs in Knutsen &#x26; Stabell ( 1979).
iv) Lastly the singular solution (Peculiar Integral) (5.9b) gives rise by

quadratures to the following results :

It has been shown in this section that the primitive of the equation (3 . 5)
for y is attainable when a = 0. The primitive produces a two-parameter
set of solutions involving the P elliptic function. In certain cases they
degenerate to elementary function solutions which include those in McV33
and a number of new ones whose non-detection in McV67 is explained.
The Peculiar Integral (3.21) is also shown to be the first integral of the
singular solution of the equation for y.

6. Summary.

In conclusion, it may be pointed out that the new results consist of
the metrics expressed in terms of elliptic functions, equations (4.11/12/15)
for the 0 case, and equations (5 .11/27) for the a = 0 case. Some ele-
mentary function solutions (5.22/24/26), are also new in the sense that
they are absent from McV67. The remaining solutions of this kind are
also found in McV67 or are deducible by quadratures from the first inte-
grals there given. All such solutions are shown to originate in the dege-
neration of elliptic to elementary functions.

It may well be asked why almost fifty years were needed for the comple-
tion of this investigation. The only explanation I can offer is that the

attainment of a first integral of a non-linear second order-differential

equation may block progress. In fact equations (26) and (28) of McV33 are,
respectively (2), (5.1) with [32 = 1 and (5.14) with an arbitrary, unanalyzed

(2) By writing y for y and x for -Z.
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constant A3 on the right-hand side. The obvious way to future progress
appeared to lie, not only for me, but, as I have been told, for others also,
through this first integral. The present investigation shows that this path
is illusory; instead a return must be made to the basic second-order equation.
Nevertheless the determination of the primitive of the equation for y in
the case of 03B1~0 has still to be found, only one-parameter solutions having
been attained. The problem remains that of finding the general solution
of the equation (4.4).

It is necessary in Part II to have a brief name for a metric produced by
combining a ( y2, e’’) pair with a permissible ( f Q) pair obtained by solving
the equations (2.17) and (2.18). I hope that it will not seem presumptious
if I call it a « McV-metric ».

PART II

McV-METRICS IN THE LITERATURE

7. Introductory remarks.

One of the ways of arriving at spherically symmetric metrics in the
post-1967 literature is by the use of a method originally most clearly deve-
loped by Kustaanheimo and Qvist ( 1948). It employs the sequence of
equations (2 . 2) to (2 . 4) in a coordinate system ( t, 7,0, ~) in which the metric
is

so that (2.5) becomes

The specialization represented by (2 . 8), (2 . 9) and (2 .10) is not made :
instead it is shown that the isotropy of stress equation (2 .15) can be reduced
to

where

and F(x) is an arbitrary function of integration. There are, of course, other
ways of attacking the problem which can be found in the papers cited
in Sec. 8 (i)-(vii) below. A noticeable feature of these investigations is that,
whatever the method used, the resulting metrics often involve only one
arbitrary function of the time and so should be transformable into McV-

Annales de l’Institut Poincaré - Physique theorique



259SPHERICALLY SYMMETRIC SOLUTIONS OF EINSTEIN’S EQUATIONS

metrics. It must be emphasized that the investigations in question do not
merely arrive at metrics; they also deal with such important matters as
the physical and geometrical meanings of the space-times attained.
To establish the equivalence of a McV-metric and one found in the

literature requires the complete specification of the former. This means
that in (2.13) not only y2 and e~ must be known, but also f and Q. Hence
the equations (2.17) and (2.18) must be solved as is done in the Appendix
to McV67. When a, b are replaced, respectively, by 5ex + 3 and ~32 - 1,
the successive integrals of (2.17) may be taken to be

where A, C 1 are constants of integration and it is assumed that a ~ 2014 2/5.
The possibility a = - 2/5, corresponding to a = 1, is dealt with in McV67.
Substitution of f from (7.5) into (2.18) determines Q. However, there
is one possibility in which f is determinable independently of Q, namely,
when {32 = 1 or b = 0. In this case the possible solutions of (2 .18) for f are
shown in the first line of Table I. The second line contains the corres-

ponding expressions for Q obtained from (7.5), and the third line defines
the constant C2. With these values off, it is clear that the metric

found in (2 .13) is that of a 3-space of constant curvature.

TABLE I. - Expressions for f, Q when 03B22 == 1 and n = 
201420142014. 

.

f sin r r sinh r

Q (C1 + C2 cos r)’" " (C1 + (C1 + C2 cosh r)’" "

nA - 2nA - nA

8 . Identifications.

The general method of carrying out the equivalences is to find the coor-
dinate transformation from the (~7) of (7.1) to the (t, r) of a McV-metric
and then to equate the metric coefficients each to each. The procedure
is best illustrated by the examples which follow :
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i) Bonnor and 1 Faulkes (1967).
Their equations (2. 3) and o (2. 7) produce " a metric that may be written as

where a, R2 are arbitrary constants, F is an arbitrary function of t and the
coordinates are those of a McV-metric which, inspection of Part I suggests,
is likely to be (4 .1 a) with}; Q given by the second column of Table I. This
metric is in full

If the two metrics are identical, the factors multiplying yield

and the only additional relation provided by the equalisation of the coef-
ficients of dt2 is ._.

