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All linear representations
of the Poincaré group up to dimension 8

Stephen M. PANEITZ

Department of Mathematics,
Massachusetts Institute of Technology,

Cambridge, MA 02139

Ann. Inst. Henri Poincaré,

Vol. 40, n° 1, 1984, Physique ’ theorique ’

ABSTRACT. - All representations of the universal covering of the Poin-
care group on a complex vector space of dimension 8 or less, including
the incompletely reducible representations, are determined explicitly.
Considering two representations conjugate by a fixed linear transforma-
tion as the same, there are only a finite and small number of indecompo-
sable such representations in each such dimension. Their invariant sesqui-
linear forms, and their extensions to discrete symmetries, scale transforma-
tions, and to the conformal group are also determined. Certain of the
results and methods are applicable to other semi-direct product groups.

RESUME. - Toutes les representations complexes de dimension  8
du groupe de Poincare, y compris celles qui ne sont pas completement
reducibles, sont determinees explicitement. Deux representations étant
considerees identiques si l’une est conjuguee de l’autre par une transfor-
mation lineaire fixe, on trouve qu’il existe un nombre fini de telles repre-
sentations indecomposables. Leurs formes sesquilinaires invariantes, et

leurs extensions a des symmetries discretes, aux homotheties, et au groupe
conforme sont egalement determinees. Certains resultats et les methodes
utilisees sont applicables a l’étude d’autres produits semi-directs.

Annales de l’Institut Henri Poincaré - Physique theorique - Vol. 40, 0020-2339/1984/35/$ 5,00/
(Ç) Gauthier-Villars



36 S. M. PANEITZ

1. INTRODUCTION

Group representations which are indecomposable but not completely
reducible have been suggested for use in the modeling of unstable particles
and interactions ([1] ] [2] ] [3] ] [J] ] [9] ] [10 ]). However, a classification of
finite-dimensional such representations for some (necessarily) non-semi-
simple Lie group, or even a determination of all representations in spaces
of the lowest possible few dimensions of some familiar semi-direct product
group (e. g., the affine isometry group for a euclidean or pseudo-euclidean
vector space) appears nonexistent in the mathematical literature. In view
of long-standing questions in the classification and representation of solvable
Lie groups, such problems seem difficult, and for a given group one might
reasonably expect a continuum of inequivalent such representations in
a given sufficiently large dimension.

Yet surprisingly, the present results (in summary, Theorem 3) suggest
quite the reverse for certain Lie groups whose maximal solvable subgroup
is abelian, and indicate considerable unicity in the representation theory
of a physically fundamental and mathematically prototypical case, namely
the Poincare group, whose universal (double) cover is denoted P. It is
shown here that except for a relatively unfamiliar eight-dimensional repre-
sentation and its dual, complex conjugate, and anti-dual, the remaining
few representations of P of equal or smaller dimension are all well known,
and are obtained by restricting the adjoint or coadjoint representations
of P (or P extended by scale transformations, denoted cf. section 5)
to invariant subspaces, or obtained by restricting the defining represen-
tations of SU(2,2) and 0(2,4) to subgroups locally isomorphic to P.
The motivation for this work is not only or even, primarily group-theo-

retical, however, but comes largely from joint work [6] ] with I. E. Segal,
developing an elementary particle theory on the « universal » space-time M,
known in one form having additional structure as the « Einstein univers ».
The isotropy group or « little group » of the full 15-dimensional causal
group acting on M is isomorphic to P. Therefore, causally covariant fields
over M are naturally induced from representations of Pe, and species
of this usual type of finite-component fields thereby correspond in a 1 - 1
manner to finite-dimensional representations of Pe; cf. [7] and [8] ] for
further discussion.

2. UPPER TRIANGULAR FORMS

We will need a general structure theorem for finite-dimensional repre-
sentations of P, which is also applicable to rather general groups. The
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37REPRESENTATIONS OF THE POINCARE GROUP

essential content of Theorem 1 is that given any finite-dimensional repre-
sentation p of a Lie algebra? such that [~ ~] = ~, where n is the maxi-
mal solvable ideal of ~, then

is nonzero. This conclusion follows entirely from Cor. 2 on p. 45 of (4)
(which is also cited and applied to P in [5 ]); the following brief alternative
proof avoids the use of enveloping algebras and extensive preliminaries.
Given a real or complex vector space V, V* will denote the space of

all complex-valued linear functionals on V.

