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Propagation of chaos
for Burgers’ equation

P. CALDERONI and M. PULVIRENTI (*)
Istituto Matematico dell’Università di Roma, Roma (Italy)

Ann. Henri Poincaré,

Vol. XXXIX, n° 1, 1983,

Section A :

Physique # theorique. ’

ABSTRACT. - Burger’s equation is obtained as a mean field limit of

suitable diffusion processes.

RESUME. - On obtient 1’equation de Burgers comme limite du champ
moyen de processus de diffusion convenables.

1. INTRODUCTION

In studying a class of parabolic equations, McKean [1] ] posed a pro-
blem of propagation of chaos for the Burgers’ equation :

Let us spend some words about it.
It is well known that the initial value problem associated to Eq.. 1.1

is exactly solvable by means of the Hopf-Cole transformation [2 ], which
yields :

where q(x) _ ~ lim p(x, ~). ( 1. 2)

(*) Partially supported by Italian CNR.
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86 P. CALDERONI

Consider now the diffusion process solution of the following equation :

where b is a standard one-dimensional Brownian motion. Then t )
is the distribution of x( t), assuming q  0 to be the distribution of x = x(o).
This follows by considering eq. (1.1) as Kolmogorov forward equation
for p and interpreting p2 as the product of the drift and distribution itself.

be the positions of a n-particles system satisfying:

where bi are n independent one-dimensional standard Brownian motions
and 03B4 denotes the Dirac distribution.

(Notice that the processes solutions of (1.4) could make sense in terms
of the local time spent in coincidence by particles i and j). Then, denoting
by 03C1t(x1 ... xn) the distribution of the n particles system at time t (assumed
symmetric at time zero and hence symmetric at all times) we have :

Formally integrating by parts both sides w. r. t. the last n - k variables,
we have for the k-particles distribution /~ :

Taking the formal limit ~ -~ oo, Eq. (1. 6) reduces to :

Annales de l’Institut Henri Poincaré-Section A



87PROPAGATION OF CHAOS FOR BURGERS’ EQUATION

If the initial distribution factorizes, i. e. po = q x ... x q, then dyna-
mics ( 1. 4) create correlations and pt is no more a product measure. But
we expect this factorization to be restored in the limit n -+ oo . Indeed an

inspection of Eq. ( 1. 7) shows that it is satisfied by a k-fold product of pt,
where pr is solution of the Burger’s equation with initial distribution q.
The processes ... , xK(t ) are also expected to converge in the limit
~ -~ oo to k independent copies of the Burger’s process (1. 3). Such feature,
called propagation of chaos in kinetic theory, has been rigorously proved
in [7] for a class of non linear parabolic equations, with sufficiently smooth
coefficients. The difficulties arising in the Burgers’ problem are, of course,
connected with the presence of 03B4 functions in (1.4), making difficult also
a rigorous position of the problem.
We approach this problem in a different simpler way. First we regularize

the diffusion processes (1.4) replacing b by a Coo approximation ~£. In
this case everything may be proved for a limiting equation that resembles

the Burgers’ equation : the bilinear term - a p 2, is replaced by - 2014~’ (p * 
2 ~x 2 ox

Then, a proof of convergence may be tried removing the cucoff 8 = E(n)
simultaneously to the limit n -+ 00, in such a way that the field

generated by the particles, is not so dramatic to deal with.
This kind of procedure is inspired to the one used in [3 ], modelling

the Navier-Stokes equation by the vortex dynamics, but the presence here
of a more singular kernel requires different « ad hoc » techniques.

In Section 2 we discuss the convergence of solutions of the regularized
Burgers’ equation to the true solution in the limit 8 --+ 0. In doing this,
the explicit knowledge of regularity properties of the limit solutions will
be used. In Section 3 we deduce the propagation of chaos by a diagonal
limiting procedure, making use of results in Section 2.

2. AN APPROXIMATION THEOREM

Given the Burgers’ problem :

Vol. XXXIX, n° 1-1983.



