
ANNALES DE L’I. H. P., SECTION A

FOLKERT MÜLLER-HOISSEN
A gauge theoretical approach to space-time structures
Annales de l’I. H. P., section A, tome 40, no 1 (1984), p. 21-34
<http://www.numdam.org/item?id=AIHPA_1984__40_1_21_0>

© Gauthier-Villars, 1984, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1984__40_1_21_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


21

A gauge theoretical approach
to space-time structures

Folkert MÜLLER-HOISSEN
Institute for Theoretical Physics, University of Gottingen,

Federal Republic of Germany

Ann. Henri Poincaré,

Vol. 40, n° 1, 1984, Physique ’ théorique ’

ABSTRACT. 2014 We discuss a general gauge theoretical scheme leading
to space-time structures. This is applied to the Poincare group, the Galilei
group and its central extension as gauge groups.

It is shown how theories of gravitation can be formulated as Yang-Mills
type gauge theories with a Goldstone field.

Dealing with the central extension of the Galilei group we obtain as
a by-product a characterization of Newtonian connections in terms of a
generalized torsion.

RESUME. - On discute un schema general de theories de jauge condui-
sant a des structures d’espace-temps. On 1’applique aux cas ou l’on prend
pour groupe de jauge Ie groupe Poincare, Ie groupe de Galilee, ou son
extension centrale. On montre comment les theories de la gravitation
peuvent etre formulees comme theories de jauge du type de Yang-Mills
avec un champ de Goldstone. Dans Ie cas de 1’extension centrale du groupe
de Galilee, on obtient comme sous produit une caracterisation des con-
nections Newtoniennes en termes de torsion generalisee.

INTRODUCTION

It is well-known that theories of gravitation based on a Lorentz metric
and a metric compatible linear connection show an internal Lorentz sym-
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22 F. MULLER-HOISSEN

metry. This enables us to deal with fields which are representations of the
Lorentz group in an arbitrary space-time. Quantum theory, however,
is dominated by the Poincare group, i. e. the inhomogeneous Lorentz
group. From this point of view it is therefore convenient to look for a way
to introduce the Poincare group in a general space-time (cf. also [7]).
Such a way is provided by the theory of fiber bundles which enables us to
extend the internal Lorentz symmetry to an internal Poincare symmetry.
An orthodox gauge theoretical approach starts with a Poincare bundle

and a connection on this bundle ([7]-[~]). The physical fields are cross
sections of bundles associated with the (principal) Poincare bundle. The
space-time structure is then obtained as a secondary concept via the intro-
duction of a « Goldstone field » (cf. [5 and the references given there for
the sense in which we use this notion here).

In the prerelativistic case we meet with a similar structure. The covariant
formulation of Newton’s theory of gravitation leads to a Galilei structure
(i. e. a Galilei sub bundle of the bundle of linear frames) and Galilei con-
nections [6 so that the theory admits the homogeneous Galilei group as
an internal symmetry group. Quantum mechanics deals with projective
(ray) representations of the inhomogeneous Galilei group, respectively
representations of the central extension of the Galilei group (cf. e. g. [7]).
The fiber bundle geometry opens a way to introduce the inhomogeneous
Galilei group respectively its central extension in a general Galilei space-
time. Again, we can start with a principal fiber bundle with structure group
the inhomogeneous Galilei group or its central extension and derive

the space-time structure via a symmetry breaking procedure from the
gauge theoretical framework.

The present work is understood as a first step to the program indicated

above, concentrating mainly on the geometry of the gauge field and leaving
aside the question how to deal with matter fields (cf. [1] ] for the case of
the Poincare group).

In order to display some very general features we present a gauge theo-
retical scheme for deriving space-time structures which in particular includes
a treatment of the Poincare group ( [2 ]- [4 ]), the affine group [8 and the
prerelativistic groups.

- 

Dealing with the central extension of the Galilei group we obtain an
extended canonical 1-form on a Galilei structure which transforms according
to a five-dimensional representation of the homogeneous Galilei group
(if the base manifold is four-dimensional). Due to the fact that in the pre-
relativistic case we actually need a mass-momentum-energy tensor [9] ]
instead of the familiar (relativistic) energy-momentum tensor as source
for the geometry, the five-dimensional representation of the homogeneous
Galilei group appears to be of special interest (cf. also [70]-[7 7]). Asso-
ciated with the extended canonical 1-form is an extended torsion form in
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23GAUGE THEORETICAL APPROACH TO SPACE-TIME STRUCTURES

terms of which we derive a characterization of a class of Galilei connec-

tions, the Newtonian connections [6 ]. A similar result has been obtained
in [72] ] with different methods. Newtonian connections arise through
the limit relation : Einstein’s gravitation -~ Newton’s gravitation (cf. [7~] ]
and references given there).