THEOREM 1. - Let g be any real finite-dimensional Lie algebra such
that = n, where n is the maximal solvable ideal of g. Let h be
any semisimple subalgebra of g complementary to n. Then, given any
finite-dimensional representation p of g in a complex vector space V,
there exists a direct sum decomposition

such that the Vj are invariant and irreducible under p( ae), and such that

REMARK 1. - The hypothesis ] _ ~ of the Theorem is easily
seen to be equivalent to the following : the only element of ~* that is inva-
riant under the coadjoint action of the adjoint group of g is 0.

Proof 2014 The proof is by induction on the dimension of V. It suffices
to find a nonzero subspace W of V that is invariant under and such
that = {0}. For then such a subspace W which is irreducible
under p(h), and a complementary p(h)-invariant subspace U, may be found.
The inductive hypothesis may then be applied to the representation of g
on V/W ~ U.

Let G be the simply connected Lie group corresponding to fI; let R denote
the representation of G corresponding to p. By Lie’s theorem ( [1 ], p. 201),
there exists a common eigenvector v for all p(X) (X i. e., there exists

À E ~* such that

for all X E ~. Now for all g E G,

so that

Vol. 40, n° 1-1984.



38 S. M. PANEITZ

for all X E ~. Thus R(g)v is also an eigenvector for p(X) with eigenvalue
~, (Ad ( g -1 )X). We will show next that

for all X ~ nand g E G; this will imply 03BB = Ö by hypothesis (cf. Remark 1),
so that the span of all vectors R(g)v (g E G) will provide a subspace W of
the type sought.
To show (2 . 3), i. e., that ~, E ~ ~* is invariant under G, argue as follows.

Note first that there exist only finitely many f E ~* such that an equation
of the form 

.

holds for all X E ~ and some nonzero WE V. To see this, take a basis ~ ~3~ }
of V such that the matrix entries for all p(X) (X E ~) are 0 below the dia-
gonal, which exists again by Lie’s theorem. Then if (2.4) holds for some f
and w where w == C), then there exists a unique k such that

0 and aj = 0 for ally &#x3E; k. It follows easily from (2 . 4) that f(X) must
equal the k-th diagonal matrix element of p(X); there are only finitely
many such diagonal entries.
Now each element of the set

satisfies (2 . 4) by (2 . 2) ; thus this set must be finite. By continuity of the
coadjoint action and connectivity of G, all ~(Ad(g).) are equal, i. e. A is

G-invariant, as claimed.

3. INTERACTING PAIRS OF REPRESENTATIONS
OF SL(2, C)

This section considers the representations of P where the number n
of summands in Theorem 1 is two, and finds all such representations of
dimension 8 or less. It will be seen in the next section (Lemma 3.1) that
this case is fundamental for the general case.
To proceed further we need a concrete form for P; this will be the semi-

direct product of SL(2, C) and H(2) = all 2 x 2 hermitian matrices, written
SL(2, C) x H(2), as in [6 ], section 2.1. The group multiplication is then

(3.1) (L x F)(L’ x F’) = LL’ x (F + LF’L *) (L, L’ E SL(2, C), F, F’ E H(2))

(* denoting hermitian conjugate); it is obtained from the following group
action of P on H(2) :

Elements of the Lie algebra of P will be written A + F, where AEsI(2, C) = tra-

Annales de Henri Poincaré - Physique " theorique "



39REPRESENTATIONS OF THE POINCARE GROUP

celess 2 x 2 matrices and FeH(2). The derived commutation relations
are then

Let { D(/+~)} denote a fixed set of representatives for the irreducible
finite-dimensional representations of SL(2, C), which arise in our appli-
cation of Theorem 1. In this standard parametrization the « spins ~+ are
in the range 0, 1/2, 1, ..., and the dimension of D(/+~’_) (dimension of
the representation space) is (2j + + 1)(2/- + 1 ). The labeling is such that
D(/,0)(D(OJ)) is a holomorphic (resp. anti-holomorphic) representation.
Some further terminology will be especially convenient.

DEFINITION 1. - Two irreducible representations R 1 and R2 of SL(2, C)
on the vector spaces V 1 and V2 are said to - interact if there exists a linear
transformation a, not identically zero, from H(2) to the linear transfor-
mations from V2 to V1, such that the mapping R from P to GL(V1 @ V2),
determined by

where

and

(L E SL(2, C), FeH(2)) is a representation of P. In this case, R1 and R2
are said to be an interacting pair. The interaction of R 1 and R3 is further
said to be uniquely determined if any two such representations R are linearly
conjugate (under a similarity transformation).