88 P. CALDERONI

we set as its regularized version the following problem :

where f)==(~ ~E(x) = 2014= e - x212E, * denotes, as usual, convo-
lution and p~t = p~(., t ). 203C0~
We can write explicitly the solution of problem (2 .1 ) :

(2 . 3) is a consequence of the well known Hopf-Cole transformation [2],
a

p(x, t ) _ - - In v(x, t ), yielding for v(x, t ) the heat equation. Furthermore,ax
because of the particular form of eq. (2.1) and solution (2.3), it is easy
to deduce for p(x, t ) the following inequalities :

where ~.~p 1 p  oo denote, as usual, norms in space and pt = p( . , t ).
Note that Eqs. (2.1) and (2.2) can be read as forward equations for the

probability distribution densities of two diffusion processes satisfying
following stochastic differential equations :

where b(t ) is a standard brownian motion.
In virtue of this fact, {2.4)b is simply the conservation of probability

and { 2.4 )a follows b y the inequality d dt ~ pt ~22  0, that i s a direct conse-
dt

quence of Eq. {2.1). Finally by Hopf-Cole transformation we have:
~’ - {v’2 - vv")v- 2, where’ denotes the spatial derivative. Moreover,
since v satisfies the heat equation, we have:

Annales de Henri Poincare-Section A



89PROPAGATION OF CHAOS FOR BURGERS’ EQUATION

Hence t/(x, t)! ~ I v(x~ ~ ) l and

which imply (2.4),..
Let ~([0,T]) be the space of continuous functions from [0,T] to ~

the space of all Borel probability measures on R, endowed with the weak
convergence topology. We define the following map Sq, q E N, from
~([0,T]) into itself :

where 0) is the probability transition family associated to the
diffusion process x~(t ) satisfying dx(t) = + db(t) where

Because of the smoothness of bE one can prove the existence of a unique
fixed point for the map Sq [7] ] [J] ] and hence a unique solution for the
problem (2.2) can be constructed.

Let t ) and p~(k, t) be the Fourier transforms (characteristic func-
tions) t) and /?%~ ~), solutions of the initial value problems (2.1)
and (2.2). We have :

We will give now the main theorem of this section :

THEOREM 2.1. - Let t) and p~(x, t ) be the solutions of problems
(2 .1 ) and (2 . 2), with initial datum q(x), bounded with its first derivative.
Then ~(.~) -+ p( . , t ), as E -+ 0, in the sense of weak convergence of
distribution functions and uniformly in t on compact sets.
To prove Theorem 2 .1 we need the following Proposition :

PROPOSITION 2.1. 2014 In the hypotheses of Theorem 2.1, for all T &#x3E; 0,
~(.~) converges to p( . , t ), as G -+ 0, in the L 2(1R) sense, uniformly in
~[0,T].

Vol. XXXIX, n° 1-1983.
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In the proof of Proposition 2.1 we will make use of the following Lemma,
whose proof is shifted at the end of the Section.

LEMMA 2 .1. - Let p£( . , t ) be the solution of (2 . 9). Then, fixed r &#x3E; 4,
there exists a positive constant Mo such that :

where

Proof of Proposition 2.1. - Fixed an arbitrary T &#x3E; 0, first we shall
prove convergence up to the time ~  T, for which we have an 
form estimate of sup I 

Then, in virtue of Lemma 2.1, we get L2(1R) convergence for small times.
Finally, regularity properties of the limiting solution allow us to enlarge

the convergence interval up to T.
We suppose :

By (2 . 8) and (2 . 9) we have:

from which it follows :

Moreover :

Annales de Henri Poincaré-Section A



91PROPAGATION OF CHAOS FOR BURGERS’ EQUATION

Hence, by Holder inequality

where r and r’ and conjugate exponents.
Since r’  4/3, we have :

where C(r’) is defined by the last equality.
Therefore, by (2 . 4)~ and (2 .11 ) we have :

rt

where C 1 = const. II q (2 ~2~ + II q’ and C 1 = const. .~q I I 2 .
Finally, by Gronwall’s Lemma :

Now we show the L 2(1R) convergence for all times by proving the following
estimate : there exists E such that for all 8 ~ ~:

We denote 1 a partition of [0,T] ] with non-overlapping inter-
vals 4~ _ [ti _ 1, ti], such that ~-i 2014~! ~ t/2r (f given by Lemma 1) for
each i = 1, ... , n, to = 0 and tn = T. By (2 . 4)a, Lemma 1, (2.11) and (2.18),
we ha vP .

for 0  8 ~ 81, ~1 sufficiently small.

Vol. XXXIX, n° 1-1983.
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Now we prove (2.19) by induction on the intervals A,. Namely, assuming
the existence of an ~j for which :

we show that there exists Gj+ 1 such that

In fact, for 

and

where, m the last step, we have used the same arguments as in the esti-
mates (2.14) and (2.15). 

-

In virtue of the inductive hypothesis, (2.11) holds with t = t~ and hence
by (2.18) !! const. E.

