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p.1

Existence, uniqueness and iterative construction
of motions of charged particles
with retarded interactions (*)

E. EDER

Max-Planck-Institut fur Physik und Astrophysik,
Institut fur Astrophysik, 8046 Garching

F. R. Germany

Ann. Inst. Henri Poincaré,

Vol. XXXIX, n° 1, 1983,

Section A :

Physique theorique.

ABSTRACT. - The paper provides an existence and uniqueness proof
and an iterative construction with an error estimate for the solution of
a system of truncated equations of motion for the scattering problem of
classical electrodynamics with initial conditions in the infinite past. It
is assumed that the fields produced by the particles are given by the velo-
city-dependent terms of the retarded Liénard-Wiechert fields and that
each particle moves according to the Lorentz force corresponding to the
field produced by the other particle or particles. The acceleration-dependent
parts of the retarded Lienard-Wiechert fields as well as the radiation
reaction terms are disregarded. It is proved that one can choose, as initial
values, the three components of the velocity of each particle and, in addi-
tion, three real numbers for each particle which can be looked at as initial
values for the location of the particle in the infinite past.
RESUME. - On donne une preuve d’existence et d’unicite et une cons-

truction iterative avec estimation d’erreur de la solution d’un système d’equa-
tions du mouvement tronquees pour la diffusion en electrodynamique
classique avec conditions initiales a l’infini dans Ie passe. On suppose que
les champs produits par les particules sont donnes par les termes dependant
de la vitesse des champs retardes de Lienard-Wiechert et que chaque
particule se meut sous 1’action de la force de Lorentz associee au champ
produit par les autres particules. On omet les termes dependant de l’accé-

(*) Supported by Stiftungsfond Deutsche Bank im Stifterverband fur die Deutsche
Wissenschaft.
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2 E. EDER

leration des champs retardes de Liénard-Wiechert, ainsi que les termes
de reaction du rayonnement. On prouve qu’il est possible de choisir comme
valeurs initiales, les trois composantes de la vitesse de chaque particule
et en outre, pour chaque particule, trois nombres reels qu’on peut consi-
derer comme les valeurs initiales de la position de cette particule a l’infini
dans Ie passe.

§ 0. INTRODUCTION

In this paper we treat some mathematical aspects of the scattering pro-
blem for a system of classical point particles with retarded interactions.
Since the main purpose is to handle retardations rigorously, a simplified
form of electromagnetic interaction is used : each particle is taken to move
according to the Lorentz force due to the velocity-dependent, r-2-parts
of the retarded Lienard-Wiechert fields produced by the other particles;
the acceleration-dependent, r-1-parts of the fields as well as the radiation
reaction forces are disregarded.
The equation of motion for a particle of charge q and mass m moving

in an electric field E and a magnetic induction B in an inertial frame is

where v is the velocity and a the acceleration of the particle at the time t
considered (we take c = 1). Let x be its position at time t. If the electro-
magnetic field is produced by another particle of charge q which had the
position y and the velocity w at the retarded time t - L where L is the

light-travel time of a light signal sent from the second particle and arriving
at the first particle at time t then the velocity-dependent parts of E and B
are given by

From (0.2) follows ( x - y - ’Lw) x E = 0. Thus

If there are more than two particles we have to add up all contributions
from the other particles.
We shall prove (theorem 4 in § 4) that for every solution of these equa-

tions for which the distances between the particles grow at least linearly
for t -~- 2014 oo and the speeds of the particles are bounded away from
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3EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

the speed of light there are, for each of the particles, three vector oc, j8, y
such that for the position x (t ) of the particle at time t we have

t-~-00

The vector a can be regarded as initial value in the infinite past for the
velocity of that particle. 03B2 is uniquely determined by the initial values
for the velocities of the particles. We may regard y as a substitute for
the initial value of the position of the particle under consideration. Further
we establish in theorem 4 that for every choice of initial values such
that no two velocities are equal to each other there is, for sufficiently early
times, a unique solution of the equations of motion which obeys the ini-
tial conditions (0.4) and (0.5). We give an iterative construction of the
solution and an error estimate. -