REMARK 2. - In the usual matrix form,

REMARK 3. - The definitions are. actually symmetric in R 1 and R2 ,
by formation of the representation dual (contragredient) to R. (Recall that
all the irreducible finite-dimensional representations of SL(2, C) are self-
dual.) Also, clearly R 1 and R2 interact if and only if any linearly equivalent
pair of representations R i and R2 also interact.
By Theorem 1, two irreducible representations R 1 and R2 interact if

and only if there exists an indecomposable representations of P whose
restriction to {L x 0: is equivalent to R1 

Vol. 40, n° 1-1984.



40 S. M. PANEITZ

THEOREM 2. - Among the complete list of irreducible representations
D(/+~) of SL(2, C) (/+,7- == 0, 1/2, 1, ... ), the only interacting pairs
whose dimensions sum to 8 or less are :

D(l/2,0) and D(0,l/2), D(0,0) and D(l/2,l/2),
D(l,0) and D(l/2,l/2), D(l/2,0) and D(l,l/2),

and the additional complex conjugate pairs,

D(0,l) and D(l/2,l/2), D(0,l/2) and D(l/2,l),

In each case the interaction is uniquely determined. (The corresponding
representations are given in Theorem 3 of section 4.)

Proof A series of lemmas that exclude various possible interactions
will first be required.

LEMMA 2.1. - Two given irreducible representations R1 and R2
of SL(2, C) interact if and only if there exists a nonvanishing a as in Defi-
nition 1 such that

for all L E SL(2, C), F E H(2), or equivalently

for all A E sl(2, C), F E H(2).

Proof 2014 The first equation follows from the multiplication rule (3 .1 )
and Remark 2. The second reflects the commutation relations (3 . 2).

LEMME 2.2. - Suppose that the irreducible representations R1 and R2
interact. Then if the map (x, in the notation of Lemma 2.1, is unique up
to a scalar factor, it follows that the interaction of R 1 and R2 is uniquely
determined. If R 1 is inequivalent to R2, then the converse is also true.

Proof 2014 The first statement is clear. Conversely, suppose that R 1 is

inequivalent to R2, and take any two representations Rand R’ of P that
are determined as in Definition 1 by li, resp. Then, any equivalence
between Rand R’ must commute with all R 1 (L) EB R2(L) (L E SL(2, C)),

hence has the form ( ~), ~, ~,’ E C. It follows that a’ and li differ only
by a scalar factor. 0 ,~~ 

&#x3E; &#x3E; y

LEMMA 2 . 3. 2014 If the representations and D( l + , L) interact,
then at least one of

Annales de Henri Poincaré - Physique theorique



41REPRESENTATIONS OF THE POINCARE GROUP

equals one of

If in addition these two lists have only one member in common, then
the interaction of D(/+,~_) and D( l + , l _ ) is uniquely determined.

Proof Assuming the first stated hypothesis, it follows that x(I) 7~ 0,
since if (X(I) = 0 then x(LL*) = 0 for all L E SL(2, C) by Lemma 2 .1; such LL*
span H(2), implying the vanishing of(x, a contradiction. Thus oc(I) is an intert-
wining operator for the restrictions of R and R2 to SU(2) = { L : LL* = I },
again by (3.3). The first conclusion then follows from Schur’s lemma
and the well-known decomposition of the upon restriction
to SU(2).

Since the summands of this decomposition are of multiplicity 1, the
second hypothesis implies that the intertwining operator (x(I) is uniquely
determined up to a scalar factor. a is then determined on a spanning set
in H(2) (the LL*) by the following equation obtained from (3 . 3) :

The conclusion then follows from Lemma 2.2.

LEMMA 2.4. - ( 1) No D(/’,0) (resp. D(o, j)) interacts with any D(//0)
(resp. D(O, 1)).

(2) No D(/’,0) interacts with any D(O, l) where j ~ 1.

(3) D(l, 0) interacts with D(O, 1) if and only if = 1/2.

Proof 2014 Part (2) and the case j ~ 1 of part (1) follow from Lemma 2. 3.
In the case of D( j, 0) with D( j, 0), oc(I) is clearly constrained to be a scalar,
say c. But then by Lemma 2.1,

or simply c = (x(LL*), for all L E SL(2, C). This clearly implies c == 0,
hence a == 0.
To prove (3), we may assume that D(l, 0) and D(0, 1) are holomorphic,

resp. anti-holomorphic extensions of a representation of SU(2) of spin 1
on a. space V. By Lemma 2.1, we must show that only if l = 1/2 does
there exist a nonvanishing linear map a from H(2) to gl(V) such that

for all A E sl(2, C) and F E H(2), where V1 and V2 are the Lie algebra repre-
sentations corresponding to D( l , 0) and D(o, l ). As in the proof of

Vol. 40, n° 1-1984.