Furthermore, by Lemma 1 (noticing 
and (2 . 21 ), we have :

Thus

for suitable constants 1 and Cj+ 1 depending only on q. By Gronwall’s
Lemma and (2 . 23), we get :

and hence (2.22).
Finally, choosing 8 = . min E j, we obtain (2 .19). D

7=1,...,M

Proof of Theorem 2.1. 2014 It is enough to show that pt converges pointwise
to pt, as E ~ 0, uniformly in t on compact sets (See Th. 26 . 3, p. 303 [4 D.

Annales de 1’Institut Henri Poincaré-Section A



93PROPAGATION OF CHAOS FOR BURGERS’ EQUATION

By (2.13) we have :

and hence, by Schwarz inequality (2 . 4) and (2.19), we get :

So the thesis follows by (2 . 29) and L 2(1R) convergence of pr to 0

Proof of Lemma 2.1. 2014 By (2 .12)b we can write :

So, we have

and hence, by Holder inequality :

Choosing r’  4/3 and est imating the integral in the r. h. s. of (2. 32) as
in Proposition 1 (2.16), we get :

Let us set :

Then it is possible to find a positive constant Mo such that, by (2.33)
we can write :

Let X(t, yo) be the solution of the following initial value problem :

Vol. XXXIX, n° 1-1983.
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namely

Choosing  = 1/2r+1M0y0 one realizes that by (2 . 37), (2 . 35) and (2 . 34)
we get (2.10), since 1 - 2r-1y0M0(1 + r-1)t  1/2. D

3. A MEAN FIELD LIMIT

For any positive integer n and E &#x3E; 0, we define the 
solutions of the following stochastic differential equations :

~

where 
__

and, 1 are mutually independent
standard brownian motions.
We denote by = 

1 the unique (but
for stochastic equivalence) stochastic process solution of (3.1); starting
from xn = }?= 1 at time zero. X" are supposed to be mutually inde-
pendent random variables, distributed via 
We denote by (SZ, ~, tP) the sample space in which all ~ bi(t ) ~ ~ ° ~ are

supposed to be realized, together with infinitely many independent copies
of the Burgers’ process, satisfying = (see def. (2 . 5)a).
Then we have :

THEOREM 3.1. 2014 There exists a sequence E = E(n), E(n) ~ 0 when
n ~ oo, such that converges to ~(t), for all integers i, as n --~ oo,

in the L 2«Q, E, P)) norm, uniformly in t E [0, T ].

Proof - By using the same arguments as in [1 ], we can show that
~ as n  oo, are infinite mutually inde-

pendent copies of the process solution of (2. 5)b, in the sense E, IFD)
norm. For this reason we only give a sketch of the proof. Fixed G &#x3E; 0,

is a Cauchy sequence. This is a consequence of the following ine-
quality :

with m &#x3E; nand t E [0, T ].

Anna/es de 1’Institut Henri Poincare-Section A
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Finally, by (3 . 3) and (3 . 6) we get :

Therefore, it is possible to find a sequence s = ~(n), going to zero when
~ -~ oo, in such a way that x(t ) ~ 2) ~ 0 as n --~ oo . D

Comments and remarks.

The above results can be improved, by proving propagation of chaos
in a different way. Suppose the processes {x~,ni(t) }ni=1 start, almost surely,
from the points {xi}ni=1 at time zero. Suppose that such points simulate
the initial distribution in the sense that, for all bounded and conti-
nuous functions f, it is :

Then 
n

converges to t )f(x)dx, where p( . , t ) is the solution of the Burger’s

equation with initial datum q, for a suitable choice of ~ = E(n), ~ 0

as 

The proof of this statement is the same as the one given in [3] ] in the
context of Navier-Stokes equation, thus we do not repeat it here. We

finally remark that the regularized finite dimensional model we have intro-
duced in this paper, is directly connected to the Burgers’ equation also
in a different limit, not involving explicit scaling of the interaction.

1 be a n-particles system satisfying :

Suppose we rescale the variables in the following way :

Then
n

I’~nstitut Henri Poincare-Section A
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having used the scaling properties :

to converge to x(t ), for fixed E and n -~ oo, where is the solution of :

and p(x, t ) is a solution of in viscid Burgers’ equation. Moreover such
solution, among the weak solutions of the inviscid Burgers’ equation, is

expected to be the weak limit, for 03C3 ~ 0, of the solution of the viscid
Burgers’ equation, with diffusion coefficient 6.

Unfortunately our estimates do not allow us to prove the above conjec-
ture in a general framework.
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