The idea of the proof is the following : The motion of the particles can
be described by a function x giving for each time t the corresponding ele-
ment x(t) of configuration space. Then the equations of motion can be
written as

where the second argument of F varies in a suitable function space. We
choose a function xo which obeys the initial conditions and solves (0.6)
« approximately for t -~ - i. e., F(t, xo) has a certain fall-off
behaviour for t -~ - oo . Then we can rewrite (0.6) together with the
initial conditions as an integral equation

x = Tx
where

We prove that T is contractive in a suitable metric function space and
has a unique fixed point (theorems 1 and 2). The proof is divided into four
parts : In theorem 1 we treat the general type of equation (0.6) where F
is a functional which is only assumed to obey a certain Lipschitz condition.
Further we assume, in theorem 1, that a function xo as above exists. Under
these assumptions and under certain assumptions about the domain of
definition of F we prove existence and uniqueness of the solution of (0.6)
and convergence of the iteration process. In theorem 2 we specialize our
equation (0.6) to the equation

where /? [x ]~t ~ is a tuple of real numbers containing all informations about
positions and velocities of the particles at the time t and at the respective

Vol. XXXIX, n° 1-1983.



4 E. EDER

retarded times. G is a rather general force function which is assumed to
have a certain fall-off behaviour. Also in this theorem we still have to
make rather restrictive assumptions about the domain of definition of G
and the set of functions in which we look for solutions. We drop these
assumptions in theorem 3 where we assume G to have a fall-off behaviour,
called normal fall-off. The existence of xo is not assumed but proved in
theorem 3. Theorem 4 is the direct application of theorem 3 to our k-par-
ticle-problem (1).
The problem described here has, to my knowledge not been successfully

treated before. Hsing proves in [1] ] an existence and uniqueness theorem
for two particles in one space-dimension with positions and velocities
of the particles given at t = 0. In [2] J Driver proves a similar theorem
for two identical particles, i. e., of equal mass and charge, and half retarded
- half advanced interactions. He assumes that the particles move symme-
trically to each other in one space-dimension and he gives data x(0)=0
and ~(0) = 0. In [3] ] Flume studies a system of two identical particles
moving, in more than one space dimension, according to Diracs equa-
tions of motion. He gives, in the centre of mass-frame, the velocity of one
of the particles in the infinite past, the impact parameter and the time at
which the straight line connecting the two particles is at right angles to
the velocities of the particles in the infinite past. He proves the existence
of a space-symmetric solution for sufficiently large impact parameters.

§ 1. PRELIMINARIES

We consider our problem in a fixed inertial reference frame. The world
lines of the particles are given by specifying the positions of the particles
as functions of the time. If there are k particles we have k functions

... , I 2014~ 

where I is a subset of the set R of reals. As we want to give initial data
in the infinite past we take I to be an interval not bounded from below,
called an initial interval. We denote the number of space dimensions

by n and do not restrict ourselves to n = 3. The functions xl, ..., I -~ [R"

are collected into one function x: I ~ The acceleration of the i-th par-
ticle at the time t depends on the position and velocity of the j-th particle
at the retarded time where f,~ ~ k and denotes the

appropriate light-travel time. Thus we have

(~) The main assumptions and 0 assertions in the different stages of the proof (theorems 1
through 4) are ’ summarized 0 in a table at the end 0 of this paper.

Annales de 1’Institut Henri Poincare-Section A



5EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

We denote the position and velocity of the j-th particle at time

respectively, i. e.,

The prime, B always means differentiation of a function whose domain
of definition is a subset of !R with respect to its argument. We take the
above definitions to hold also for i = j, i. e.,

We combine the so defined numbers into k x k-matrices or k2-tuples :

The triple

contains all informations about the positions and velocities of the particles
at the time t and at the respective retarded times, and also about the light-
travel times

The equations of motion of the particles are of the form

where G : P -~ is a given function and P c IR x x 

DEFINITION 1. - (Solution, unique solution, strictly unique solution).
Let C be a condition imposed on x (e. g. an initial condition for t -~ 2014 oo)

and let I be an initial interval. Then a solution of (0.7) in I with the condi-
tion C is a function x E C2 (I, such that (0.7) (2) and C hold. A solu-
tion x is said to be unique iff it is the only solution of (0.7) in I with condi-
tion C. x is said to be strictly unique iff, for every initial subinterval J of I,
every solution of (0.7) in J with the condition C is the restriction of x
to J. D

In the rest of this section we list a few properties of the functions 
Since in the physical problem the speeds of the particles must be less
than the speed of light, i. e.,  1 for all i, it follows that 
is uniquely determined by ( 1.1 ). We shall make the assumption about x

(2) (0 . 7) is required to hold for all tel. Especially p [x ](t) E P is required for all t E I.