42 S. M. PANEITZ

Lemma 2. 3, a(I) must be a scalar, and without loss of generality equals 1,
say. Taking A == ~-1, F = I in (3 . 5), then

so x(cri) = iV1 (- i61) . (61, 0-2~3 are the usual Pauli matrices.) But then
substitution into (3.5) with A = F = 61 gives

/ i B2 ~
Thus Vl - - 61 = - -, and similarly for (72 and (73. Thus

B 2 ’/ 4

But the left hand side of this equation equals -l(l + 1) in general, where l

is the spin of the representation ; thus = -.

Conversely, the interaction of D( 1/2, 0) with D(o,1/2) is listed in Theo-
rem 3).

LEMMA 2. 5. The trivial representation of the subgroup {L x 0:
L E SL(2, C) } of P on any finite-dimensional space cannot be nontrivially
extended to a representation of P.

Proof. 2014 By Lemma 2.1, any representation R of P extending a trivial
representation of the homogeneous Lorentz group would satisfy

for all L E SL(2, C), FeH(2), thus also (differentiating)

But such AF + FA* span H(2), hence R is trivial on the translations.

Proof of T heorem 2. 2014 No pair of irreducible representation of SL(2, C)
whose dimensions sum to 3 or less can interact, by Lemmas 2. 3 and 2. 5.
In the case of such dimensions summing to 4, the possibilities of interac-
tion of D(0,0) and D(I, 0), D(l/2,0) and D(l/2,0), and their complex conju-
gates (henceforth abbreviated to cc.) are excluded by - Lemma 2 . 3 and

Lemma 2 . 4 . (1), respectively. The interaction of D(l/2,0) and D(0,l/2)

Annales de l’Institut Henri Poincaré - Physique theorique



43REPRESENTATIONS OF THE POINCARE GROUP

stated in Theorem 3 is easily verified, and in any case uniquely determined
by Lemma 2.3.

In the case of dimensions summing to 5, interactions of D(l/2,0) and

D(l, 0), D(l/2,0) and D(0,1), D(3/2, 0) and D(0,0), and cc. are excluded
by Lemma 2.3. On the other hand, the existence of the representations
of P listed in Theorem 3 restricting to D(l/2,1/2) 0 D(0,0) under SL(2, C) is
easily verified; by Lemma 2. 3 this interaction is also uniquely determined.
Now consider two irreducible representations of SL(2, C) whose dimen-

sions sum to 6. If the dimensions of the summands are 1 and 5, or 2 and 4,
then interaction is excluded by Lemma 2 . 3. Finally, interaction of D( 1, 0)
with D(I, 0) or D(0,1) with D(O, 1) is excluded by Lemma 2.4 (1); exclusion
of the pair { D(I, 0), D(0,1)} is by Lemma 2 . 4 . (3).

Consider next the cases of dimensions summing to 7. The cases of dimen-
sions 6 plus 1, 5 plus 2, and the cases of 4 plus 3 where the representation
of dimension 4. is either D(3/2, 0) or D(O, 3/2), are excluded again by
Lemma 2. 3. The remaining possibilities, namely, interaction of D(I/2, 1/2)
with D(l, 0) and D(0,1), which are listed in Theorem 3, are unique by
Lemma 2 . 3 ; they are easily verified to be representations of P.

Finally, of the cases of dimensions summing to 8, the cases of 1 plus 7
and 3 plus 5 are excluded by Lemma 2. 3. Concerning the cases of dimen-
sions 4 plus 4, by Lemma 2 . 3 and Lemma 2 . 4 . , (1) and (3), it suffices to
rule out the interaction of D(I/2, 1/2) with itself by a special argument.
It is convenient to realize the infinitesimal representation p, corresponding
to D(I/2, 1/2), on H(2) in a standard way: -

for all A E sl(2, C), H E H(2). If now

obtained from equation (3.4), then it follows that

for constants z and w, by application of Schur’s lemma to p restricted to
su(2). The substitutions A = (73, F == I in (3 . 6) then lead to

But then resubstitution into (3.6) (A = F = (73) yields

For F == I this is 8w = 2z + 2w or z = 3w; when F = 0-3 obtain

or 2014 3w == z. Thus 

Vol. 40, n° 1-1984.