The equation (8 . 3) is the condition that {32 =1 which makes the use of
the second column of Table I possible. With equation (8.4) it yields

while (8.6) becomes

Since a, and therefore LX, is arbitrary, the last equation is solved by r = 1.
Finally the a-power of the equation (8.5) leads to

The identification process therefore connects the constants of (8.1) with
those of (8 . 2) by the equations

but it also restricts the constants of the McV-metric (8 . 2) as follows :
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Identification is also possible with the a = 0 McV-metric whose y2,
e’’ are given by (5 . 29) with {3 = - 1. Hence J32 = 1 and so the second column

1
of Table 1 may again be used with n = -. The McV-metric in full is

and equating these coefficients with those of (8.1) eventually produces

Both (4 .1 a) and (5 . 29) are derived from the Peculiar Integral and there-
fore, in the a = 0 alternative, from the singular solution. Bonnor and
Faulkes, in their equation (3 . 7) impose for physical reasons the condition

and therefore the (8.10) alternative would be unacceptable to them.

ii) Faulkes (1969).
The space-time which Faulkes analyzes in most detail has a metric

(his equation ( 13)) equivalent to

where k2 is a constant and E is an arbitrary function of t. The time may
be rescaled by t = 203B1t and the metric becomes

Inspection of (4. Id) shows that o = - - makes [32 = 1 and 0 so permits

the use of the second 0 column of Table " I. The McV-metric is

with

Hence the two metrics are identical if

Faulkes’ metric is reducible to a McV-metric that is not obtained from
the Peculiar Integral.
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Banerjee and Banerji (1976).
Their metric ( 1 a), with obvious modifications of notation, is

where H(t) is an arbitrary function oft and a, k are constants. If r, t and ds
- 1

are re-scaled appropriately, k may be replaced by :t  or 0, the third possi-
bility leading to a Robertson-Walker metric. Conversion to a McV-metric

will be worked out for k = 1 with the k = - 1 case following on similar4 4 
g

lines. Coordinates r, t are introduced by

and (8.11) becomes

Now consider a McV-metric whose " y2, e" are given by (4.1d) with a = - - 1
so that /32 _ 1 and n = - 2 in Table " I. Combine " these " with the f, Q found 0
in the first column of Table " I. The McV-metric is therefore "

which is identifiable with (8.12) if

The last two equations, of course, impose a slight restriction on the choice

of the (4 .1 d ) McV-metric with oc = - - .
2

iv) Chakravarty, Choudhury and Banerjee (1976).
This paper will be referred to as CCB. The authors divide their solu-
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tions into four cases labelled A, B, C and D. Cases A, B and the first solu-
tion of C are respectively identical with Faulkes (1969), Banerjee and
Banerji (1976) and Nariai ( 1967) and so are known to be convertible to
McV-metrics. The second solution of Case C (CCB equation (6)), in a
slightly modified notation, gives (7.1) with

where r, 8 are arbitrary constants and

H being an arbitrary function of t. Hence

The first of these expressions shows that 03C9 depends on t only through ~
and by (8.14)

Thus in (7.1) the first term on the right becomes, by (7.2),

Clearly by a suitable choice of the arbitrary function T(t) the expression
in curly brackets may be replaced by the differential of a new time-coor-
dinate t, and ~ and H be henceforward regarded as functions of t. Thus
the first term on the right of (7.1) becomes

The terms on the right-hand side of (7.1) which involve the differentials
of the space-coordinates are proportional, by the second expression for ~
in (8.15), to _ _

This is well-known to be the metric of a 3-space of constant curvature for all
values of ~ and 03C4 and for either choice of sign. The method of conversion
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to a McV-metric is sufficiently illustrated by the case of positive curvature.
Specifically let the plus sign be chosen with

which give, by (8.14) also,

These results introduced into (8.15), together with (8.16) show finally
that the CCB metric is

11 being given by (8.17).
Now consider the a = 0 McV-metric whose y2, e’’ are given by (5.21)

with /3 = 1, Zo = rc and whose f, Q are obtained from the first column of
Table I. The metric is

Identification with (8.18) requires that

the last of which necessitates, by (8 .17) also, that

or that

Case D of CCB contains nine solutions for e - ~’~2 each of which includes
one arbitrary function of t, It is to be expected o that the metrics
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are convertible to McV-metrics. Consider for example CCB’s equation (8c)
in which

where E2, ~,, ~ are constants. The method of conversion to a McV-metric
is again sufficiently illustrated by assuming that the three constants are
positive and by choosing the positive sign in (8.21).
The introduction of r by

yields, after some calculation

Hence

Since ~ is now known, ev may be calculated from (7.2), and the time t
replaced by t where

The final result is that the metric of CCB case (8c) is

which may be identified with (8.19) by the requirements that
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the third of which gives, by (8.22) also,

whence

Therefore the apparently different metrics defined by CCB equations (6)
and (8c) are both reducible to the McV-metric (8.19) with the rather
trivial difference that in the first C1 and C2 are equal while in the second