Vol. XXXIX, n° 1-1983.



6 E. EDER

that sup  1 for all i which assures also the existence of 
tEl

(see Lemma 1 ).

LEMMA 1. - Let I be an initial interval and   1 a positive constant.
Let x E C1(I, be such that x’i(t)| ~  for all t ~ I and i = 1, ... , k.
Then, for all t~I and i, j = 1, ... , k,

a) there is one and only one non-negative real number such
that (1.1) holds

where and are defined by (1.2) and (1. 3). If i. e.,

t is an inner point of I, and 4= 0 then

d ) ] is continuously differentiable at t and

e) ] is continuously differentiable at t and

For every s, with ~ ~ ~ and every i, j = 1, ... , k the following two
inequalities hold :

Proof 2014 Let a function fRó ~ [R of the set of nonnegative reals

into the set of reals be defined by

Then ~t is strictly monotonically decreasing and, at least where its value
is positive, continuously differentiable and

This implies the existence of a r &#x3E; 0 such that ~~(~) _ 0 and therefore (a)
and (b). (c) is trivial.
The assertion (d ) is a consequence of the implicit function theorem

(see, e. g. [4 ], p. 206) applied to the map

and o of equation (1.1). (e) follows now immediately from (1. 2).

Annales de 1’Institut Henri Poincare-Section A



7EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

In order to prove ( f ) and (g) let

For s  r  tAr  A, (d) and o (e) hold o with r instead o of t. So if we set

oc~ - (z~~ [x ](r) - z.;[x](r))-~[x](~) for t = i or t = j then

and

then (/) and (g) follow immediately. Otherwise let  := sup A and s :=infA.
Then (/) and (g) hold for t and  instead of t and s and also for  and s
instead of t and s. As is continuous and , ~A we have

which implies that (/) and (g) hold also for  and s instead of f and s.
Thus (/) and (~) hold. D

LEMMA 2. - Let I be an initial interval and   1 a positive constant.
Let x, y E C1 (I, and be such that +x’j(t) | ~  for all t~I and

sup |y’-(t)! I  1. Let t~I and r:=t - 03C4ij[y](t), x := sup |x(s) - y(s)!,
tel ~~~~~ t

Then

Proo~ f 2014 Let c~t be as in the proof of lemma 1. Then

Vol. XXXIX, n° 1-1983.



8 E. EDER

and [x ](f)) = O. Since ’~2014’~ ~ ~ - 1 for all (1, L ~ 0 with (1 ~ 1"

it follows that (a) holds. 
T - (1

Thus (b) follows from (a). (c) is obtained from (a) in the same way. 0
Before we go into the investigation of equation (0 . 7) we prove an existence

and uniqueness theorem for functional differential equations of the more
general type of equation (0.6).

§2 AN EXISTENCE AND UNIQUENESS THEOREM
FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

In this section we prove a theorem stating, under certain conditions,
the existence and uniqueness of solutions to a functional differential
equation

with initial conditions at t = - 00

Here t belongs to a given initial interval I ( « time interval » ) on the
real line and x is a function which maps I into [RN and is assumed to belong
to a suitable set D of functions. F is a given mapping of I x D into [RN.
Notice that x may enter into F(t, x) not only through its value x(t) at the
time t but also, for example, through its value at a « retarded time » or
through the value of its derivative at the time t or at a retarded time. xo is
assumed to be an « approximate solution » to (0.6), i. e., F(t, xo)
must fall off rapidly enough for t -~ 2014 oo. The theorem also gives an
error estimate for an iterative construction of x.