44 S. M. PANEITZ

The remaining 8-dimensional cases are those where the dimensions
of the summands are 2 and 6; by Lemma 2. 3 only the possible interactions
of D(l/2,0) and cc. with D( 1, 1/2) and cc. need consideration. The concrete
form given in Theorem 3 for the infinitesimal representation corresponding
to D(l, 1/2) was constructed as follows. Note that

and of course -203C3j ~ i 203C3j ( j = 1, 2, 3) define representations of the

Lie algebra su(2). The 6 x 6 matrices given for dR28(A + 0) (A E sl(2, C))
determine the Kronecker (tensor) product of these two representations,
extended i-linearly to sl(2, C) on the first (left) factor and i-anti-linearly
on the second factor.
The argument which excludes interaction of D(l/2,0) with D(l/2,1)

(and thus also the complex conjugate pair) is similar to that above excluding
self-interaction of D(l/2,1/2). x(I) is first determined up to a scalar factor,
as previously, by restriction of the representations to SU(2). Then substi-
tution of F = I and A = 63 into (3.4) determines a(Q3); but then resubsti-
tution into (3.4) (A = F = 0-3) leads to a contradiction unless oc(I) = 0,
or a = 0. Further details for this case are omitted.

4. LOW DIMENSIONAL INDECOMPOSABLE
REPRESENTATIONS OF P

A finite-dimensional group representation is defined to be indecvmpvsable
if it cannot be written as the direct sum of two other representations of
smaller dimensions.
The plan of this section is similar to that of the previous one. First the

main result is stated ; then several lemmas are derived providing suffi-
cient conditions of a general nature for decomposability of certain repre-
sentations of P; finally, Theorem 3 is proven.
The notation S(2) will be used for the space of all symmetric complex

2 x 2 matrices.

THEOREM 3. 2014 The following is a list of mutually inequivalent repre-
sentatives of all of the (complex-linear) equivalence classes of indecom-
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45REPRESENTATIONS OF THE POINCARE GROUP

_ 

posable " representations of P, of dimension 8 or less, that are 
’ nontrivial

on the translation subgroup 0 of P.
1 n dimensivn 4 :

and its contragredient R4, or equivalently complex conjugate repre-
sentation ((8)).

I n dimension 5 : The representation R 5 of P on H(2) 0 R 1, -- determined
by

and

-- and its dual R 5 on R 1 0 H(2), defined by

and

Both Rs and RS are real representations.
1 n dimension 6 : The real and self-contragredient representation R6 ,

defined on R 1 C H(2) C R 1 by

and

In dimension 7 : The representation R7 on V7 = S(2) Ef) (H(2) + i H(2))
-- defined on S(2) C H(2) by

and

(T denoting transpose) and extended to V7 by complex-linearity --, agd
the dual Ry, complex conjugate R7, and anti-dual representations R7
(all inequivalent).

In dimension 8 : There are 8 such representations. First, the represen-
tation R8 on CeS(2)e(H(2)+fH(2))=V~- defined on R’eS(2)CH(2) by

and

Vol. 40, n° 1-1984.



46 S. M. PANEITZ

and extended to Vg by linearity--, and the representations dual, complex
conjugate, and anti-dual to R8 , all mutually inequivalent. Secondly, there
are four others, three being dual, complex conjugate, and anti-dual to the
representation R~ on the space C2 0 C6, whose corresponding infinitesimal
representation d R is defined as follows.

Let v E C2 and WE C6, regarded as column vectors. Then for

where x, y, and z are real,

for

Annales de Henri Poincare - Physique - theorique -
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and for

LEMMA 3.1. - Let Ri be a finite-dimensional irreducible representa-
tion of SL(2, C) on Vi, for = 1, ..., n. Let V be the direct sum Vi + ... + Vn .
Define R(L x 0) (L E SL(2, C)) on V by

For each pair (i, j) such that 1 ~ i  y ~ ~ let be a given linear mapping
of H(2) into the linear transformations from Vj to Vi. For each L x F E P,
define

where

Then R is a representation of P if and only if

(f) { p(F): F E H(2)} is commutative, and
(ii) for all L E SL(2, C) and FeH(2).

Proof. 2014 By comparison with equation (3.1).

LEMMA 3 . 2. 2014 Let R be a finite-dimensional representation of P on the
vector space V. Let direct sum decomposition of V
with the properties asserted in Theorem 1. Let Ri be the representation
of SL(2, C) obtained by restricting L -~ R(L x 0) to Vi. For each pair
of indices (fj) such that 1 ~ i  j  n, let be the linear mapping from
H(2) to the linear transformations from Vj to Vi such that for all 
and F~H(2).

Then if L 1, ..., n ~ is the disjoint union of two non empty subsets such
that 03B1ij = 0 whenever i and j belong to different subsets, then R is decom-
posable.