Section 1 presents the general framework we are dealing with. The
following three sections treat respectively the Poincare group, the inhomo-
geneous Galilei group and its central extension as specific examples. Here
we contrast the « explicit » symmetry breaking procedure, outlined in
section 1 with am « implicit ~ symmetry breaking where a Goldstone field
is used to construct quantities which transform according to a represen-
tation of the homogeneous (Lorentz respectively Galilei) group under
the action of the full group.

1. THE GENERAL FRAMEWORK

Let G be a Lie group and G a closed subgroup. We assume that the Lie
algebra  of â admits a linear subspace V such that [7~] ]

and

Furthermore, let P be a (principal) G-bundle over a paracompact n-dimen-
sional manifold M.

For many groups G such a bundle always admits a reduction of the
structure group [1 S ]

(with group homomorphism the inclusion map G  G) where P is a
G-bundle over M. A well-known necessary and sufficient condition for
a reduction to exist is the existence of a global cross section of the asso-
ciated bundle

( [15 ], p. 57). This is in particular the case if G/G is diffeomorphic with a
Euclidean space f~m ( [15 ], p. 58).

Given a reduction f and a connection form c5 on P we can decompose
the pull-back of w to P as follows

Using the properties of the reduction map and the structure of the Lie
algebra ~ one obtains (cf. [15 ], p. 83) :

LEMMA 1. 2014 (1) w is a connection form on P.

Vol. 40, n° 1-1984.



24 F. MULLER-HOISSEN

(2) ~ is a tensorial 1-form of type (ad, V) on P. D

In order to end up with the geometric structure of theories of gravitation
we need contact with the bundle L(M) of linear frames on M. To make
this possible we restrict G to be a subgroup of the general linear group :

Defining a soldering form [14] ] on P to be a tensorial 1-form 03C8 of type
(id, with

we get the following result which essentially has been mentioned in [16 ].

LEMMA 2. - Let G be any subgroup of GL (n, ~) and P a G-bundle
over M. P is isomorphic with a G-structure (i. e. a G-subbundle of L(M))
if and only if a soldering form on P exists.

Proof. - If K- : P ~ K(P) c L(M) is an isomorphism of principal
bundles, then _ _ _ . _ .

is a soldering form on P where e denotes the canonical 1-form on L(M)
restricted to K(P).

Conversely, if 03C8 is a soldering form on P we define a map

by
where 6 is a local cross section through p. Since 03C8 is tensorial, 03BA does not
depend on the choice of 6. The condition (1.5) ensures that cr* is
a coframe which determines a (dual) basis of the tangent space 
i. e. a pointof L(M) (7r : P -~ M denotes the bundle projection). x is easily
shown to be an isomorphism onto its image. Moreover, x is a reduction
of the structure group GL (n, IR) of L(M) to G. ~ D
The resulting problem is now whether we can use ~r to construct a sol-

dering form ~ on P. If this can be done we get the following situation :

( + additional fields)
with the connection form

The cross section of E which determines the reduction map f is equi-
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25GAUGE THEORETICAL APPROACH TO SPACE-TIME STRUCTURES

valently described by a tensorial 0-form C on P with values in G/G. C and f
are related by 

.

The soldering condition (1. 5) cannot be fulfilled in general. To illustrate
this fact consider the trivial bundle P = M x GL (n, ~). It follows from
Lemma 2 that P admits a soldering form if and only if M is parallelizable
which is a severe restriction on the manifold M.

In the following sections we discuss the construction outlined above
in some more detail for the Poincare group, the inhomogeneous Galilei
group and its central extension as examples for G. Furthermore, the
« Goldstone field » 03A6 [5 will be used to formulate theories of gravitation
with an explicit G symmetry.

2. THE POINCARE GROUP

In this section we consider the case where G is the Poincare group, i. e.

the semidirect product of O~n - 1, 1) with the group of translations in
n dimensions. G is chosen to be the Lorentz group 0(n - 1, 1) and V the
subspace of  corresponding to the translations.

Using the (n + 1)-dimensional matrix representation of the Poincare
group

and the induced representation of the Lie algebra we find

where 03C8 is tensorial of type (id, M") on the Lorentz bundle P. Demanding
the soldering condition (1.5), ~ determines a Lorentz structure on M
which in turn defines a Lorentz (pseudo-Riemannian) metric g on M.
cc~ is a linear connection compatible with g.
An essential point is that the « tetrad field » (g-orthonormal coframe

field) arises from the translational part of the Poincare connection on P
(cf. also [2]-[~]).
The quotient space G/G can be identified with [R" in a natural way.

Using this identification we obtain the following transformation rule for
the Goldstone field C under the right action of G on P :

Vol. 40, n° 1-1984.