DEFINITION 2 ( h). 2014 If I c IR is an initial interval, r a positive integer
and h : I ~ a continuous function we define a function h : I ~ fl~r

by setting

if it exists. D

Annales de l’Institut Henri Poincaré-Section A



9EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

REMARK 1. - If h : I ~ is a continuous function and f : I ~ ~
is some function then

where the left-hand side means that h exists and h = f and the right-hand
side means that f is differentiable and Iim f(t) = 0. D

REMARK 2. - If h : I and f : I ~ IR are continuous functions
such that f exists and for all tE I then h exists and I 
for all t~I. D

DEFINITION 3. - If I ~ R is an initial interval, v : I ~ IR+
a positive valued continuous function and N a positive integer then we
introduce the Banach space

with the weighted supremum norm

tEl

Here Cb(I, is the set of continuous bounded functions of I into ~N
and v.x is defined by (u-x)(~):=~)’x(~) for tE I. D
For the rest of this section (§ 2) we make the following assumptions and

conventions.
Let I c ~ be an initial interval and let v, w, f : I -~ {~ be positive

valued continuous functions. For any positive integer N we define a Banach
space . II) ) by setting

We assume that the functions v, w and f are such that

We define

Then

Let N be a given positive integer. We write just X for XN. Let D c C1(I, [RN)
be such that x - y E X for all x, y E D and let F : I x D -~ [RN be a map
continuous in the first argument and such that

Vol. XXXIX, n° 1-1983.



10 E. EDER

for all t~I and x, y E D. Further we assume that we have an « approxi-
mate solution » Xo : Let xo E D n C2(I, We define, for every x E D,
a function hx : I ~ IRN by setting

Our assumption about xo is that

an ’

(In the proofs of the theorems 3 and 4 in § 4 we shall prove the existence
of such an xo for the problem described in the introduction, § 0). We define
the set xo + X === { Xo + x | x~X} c C1(I, RN). For x, y~x0 + X we set

(xo + X, d ~ is a complete metric space and (D, d ) is a metric subspace.
Before we state theorem 1 we prove a lemma.

LEMMA 3. - For every xED, hx exists and hx E X. 0

Proof. 2014 Let x~D. We define a function h : I ~ RN by setting

Assumption (2.9) implies

Thus from assumptions (2.4) and (2.5) and remark 2 it follows that h
exists and that hEX. By assumptions (2.11) and (2 .12) hxo exists and

hxo E X. Since hx = hxo -f- h it follows that hx exists and hx = hxo + hEX.
D

Lemma 3 allows us to define a mapping T : (D, ~) -~ (Xo + X, d )
of the metric space (D, d ) into the complete metric space (xo + X, d)
by setting, for all x E D,

LEMMA 4. - Let x e D. Then

Proof 2014 Let x E D. Then x = Tx is, by (2.14), equivalent to hx ,

Annales de l’Institut Henri Poincare-Section A



11EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

which is, by remark 1, equivalent to hx = lim
which is, again by remark 1, equivalent to

By (2.10) this is equivalent to the right-hand side of the ~-assertion of
lemma 4.

Finally we define a positive real number D

and the closed ball B with centre xo and radius p in the complete metric
space (xo + X, d ) :

THEOREM 1. - T is contractive with the contraction factor ~,, i. e.,

T maps B n D into B, i. e.,

If we assume in addition that

and that D is closed in (xo + X, d ) (2 . 20)
then T has one and only one fixed point x and we have

and for all nonnegative integers r

x is the only twice differentiable element of D which solves the functional
differential equation

with the initial conditions

Proof - In order tQ prove that T is contractive let E D. We define

a function h : I -~ f~N by setting

Vol. XXXIX, n° 1-1983.



12 E. EDER

Assumption (2.9) implies

By definition (2.10), h = hx - hy. Thus, by (2.14), remark 2 and (2 . 7),

So (2.17) holds.
For x E B n D it follows from (2.17), (2.14), (2.16) and (2.15) that

So (2.18) holds. /. - . 
~r ~ , 1 / H 1 Y - Lr, i. v. 1 JL 1r L .