Proof 2014 Let A and B be the hypothesized subsets of { 1, ... , n }. Then
clearly and 03A3j~B Vj are complementary R-invariant subspaces of V.

LEMMA 3.3. - Let R be a finite-dimensional representation of P on

Vol. 40, n° 1-1984.



48 S. M. PANEITZ

the vector space V ; let Vi, Ri, and be as in the statement of Lemma 3 . 2.

suppose that there are indices k, l, m such that :

~)1~~!~~~
b) the Ri for t=~, ... , 1 are all equivalent, and inequivalent to Rm,
c) = 0 whenever i  1, j = ~ ..., 1, and i  j,
d) = 0 whenever i = k, ..., l,j &#x3E; 1, and j ~ m, and

e) in the case that 0 for all i = k, ... , l, it is assumed that the
interaction of Rk and Rm (which exists by Lemma 3.1) is uniquely
determined.

Then R is decomposable.

REMARK 4. - By formation of the representation contragredient to R,
the following hypotheses, alternative to a)-e) above, are also sufficient
to imply the decomposability of R.

a)’ 1 ~ ~  ~  
b)’ the Ri for ~==~, ... , 1 are all equivalent, and in equivalent to Rm,
c/ = 0 whenever i = k, ..., &#x3E; k, and i  j.,

d )’ = 0 whenever i  k, i 7~ m, and j k, ...,, and
e) in the case that 03B1mi ~ 0 for all i = k, ... , l, it is assumed that the

interaction of Rk and Rm is uniquely determined.

Proof. - If aim = 0 for some such that k  i l, then it is easily checked
that Vi and are complementary R-invariant subspaces.
Now suppose 0 for all i = k, ..., 1. By b), there exists an isomor-

phism T of Vk with Vk + 1 such that

for all L E SL(2, C). By Lemmas 3 .1 and 2 .1, each of the triples Rm, 
determines a representation of P which is nontrivial

on the translations and of the kind considered in section 3. By b), e), and
Lemma 2.2, it must be the case that

for some nonzero constant c. Defining

it follows that W for all gEP, and in addition that W and Vk+l
are nonzero complementary subspaces of V which are invariant under R.

of Theorem 3. - By Theorems 1 and 2 it suffices to find those
indecomposable representations of P where the number M of irreducible
summands, upon restriction to { L x 0: L E SL(2, C)}, is three or more.

Annales de l’Institut Henri Poincaré - Physique théorique



49REPRESENTATIONS OF THE POINCARE GROUP

By Lemmas 2.1 and 3.1, any one of the dimensions of such irreducible
summands of such representations of P must also be the dimensions of
members of interacting pairs (cf. Definition 1). These pairs of dimensions
(with sum  8) being

it follows that there can be no such representations additional to those
of Theorem 2 which have dimension 5 or less.

Consider next an indecomposable representation of dimension 6. By
Lemma 3.2 and Theorem 2 the dimensions of its irreducible summands
must clearly be either 2 + 2 + 2 or 1 + 1 + 4. Such representations of the
former type, except those of the form R where

are excluded by Lemma 3.3 and Remark 4. If such a representation of
the form (4 . 2) is indecomposable, then clearly neither a 12 or a2 3 can vanish
identically. By Theorem 2, a12(F) and a23(F) must, up to scalar factors,
be equal to F, resp. Q2F62. But it is easily verified that

is not a commutative family of matrices (cf. (i ) of Lemma 3.1).
Of the putative latter type of representations, indecomposability of

those of the form

is excluded by Lemma 3 . 3. The remaining possibility for an indecomposable
representation, namely R where

is uniquely determined up to equivalence by Lemma 3.1 and Theorem 2.
Consider next a possible 7-dimensional indecomposable representa-

tion of P with 3 or more subrepresentations irreducible under SL(2, C).
Again by Lemma 3 . 2 and the list (4 .1 ), these summands must have dimen-
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50 S. M. PANEITZ

sions 1 or 4, but then all indecomposable such possibilities are excluded
by Lemma 3. 3.

Finally, consider an 8-dimensional indecomposable representation of P
with 3 or more irreducible sub-representations. Again, by Lemma 3.2
and (4.1), it follows that the possible decompositions under SL(2, C),
according to dimensions of the summands, are (i ) 1 + 1 + 1 + 1 + 4,
(ii) 2 + 2 + 2 + 2, and (m) 1 + 3 + 4. Indecomposability in case (i ) is excluded
by Lemma 3. 3~ and likewise for all but the following possible instances
(and their complex conjugates and contragredients) of (ii):

and

We will show that all possibilities for representations of the forms (4.3-5)
are decomposable. Elements of the representation space C8 are as usual
regarded as column vectors.