26 F. MÜLLER-HOISSEN

This shows the existence of a gauge with respect to which 03A6 vanishes.
This is also implied by ( 1. 8) which in the case under consideration becomes

We conclude that C plays no physical role in the theory.
But it enables us to formulate a gravitational theory on P, i. e. with an
internal G symmetry. This will be outlined in the following.
For the covariant derivative with respect to c5 we get

In particular, is invariant under internal translations. Furthermore,

by use of (2 . 4). The condition ( 1. 5) is therefore equivalent to

(cf. [2 ]). Due to this condition, the set of 1-forms ~ and DC provide a
parallelization of P. Each differential form on P can be expressed in terms
of this coframe field.
The curvature form of

is given by

with

In contrast to ij is invariant under translations. We define the cur-
vature tensor by

and introduce a torsion form and a torsion tensor :

Here the curvature and the torsion tensor are defined as 0-forms on P.

It should be noticed, however, that they are invariant under internal trans-
lations. Using ~ == diag ( - 1, 1, ... 1) we can therefore build (gauge inva-
riant) scalars on P from and In this way we arrive at all types
of Lagrangians for the gravitational field which are possible in the usual
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27GAUGE THEORETICAL APPROACH TO SPACE-TIME STRUCTURES

framework formulated on L(M) with M being four-dimensional. As an
example, the Einstein-Cartan Lagrangian on P reads (cf. [2 ])

where the *-operator is defined on the (horizontal) basis03A6i in the usual way.
Furthermore, a Lagrangian proposed in [17 ]- [7S] can be written as follows :

(l Planck length, x a coupling constant).
The dynamical variables of the gravitational field are the Poincare

connection ~ and the Goldstone field C. Variation of the translational

part of Ôj is equivalent to variation of the « tetrad field » Since 03A6 enters

only through the equation resulting from variation of C turns out to
be a consequence of the « tetrad field equation ».

Imposing the condition

the Lorentz part of the connection c5 is uniquely fixed by the tetrad field
(respectively the corresponding metric g). In this way we recover Einstein’s
theory from the Lagrangian (2.14).
Due to the introduction of the Goldstone field C we have been able to

extend the internal Lorentz symmetry of gravitational theories to an inter-
nal Poincare symmetry. The formulation presented here should be com-
pared with that given in [5 ]. 

-

The availability of a Goldstone field is necessary for the minimal coupling
procedure proposed in [4 ].

3. THE INHOMOGENEOUS GALILEI GROUP

In this section the inhomogeneous Galilei group takes the role of G.
A matrix representation of this group is given by

with

Let G be the homogeneous Galilei group and V again the subs pace of @
spanned by the generators of translations. Obviously, we can proceed by
analogy with the treatment of the Poincare group. In the case under consi-

Vol. 40, n° 1-1984.
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deration we end up with a Galilei structure on M which is characterized

by a pair (~F, y) of a nowhere vanishing 1-form

and a positive semi-definite symmetric tensor field

of rank n - 1 on M subject to

[6 ]. a~ given by equation (1. 7) is a Galilei connection, i. e.

where the indices now refer to an arbitrary frame and D denotes the exterior
covariant derivative associated with ~. In terms of these objects Newton’s
theory of gravitation can be formulated in a covariant way (cf. [6] ] [7~] ]
and references given there).
We denote a Galilei structure by On we have

(A, B = 1, ... , n - 1). For more details about the geometry and physics
of Galilei structures we refer to [6 ].
The equations of section 2 apply equally well to the case under consi-

deration if A is replaced in (2 .1 ) and the subsequent equations by an ele-
ment of the homogeneous Galilei group. The only exception is that we are
not able to introduce a (invertable) *-operator since the homogeneous
Galilei group does not allow a non-degenerate invariant metric on [R".

The tensors on which are invariant under this group-are just given by
(3.7) and (3.8).

Nevertheless if, for simplicity, we choose n == 4 then we can intro-
duce « dual forms » using the totally antisymmetric 0-form on P defined

by Ep 12 3 ==- 1, e. g.

With these quantities we can construct a counterpart to the Einstein-
Cartan Lagrangian (2.14) on P :

Annales de Henri Poincaré - Physique " theorique "



29GAUGE THEORETICAL APPROACH TO SPACE-TIME STRUCTURES

where a dot indicates that an index has been raised with 

Rx~ = However, due to the use of the degenerate « metric », L is
invariant under a change of the (linear part of the) connection by an arbi-
trary boost part : 

.

where A is any covector-valued 1-form. More generally, this applies to all
scalars built from the geometrical quantities and For connections
with vanishing torsion these scalars do not contain any information about
the connection but only about the underlying Galilei structure.