C1-C2=1.
The group of CCB metrics defined by the equations (9a, b, c) of Case D

is more interesting for two reasons. Firstly it turns out that the metrics are
the only examples so far found in the literature which correspond to McV-
metrics involving values of {32 different from unity. Secondly, the trans-
formation from r to r is extremely complicated and has to be avoided.
These points are illustrated by the analysis of CCB 9(a) in which

and, by (7 . 2),

where E2, ~,, L are arbitrary constants. To fix ideas, the + sign will be adopted
in the definition of tan ~. The time t will be replaced by t where

and k is an arbitrary constant. Finally the coordinate r is replaced by p,
where

and the constants 5, y are introduced by

The CCB metric may then be written as

11 now being regarded as a function of t and p .
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Consider next the x = 0 McV-metric given by (5.26) with z0 = O. This
1

metric becomes, with the aid of (7.5) and the substitution y = A~,

Clearly if (8.25) is convertible into (8.26), it must be the case that

and

two relations which show that

Hence, by (8.24) also,

It must also be the case that

which means that

Therefore

the second of which is consistent with (8.27) if

Lastly the equality of the constant multipliers gives

If the minus sign had been selected in the definition of tan tf the only
significant change would have been the replacement of (8 . 28) by /?= -2r~.
The CCB cases (9b) and (9c) can also be converted to McV-metrics by a
method similar to the foregoing.
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v) Glass and Mashhoon (1976).

These authors through their equations (2), (5), (6), (7), ( 11 ) and ( 12) produce
metrics equivalent to

where a, (3, y, 5, /).o are constants and /is an arbitrary function of t. Whether y
is positive, zero or negative the terms in curly brackets are those of a 3-space
of constant curvature. To fix ideas the case particularly studied by Glass
and Masshoon will be considered, by a method useable for any combination
of positive and negative values of 03B1, 71, 5. The case is defined by y = - e, 8 &#x3E; 0.

It will also be assumed that ~,o, a, ~3 are all positive. The substitutions

convert (8.29) into

The a = 0 McV-metric obtained from (5.18) with j8 = 1 and the third
column of Table I has the metric

It is immediately identifiable with (8.30) if

The same method turns every metric (8.29) into an a = 0 McV-metric
obtained from (5.18) with ~3 = 1. These metrics were listed under (A. 31)
of McV67 and so were available at the time Glass and Mashhoon were

carrying out their investigations.
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vi) Glass (1979).
This paper contains metrics whose coefficients depend on two arbitrary

functions of the time and so do not convert into McV-metrics. However,
Glass does give a metric which can be so converted. It refers to a uniform
density solution and, with the aid of Glass’ equations (47), (6), (5) and the
definitions following (8), it may be written as

where k is a constant, g has been written for Glass’ c2, and H, g are arbitrary
functions of t. The metric is simplified by the introduction of the coordi-
nates t and r, where _ 

_

and it becomes

g now being regarded as a function of t.
The a = 0 McV-metric obtained from (5.18) with ~8 = 1 and the second

column of Table I is

It is identifiable with (8.31) if

This McV-metric is the same as the McV33 metric with zero space-curvature
(k = 0) as may be seen from McV66, equation (8), which shows that the
density of the material represented by the space-time is uniform.

Stephani, MacCallum &#x26; Herlt (1980).
These authors favour the method of Kustaanheimo and Qvist ( 1948)

which, in its various forms, can produce metrics whose coefficients depend
on more than one arbitrary function of the time in contrast to the single
function of a McV-metric (Thompson and Whitrow 1967-1968; Bondi 1969).
Kramer et al. state that « To the authors’ knowledge all explicitly known
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shearfree and expanding spherically symmetric perfect fluid solutions are
contained in the class » defined by assuming in (7.3) that

where a, b, c are arbitrary constants. They also remark on the « surprising »
- 5/2 power; indeed one may wonder if Kustaanheimo and Qvist would
have hit on this particular power had not the metrics of McV33 been avai-
lable on which to try their method. Be that as it may, it is certainly true
that most of the McV-metrics of Part I that have {32=1 correspond to
functions F(x) of the form (8.32). But it is also possible to find relatively
simple examples which correspond to functions F(x) involving even odder
powers than - 5/2. Consider those metrics whose ( y, 1]) functions are given
by (4 .12) while their ( f, Q) functions are taken from the second column
of Table I. The metrics are therefore of the form (7.1) with (r, t) iden-
tified as (r, t ). Moreover {32 = 1 means by (3.15) that the permissible values
of a are 1 and -1/6. Also, with x = r2 ,

and therefore

By (7 . 3)

and therefore

Since all McV-metrics imply that

it follows that

The expression for y in (4.12) is

and, after considerable calculation, it is found that
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When F(x) is calculated for the solution (4.11), in which the constant g3
involved in the definition of the elliptic function is not zero, the same

powers of C 1 + C2x as in (8 . 33) are found. It is, of course, again assumed
that {32 = 1 and that Table I, second column, applies. The expression for
F(x) which would arise in a McV-metric that has 03B22 ~ 1 has been left for
later investigation.
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