CASE (4 . 3). - By Lemma 2 . 4, ( 1 ) and (3), the translation part must
have the form

where A, B, C, and D are linear functions of F. If now B 7~ 0, then A and C
must be zero, because (as shown above) there is no six-dimensional repre-
sentation R’ of P such that
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where a and 03B2 are both nonzero. But R is clearly decomposable ifA=C=0.
On the other hand, if B = 0 then observe that

== Q, say, commutes with R(L x 0), and

If C == 0, then R is clearly decomposable. If C ~ 0, then by Theorem 2
D must be a scalar multiple of C; thus QRQ’B hence R, is decomposable.
CASE (4 . 4). 2014 Here the translation part must have the form

We may conjugate by

without disturbing the R(L x 0); then

Thus if D 7~ 0, C + xD = 0 for some x, in which case is an
invariant subspace for 

By the 6-dimensional result applied above in case (4 . 3), B - xA must
also be 0, and the representation is decomposed.

If C==0, then the representation R is clearly decomposed.
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If D = 0 but C ~ 0, then

is an invariant subspace, and again C 5~ 0 forces A = 0 ; it results that

are complementary invariant subspaces.
CASE (4. 5). - The translations must have the form

By a suitable conjugation by I where or

We can assume A = 0 in (4. 6).
Secondly, note that

If B = 0, then and are invariant ; if B 7~ 0 then

xB + D = 0 for some x and the representation is decomposed.
It remains to consider the case of (iii). The four-dimensional represen-

tation must be D(I/2, 1/2), and without loss of generality we may take the
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three-dimensional one equal to D(I, 0). It remains to note by a short compu-
tation that R, where

does not define a representation if a and ~3 (each uniquely determined up
to a scalar factor by Theorem 2 in any case) are both nonzero, since (i )
of Lemma 3.1 is not satisfied.
The mutual inequivalence of the representations listed is clear. Noting

that any P-invariant subspace must be the sum of its intersections with
the SL(2, C)-isotypic invariant subspaces (all of multiplicity 1 or 0 except
for R6), indecomposability also follows easily.

5. EXTENSIONS TO SCALE
AND THE CONFORMAL GROUP

In the rest of this paper the possibilities are considered of extending the
representations listed in Theorem 3 to certain physically relevant groups
containing P as a subgroup. An « extension of a group representation »
means here an extension in the usual sense of a given homomorphism of
a group into the linear operators on some space, i. e., the representation
space is unchanged. (The « real representations » Rs, and R n are assumed
for this purpose already extended by complex-linearity to the complexified
5- and 6-dimensional spaces.)
The eleven-dimensional group Pe (double cover of the scale-extended

- 

Poincare group) mentioned in section 1 is by definition the semi-direct
product (R1 x SL(2, C)) X H(2) (cf. (6), section 2.1) with the multiplication

P is regarded as a subgroup of Pe in the obvious way.
Elements of the Lie algebra of Pe will be written (t, A) + F (t E R1,

A E sl(2, C), FeH(2)); the commutation relations are

Consistently with (6), we define the scale generator S = (1, 0) + 0 in the
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Lie algebra of pee Thus S commutes with all (t, A) + 0 (t E R 1, Aesl(2, C)),
and

for all X in the subalgebra of the Lie algebra of Pe generating the translations.
Now given any finite-dimensional representation R of Pe such that,

when restricted x L) x 0 : L E SL(2, C)}, the multiplicities of irre-
ducible representations are at most 1, then the action of dR(S) must be
multiplication by a constant Wj on each irreducible subspace Vj. In addition,
by (5.1) wi == Wj + 1 whenever for some X in the translation sub algebra
and dR(X)v has a nonzero component in Vi (as observed jn (5~).
These necessary conditions for extending a representation from P to Pe
are also clearly sufficient, and suffice to so treat all the representations in
Theorem 3 except for R6. Summarizing these considerations and a simple
computation in the case of R6 , we obtain

PROPOSITION 4. - The indecomposable representations of P listed in
Theorem 3 all extend to pee In all cases except that of R6, the possible
extensions are parametrized as above by a constant w E C, equal to, say,
the value of d U(S) in some subspace irreducible under {(O x L) x 0 :

’"

The possible extensions R6 of R6 to Pe are parametrized by two
constants wand u, via

It is well known that Pe is isomorphic to a subgroup of SU(2, 2), and
that the latter group has two inequivalent fundamental four-dimensional
representations [J]; the restriction of these to P are obviously equivalent
to R4 and R4. It is also not hard to check that the defining representation
of 0(2, 4) on R6 restricts to an indecomposable representation of a group
isomorphic to P/(two element center), which must then be equivalent to R6 .
On the other hand, by Weyl’s dimension formula, for example, the dimen-
sions of irreducible representations of SU(2, 2) are 4, 6, 10, 15, ... ; thus
clearly only R4, R4, and R6 extend to SU(2, 2) in the sense earlier indicated.

