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Upper bounds on the decay of correlations
in SO(N)-symmetric spin systems

with long range interactions

A. MESSAGER, S. MIRACLE-SOLE, J. RUIZ (*)
Centre de Physique Theorique,

C. N. R. S., Luminy, Case 907, F-13288, Marseille, Cedex 9, France.

Ann. Inst. Henri Poincaré.

Vol. 40, n° 1 19$4,

ABSTRACT. 2014 Upper bounds on the decay at large distances of the spin-
spin correlation functions are derived for classical SO(N)-symmetric spin
systems in one and two dimensions with N ~ 2 and long range interactions.

RESUME . Nous demontrons des bornes superieures pour la decrois-
sance a longues distances de la fonction de correlation spin-spin pour
des systemes classiques de spin avec une symetrie SO(N) a une ou deux
dimensions lorsque N ~ 2 et que 1’interaction est de longue portee.

1. INTRODUCTION AND RESULTS

Two-dimensional SO(N)-symmetric classical spin systems for N ~ 2
do not have spontaneous magnetization at non-zero temperature, except
if the interaction is very long range. Consequently the spin-spin correlation
functions decay to zero at large distances.

Fisher and Jasnow [7] ] established a first upper bound on this decay,
of the form using Bogoliubov’s inequality.

(*) Chercheur Contrat DRET n° 82/1029.
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By a different technique, McBryan and Spencer [2] obtained a better
upper bound, having the form of the power low ( x ~ - ~k~~~ (where k is a
constant and /3 = 1/T the inverse temperature).

Schlossman [3] has extended this result to classical systems with a
compact connected Lie group of symmetries. His approach is based on
the work by Dobrushin and Schlossman [4].

All these upper bounds concern systems with short range interactions
(typically finite range interactions or with an exponential decay at large
distances). To report on a number of results concerning this problem in
the case of long range interactions is the purpose of the present paper.
Our approach starts with the same estimate used in [2], which following

some ideas of [4], [5] and [6] we control by the introduction of small
rotations (in our approach, however, these rotations are imaginary).
The problem is finally reduced to the computation of numerical series.
The method applies, even more directly, to one-dimensional systems,
which for this reason are also included in our discussion.

In this way we obtain upper bounds on the decay of correlations for
all the interactions for which the absence of spontaneous magnetization
has been proved.
To describe the classical SO(N)-symmetric spin systems, we consider

an infinite square lattice with sites labelled by indices x = (x 1, ..., xd) E ~d
where d is the space dimension. To each site x E we associate a N-dimen-
sional vector sx, with N  2, of unit length ~ sx~ = 1. The spin-spin
correlation function, at inverse temperature ~8, is given by

where J(r) is a real function defined for r ~ 1, which describes the interaction
and d03A9N is the invariant measure on the unit sphere of the N-dimensional
Euclidean space. The formula giving  (/3) is to be interpreted as
the thermodynamic limit A ~ of the corresponding finite volume

quantities  s0sx &#x3E;039B(03B2), defined by the same expression but with sites

restricted to a finite box A.

THEOREM 1. - We assume that the interaction potential verifies

where , A is a , constant. T hen, the spin-spin correlation functions are bounded
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a) in dimension d = 1 and if a &#x3E; 2

b) in dimension d = 2 and if a &#x3E; 4

c) in dimension d = 2 and if a = 4

dimension d = 1 and if a = 2 and ’ f3 is small enough

where Bo, B 1, B2, B3, ..., ~3, are strictly positive constants and ~,1(/3), ~,2(/3)
strictly positive non increasing functions of 03B2 proportional to 03B2-1 for large 03B2.

e) in = 1 and if J(r) decays exponentially when r ---+&#x3E; 00

also ( ([3) I decays exponentially for .

Under conditions a), b) or c) there is no spontaneous magnetization
and we see that in general the spin-spin correlation functions have then
a power law decaying upper bound.
For the special case 4 = 2 and a = 4, our method does not lead to

a power law decay (see the proof below in particular formulae ( 16), ( 19)).
We do not know whether the upper bound stated in c) could indicate a
different behaviour in this case.
On the other hand, for ferromagnetic systems with the interaction

J(r) = r - °‘ for large r, the existence of a spontaneous magnetization at
low temperatures has been proved in dimension d=lifl(x2 and
in dimension d=2 if 203B14 [7], [8], (the conditions oc &#x3E; 1 in d = 1,
and a &#x3E; 2, in d = 2, are needed for the existence of the thermodynamic
free energy). In the case d = 1 and a = 2 the absence of a spontaneous
magnetization when N ~ 2 has recently been proved by Simon [12].