Now let us assume (2.19) and (2 . 20). Then B n D is closed in the complete
metric space (xo + X, d ) because Band D are. Thus the restriction T IBnD
of T to (B n D, d ) is a contractive map of a complete metric space into
itself and has therefore, by Banachs fixed point theorem, one and only
one fixed point x and (2.21) and (2.22) hold. Since T is contractive, x is
the only fixed point of T. The last assertion of theorem 1 follows now from
lemma 4. 0

§ 3 . AN EXISTENCE AND UNIQUENESS THEOREM
FOR RETARDED DIFFERENTIAL EQUATIONS

In this section we apply theorem 1 to the special case where x enters
into F(t, x) only through its value and the value of its first derivative at
the time t and at the retarded times, i. e., through p [x ](t ). For the rest
of this paper we assume that n and k are fixed positive integers.
Throughout this section (§ 3) we assume that J is a given initial inter-

val, that Xo E C2 (J, is a given function and that c 1 is a given positive
constant.

If I is an initial subinterval of J and x : I -~ then we say that x

is c1-close to xo iff x is differentiable and

Let A c IR x x be a closed set such that

for all initial subintervals I of J and all functions x : I -~ 

(3 1)which are c1-close to xo it follows that p [x](t) E A for 

Annales de l’Institut Henri Poincaré-Section A



13EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

Further we assume in this section that ~  1 is a positive constant such that

Let c be a positive constant and let G : A -~ be a continuous func-

tion obeying the Lipschitz condition

and the fall-off condition

We assume that x~ has the same fall-off behaviour :

We want to treat equation (0.7) by applying theorem 1. We shall see

(lemma 5) that (3.2) and (3.3) guarantee that (2.9) holds where

and v, wand fare chosen suitably. (3 .1 ) is used in the proof of (2 .19).
For every function x : J -~ we define a function hx by setting

for all t E J for which it exists.

Finally we assume that xo « solves the retarded differential equation (0.7)
approximately », i. e.,

and

THEOREM 2. - There is an initial subinterval I of J in which the retarded

differential equation

with the initial conditions

Vol. XXXIX, n° 1-1983.



14 E. EDER

has a strictly unique solution x. x is obtained from xo by an iteration process
according to theorem 1 and the error estimate of theorem 1 is also valid
here if we choose v(t ) :=1 and w(~) := 2014 t. D

Before we go into the proof of theorem 2 we first prove a lemma :

LEMMA 5. - Let I be an initial subinterval of J and let x, y ~C1 (I, 
be such thatp[x](t)EA for all t~I and

Then, for 

where

Proof 2014 From (3 . 3) we have

From (3 . 2) and p [x](r) E A and p [ y ~~t ) E A it follows that ~ ,u and
! for Thus lemma 2 implies that

and

where a, ~i and v are as defined in lemma 2. These inequalities together
with the assumption about x’ yield immediately the asserted inequality. 0

~’roof. of theorem 2. := sup + sup ( ~ 
f~J t~J

Then ~  Cl by (3.8).
Let I be any initial subinterval of J such that

In order to apply theorem 1 we have to define the functions v, w,/: I ~ [R~:

Annales de 1’Institut Henri Poincaré-Section A



15EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

Let

Then 1 - II f II ~ &#x3E; ~ . Thus (2 . 4), (2 . 5) and (2 . 6) hold and, with
Cl

Defining p as in ( 2.15 ) /? := 201420142014 xo~ we have

Let

and let F : I x D ~ IRN be defined by

Obviously, lemma 1 (/) and (3 . 2) imply that F(., x) is continuous. The
inequality (2.9) follows from lemma 5.
Next we have to prove xo E D n C2(I, ~). We have xo E by

assumption (for simplicity of writing we use, not quite correctly, the sym-
bol xo for the restriction xo|I of xo to I in the proof of theorem 2). xo E D
follows from assumptions (3 .1 ) and (3 . 5).