6. DISCRETE SYMMETRIES
AND INVARIANT HERMITIAN FORMS

In this last section the possible extensions of the representations of Theo-
rem 3 to the discrete symmetries T, C, and P, and the invariant hermitian
forms on the representation spaces, will be determined. The existence of
the latter, and the possibility of extending a representation to C (according
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to the definition given here), will be seen to be closely related. The geome-
trical symmetries T and P will be considered first. v

The space- and time- reversal symmetries determine a pair of outer
automorphisms of P, denoted 7r, resp. T, which have the forms

(Cf. [6 ], sections 2 . 3 and 7 . 2; note also Tr F = F + for all F E H(2)).
The corresponding semi-direct product group is denoted here P +, or
F x P, F being a. 4-element group {e, T, P, TP}, -- an abelian and non-
cyclic group, F for « group ». The elements T, P e P + are defined so as to
satisfy TgT-1 == r(g), ( g E P). P + is also enlarged to the
direct product P + x Z2 , where the generator of the Z2 group is denoted C.

DEFINITION 2. - Consider a representation R of P on a finite-dimen-
sional space V. R is said to admit a T (resp. aP) if there exists a nonsingular
map R(T) (resp. R(P)) such that

(resp.

for all g E P. An a priori more restrictive condition on R is that it admit
a projective extension to P +, where such an extension R’ is determined by
assignments for R(T) and R(P) satisfying (6.1-2), commuting within scalar
factors, and having squares equal to constants. -

R is said to admit a C if there exists an antilinear equivalence, denoted C,
of R (acting on V) with its dual (acting canonically on V*). In the case R
is self-dual (1), a projective extension of R to P+ x Z2 is defined to be a
projective extension in the usual sense subject to the constraints :

R(T), R(C), and R(P) commute within scalars and have squares equal
to scalars, R(C) is anti-linear and commutes with all R( g) (gEP+), (6 . 3)
and R(T) and R(P) satisfy (6 .1 ) and (6 . 2).

It is easy to see that the direct sum of any representation of P with its
anti-dual admits a C. The following determines which representations
admit a T, C, or P, and some additional extensions.

~ PROPOSITION 5. - All the indecomposable representations listed in

(1) The conventional action of the Lorentz group on 4-component spinors, namely
the direct sum of the ’Weyl representations’ L -+ L, L ~ L (L E SL(2, C)), is self-
dual.
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Theorem 3 admit a T ; only Rs, R 5 , and R6 admit a P ; only R4 , R4 , and R 6
admit a C. 

_ _

Each of the direct sums R4 0 R4, R7 EB R7, R1 EB R~ (j = 1, 2) and their
duals admit a P.
The self-dual representation R6 admits a projective extension to P+ x Z2,

defined on the real form R 1 EÐ H(2) 0 R 1 by the assignments :

and

and then extended linearly for R(P) and anti-linearly for R(T) and R(C).
Such R(T), R(C), and R(P) satisfying (6. 3) are unique up to scalar factors.

Proof 2014 Essentially it suffices to note that L -~ L* -1 (L E SL(2, C))
carries each representation D(/’+,~) into one equivalent to D( j _ , j + ),
and that a representation admits a C if and only if it is equivalent to its
anti-dual. It is straightforward to check that the discrete symmetries given
for R6 satisfy (6.3); the uniqueness follows from the easily checked fact
that the only matrices commuting with all R6(g) (P) and that have
constant squares are scalars. Q. E. D.

If a representation R of P on V preserves a nondegenerate sesquilinear
form  . , . ~, then R is linearly equivalent to its anti-dual R, via the map
jc -~ ( ~ . ~ carrying V into its anti-dual (space of anti-linear functionals),
cf. (6), section 6. 2. The only such representations in Theorem 3 equivalent
to their anti-duals are R4, R4, and R6, by Proposition 5. Conversely, these
representations clearly do preserve nondegenerate hermitian forms, namely
the forms appearing in the defining representations of SU(2, 2) and 0(2, 4),
noted in the previous section.
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