This last case however cannot be treated even with the improvements
introduced in the proof of Theorem 2, although we can derive a power
law decay at high temperatures (statement d )). We notice that the power
law decay of the correlations at high temperatures is a general property
of the systems under consideration, as has been shown by Brydges, Frohlich
and Spencer [9] (see also [10 ]).

Statement e), which is well-known, has a simple proof in our context.
On the other hand we remark that if the interaction is not of a short range
we cannot expect an exponential decay of the correlations, at least for N = 2
where Ginibre inequalities (by taking all the interactions equal to zero,
except that between the points 0 and x which is kept constant) imply

for small J( x ~ ).

Vol. 40, n° 1-1984.
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Finally, we notice that our bounds hold for all N ~ 2 and, therefore,
taking into account correlation inequalities which compare N = 2 with
N ~ 3 (see [11]), they cannot be better than the upper bounds valids
forN=2.
Next we consider interactions which are near to the special cases d = 1,

oc = 2, and d = 2, x = 4.

THEOREM 2. 2014 a) In dimension d = 1 we assume that

where p ~ 1 is an integer and

b) I n dimension d ’ = 2 we assume ’ that

2.

Then, the spin-spin correlation function is bounded by

where B4, is a strictly positive constant and 03BB4(03B2) a strictly positive non
increasing function proportional to /3-1 for 03B2 large.

In dimension d = 2, condition b) has been considered by Pfister [5]
proving the absence of symmetry breaking. If J(r) = r - 4 log r for large r
a first order phase transition exists for ferromagnetic systems [5 ].
A similar approach can also be developped to study the decay ofWilson-

loop expectations, in three-dimensional U(l)-gauge theories on a lattice,
the results of which will be reported elsewhere. (Long-range pure gauge
interactions appear in the treatment of a lattice theory of gauge and fermion
fields).

After finishing this work we become aware of the papers by Bonato
et al. [7~] and Ito [7~] where related results were obtained for classical
and quantum models with long range interactions, including the systems
considered here. Their bounds are improved in our Theorems 1 and 2.

For example in the case of statement b) of Theorem 1 we get an inverse
power law decay while in [73] ] [7~] temperature independent bounds of
the form log- 1| x| are proved. Our upper bounds in the case of statement b)
of Theorem 1 are the same type as those previously established [2] ] [3] ]
for the case of finite range interaction and solve the conjecture mentioned
in [14 ]. We notice also the important result by Frohlich and Spencer [7J] ]
proving that for N = 2 and nearest neighbour interactions the correlation
functions (/3) have precisely an inverse power law decay at low
temperatures.
We are greatly indebted to P. Picco for valuable discussions.
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2. PROOF OF THEOREM 1

Our starting point is the following estimate due to McBryan and
Spencer [2].

LEMMA 1. Let R denote the point on the xl axis with xl - R. For any
given family of real numbers { ax} indexed by the sites x E the following
inequality holds

We refer the reader to [2] for the proof of the Lemma. Next we control ,

this estimate by means of Lemmas 2 and 3.

LEMMA 2. - We assume that the interaction potential verifies 
for all r &#x3E; 1. Then, for any given sequence {an} of real numbers,

a) in dimension d = 1 R

b) in dimension d ’ = 2

where ’ A 1 and ’ A2 are constants and ’

If the dimension d = 1, we take ax = Then, using Lemma 1, we
obtain 

.

and, since Am - °‘, part a) of Lemma 2 follows.
If the dimension d = 2, we introduce the notation Cn to represent the

set of sites on the boundary of a square of side 2n + 1, centered at the

Vol. 40, n° 1-1984.
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origin. We take ax = an whenever x E Cn. Then, using Lemma 1, we obtain

Assuming that  Ar " with a ~ 2, we have

From (7) part b) of Lemma 2 follows.