It is therefore obvious that the variation of L with respect to c5, i. e.

does not lead to satisfactory field equations. We meet with similar problems
if we try to construct a matter Lagrangian. Of course, there are no pro-
blems with formulating field equations without a Lagrange formalism
(cf. section 4).

4. THE CENTRAL EXTENSION

OF THE GALILEI GROUP

4.1 A useful matrix representation of the central extension of the
(inhomogeneous) Galilei group is given by [7 ] :

with

Again, the homogeneous Galilei group plays the role of G. V is the (n + 1)-
dimensional subspace of  spanned by the translation generators and the
central generator. Using the matrix representation of the Lie algebra ~
which is induced by the group representation (4 .1 ) we find the following
general form of a connection on P :

Vol. 40,~1-1984.
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where the entries of the matrix are 1-forms and

(A, B = 1, ... , n - 1). For the pull-back ofc5 with respect to the reduction
map f we obtain the form

The vector-valued 1-form

on P is tensorial (cf. Lemma 1) and transforms according to the (n + 1)-
dimensional representation of the homogeneous Galilei group :

The first n components of 03C8 transform according to the usual n-dimen-
sional representation, i. e. they constitute a tensorial 1-form of type (id, [R")
on P. If we require this form to be of maximal rank we can apply Lemma 2.
This leads to a Galilei structure on which we obtain a Galilei
connection co and an « extended canonical 1-form ~:

transforming according to the representation (4.6). Covariant differentia-
tion of 03B8 (with respect to co) provides us with an « extended torsion form »

This can be used to characterize Newtonian connections [6 ]- [12 ], i. e.

Galilei connections on L~~’’(M) which are torsion-free and for which the
curvature tensor satisfies

where indices i, j, ... run from 0 to n - 1 and are raised with the help of 03B3ij.
Annales de Henri Poincaré - Physique theorique



31GAUGE THEORETICAL APPROACH TO SPACE-TIME STRUCTURES

THEOREM. - cv is a Newtonian connection if and only if

(locally) with a 1-form x.

Proof 2014 With

equation (4.10) becomes

Locally the last equation is equivalent to

Using the structure equation

for the curvature form of wand (4.12), the last equation is turned into

which with the help of

is seen to be equivalent to (4.9). D
In contrast to the corresponding situation in the Lorentz case (cf. the

remarks following (2.16)) the condition (4.10) does not fix a unique con-
nection on the Galilei structure. We are still left with a whole class of
Newtonian connections locally parametrized by a timelike unit vector
field (observer) u, i. e.

More precisely, given an observer field u, a Newtonian connection is uni-
quely determined by 6 a

with

Conversely, for each Newtonian connection there exists (at least locally)
such a nonrotating and freely falling observer [19 ].
We see that in order to fix a Newtonian gravitational field a Galilei

structure has to be supplemented by a timelike vector field. In the New-

Vol. 40, n° 1-1984. 2



32 F. MULLER-HOISSEN

tonian theory, this vector field actually plays the role of the gravitational
potential.
4.2 Using the Goldstone field 03A6 we can formulate the theory with an

internal G symmetry, i. e. on P .This will be shown in the following.
The quotient space G/G can be identified with via

The left action of G on G/G is then translated into the action of G on the
vectors

through the representation (4 .1 ).
Regarding C as ( 1. 8) becomes

The covariant derivative transforms according to

which shows that DC is invariant under internal translations and the
central group. Using (4 . 21 ) we find

. 
so that the first n components of DC are linearly independent due to
the condition (1.5). For a local cross section 6 of P, is therefore a
« tetrad field ».
The part of the curvature form of c5 which corresponds to the linear

connection defines a curvature tensor in the same way as in sections 2 and 3.
The field equations for the prerelativistic theory of gravitation [6 ]- [7~] can
now be stated as follows :
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33GAUGE THEORETICAL APPROACH TO SPACE-TIME STRUCTURES

with the gravitational constant G and

Ti’ is a mass-momentum 0-form on P which transforms only under the
homogeneous Galilei group (like DC’).
To incorporate the energy law we have to pass to a mass-momentum-

energy 0-form which transforms according to a tensor product of the
(n + 1)-dimensional representation (4 . 6) (cf. [9]-[7~]).

CONCLUSION

We have demonstrated how a gauge theory of a certain class of Lie
groups can lead to space-time structures. One of the crucial points in this
construction is the introduction of a Goldstone field.

Using this additional field we have formulated theories of gravitation
as pure gauge theories of the Yang-Mills type. In particular, our presen-
tation shows the equivalence of various approaches to the Poincare gauge
theory (cf. e. g. [2 ]- [3 ]- [5 ]).

Dealing with the Galilei group and its central extension we have obtained
some more insight into the geometric structure of the prerelativistic theory
of gravitation and especially the significance of the class of Newtonian
connections.
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