LEMMA 3. Let denote the series defzned by (4), for n &#x3E; 1, and let

bK and cp be the positive numbers defined by cosh (KO) - 1 bK(KO)2

If we = and , K ~ 1, then

where the rests Q2(n) and Q3(n) decay, for large n, faster than the precedent
terms in the sum.

Annales de l’Institut Henri Poincare - Physique theorique
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The proof of Lemma 2 is based on a decomposition of the series into
a finite sum, where we can use the estimate cosh (K8) - 1 ~ 
for 8 (  1, and a rest, which is an infinite series, where it is enough to use
the estimate cosh e(K8)  exp (K8).
We consider first the case aj-aj-1 = and we write

where

We observe that

and therefore

From this, the inequalities (8), (9), and (10) of Lemma 3 follow.

Vol. 40, n° 1-1984.
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We next study the case aj-aj-1 == K(j We write the decom-

position ( 13) in the form

Therefore, restricting ourselves to the case K ~ 1

where, the rests S;, T2 and T3 decrease, for large n, faster than the precedent
terms in the sum. From this, inequalities ( 11 ) and ( 12) follow.

This ends the proof of Lemma 3.
Next we conclude the proof of Theorem 1.
In the case d = 1 and a &#x3E; 2, we take aj-aj-1 = ((x 2014 From

Lemma 3, (inequalities (8),- (9) and ( 10)), we see that the series

Annales de l’Institut Henri Poincare - Physique " theorique "
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is convergent (the term is always finite, as can be seen by direct
computation). On the other hand, aR - (a - 1) log R. Lemma 2
(inequality (2)) implies then the statement a) of Theorem 1.

In the case d = 1 and d = 2, we take aj-aj-1 = K/"B with K  1.
Then from ( 14) and ( 19)

Using inequality (2) we have

which implies a power law decay for  only when

that is, if 03B2 is small enough. This proves the statement d) of Theorem 1.

In the case d = 1 and if we assume that the interaction potential I
is bounded by exp - we take aj-aj-1 = K with K  03BB0. From (5)
the statement e) of Theorem 1 is established in a similar way.

In the case d = 2 and a &#x3E; 4, we take aj-aj-1 = and K  1

(for instance). Then, the inequality (8) of Lemma 3 implies

From inequality (3) of Lemma 2 we get

which implies a power law decay provided that - K +  0.
This inequality is satisfied for allowed values of K by taking K  1 if

and K  if ~3 &#x3E; Bo.
This proves the statement b) of Theorem 1.

Finally, in the case d = 2 and a = 4, we take aj-aj-1 = K( j 
2, al - ao = K, and K ~ 1. Then the inequality (12) of Lemma 3

implies

Vol. 40, n° 1-1984.
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where, since the last two series converge, c’ is a constant. On the other
hand, in the case, aR - log log R, and from (3) we get

This proves the statement c) of Theorem 1.

3. PROOF OF THEOREM 2

For simplicity we shall restrict the proof of Theorem 2 to the case p = 2.
In this case one takes

and therefore

2, the proof goes along the same lines by taking the natural genera-
lization of (24). On the other hand, in order to simplify the notations,
we make the convention that the inequalities which will be written should
to be understood as inequalities among the larger terms, neglecting the
contribution of terms with a faster decay at infinity.
To deal with the assumptions of Theorem 2 we have to modify appro-

priately Lemmas 2 and 3.
By arguying as in Lemma 2 we get

if the dimension d = 1, and

if the dimension d = 2, where A1 and A2 are positive constants and

Under the hypothesis of Theorem 2, with p = 2, the function 4J is defined by

As in proof of Lemma 3 we write

Annales de Henri Poincaré - Physique theorique
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and we assume that the summation index m runs, in the finite sum 
from 1 to = n log(1) nlog(2) n. is the remaining part of 
in which m runs from q(n) + 1 to infinity.

If the function 03C6 is given by (29), we have

Hence

Then, the statement a) of Theorem 2 follows from (25) and (26). If the

function 03C6 is given by (30), we have

Vol. 40, n° 1-1984. 4
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Hence

Then, the statement b) of Theorem 2 follows from (25) and (27).
This ends the proof of Theorem 2.
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