Obviously, for all x~D and t E I, the as defined in (3 . 6) exists and
is the same as the hx(t) as defined in (2.10), (2 .11 ) and (2.12) follow from
(3.7) and (3.8).
To prove (2.19) let x E B n D. We have to prove Tx E D. By theorem 1,

(2.18) it follows that Tx E B, i. e.,

by (3 .11), Tx is cl-close to xo and, by (3.1), p [Tx ]~t) E A for 
From (2 .14) and (3.6) it follows that

Thus by (3 . 4) we have |(Tx)"(t)| ~ c |t| and hence TxeD.
In order to prove that D is closed (2 . 20) let (.v) be a sequence in D which

Vol. XXXIX, n° 1-1983.



16 E. EDER

converges in (xo + X, d ) to some limit x. By (3 . 2) and (3 .12), 
and therefore [x’j(t)| ~  for all t~I açd j ~ k and every natural number l.

Thus, by lemma 2,

By (3.12), for all 1.. Since we have assumed that A is closed

we have p[x](t)EA. Thus xED. It follows that D is closed.
By theorem 1, there is one and only one twice differentiable x E D which

solves the equation (0 . 6) with the initial conditions (2 .1 ). Equation (0.6)
is in our case the same as equation (0 . 7) if x E D. If some function x is

a solution of (0 . 7) then, obviously, p [x ](t ) must lie in the domain of defi-
c

nition of G, i. e., p [x ](t )EA for t~J and, because of (3.4),|x"(t)| ~ c |t| for

all t~I. Hence for solutions x of (0 . 7) the property xED is equivalent
to x - Xo E X. So the property xED strengthens the initial conditions (2 .1)
to (3.9). So there is a unique solution of (0.7) in I with the initial condi-
tions (3.9). The strict uniqueness follows from the fact that the inequa-
lity (3.10) and therefore the whole proof of theorem 2 including the
uniqueness of the solution is valid for any initial subinterval of I as well
as for I and from the fact that a restriction of a solution in I to an initial

subinterval of I is again a solution. D

§4 THE SCATTERING PROBLEM

In this section we apply theorem 2 to the scattering problem of elec-
trically charged particles with initial conditions in the infinite past. We
assume that the motion of the particles is governed by the velocity- depen-
dent parts of the mutual retarded Lienard-Wiechert fields. We shall prove
existence and strict uniqueness of the solution and provide an iterative
construction.

Let n and k be given positive integers. We make a few definitions first :

P is the domain of definition of the function G in equation (0.7). We shall
apply theorem 2 to the restriction of G to a closed subset A of P. For a

triple p = (t, z, v~ E P we define the numbers

Annales de Poincare-Section A



17EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

For positive numbers  1 and ~ we define the set

DEFINITION 4 ( « normal fall-off »). 2014 We say that a function

has normal fall-off iff, for all positive ,u  1, there are positive constants c and

ðo such that, for alt ~ ~ ~o and for andp=(t, z, 
the following inequalities hold :

In this section we shall investigate the set of solutions of the equa-
tion (0.7) where G : P -» (~n)k has normal fall-off (4). For this purpose
we shall make use of theorem 2. In order to do this we have to find a func-
tion xo which solves (0.7) « approximately ». We can get such a function xo
by first observing that, for any solution x of (0.7) for which

exists, a double integration of (0.7) yields

Let

Of course, if the distances between the particles grow at least
linearly in - t for t -~ 2014 00 and their speeds are bounded away from the
speed of light. A very rough approximation to x is the function a(t ) := z~ _ ~ f,
and we shall see that the right-hand side of equation (4 . 7) with p [jc ] replaced

] serves as a good candidate for xo if E V. This motivates the

following abbreviation : Let to be an arbitrary but fixed negative number,
e. g., to - 1.

e) It would suffice to require a Lipschitz condition for G.
(4) As we shall see (lemma 9) the function G has normal fall-off in the case of our pro-

blem described in the introduction.

Vol. XXXIX, n° 1-1983.



18 E. EDER

For every function G : P -~ with normal fall-off and every 
and y E let

where a(t):==r-~.
We have

In the physical problem described in the introduction we look only
for solutions of (0.7) for which the system of particles is in an unbound
state in the infinite past. So we make the

DEFINITION 5 ( « initially unbound » functions). 2014 Let I be an initial
interval. A differentiable function x : I -~ is said to be initially
unbound iff

u

REMARK 3 ($). 2014 A function x e C1(I, is initially unbound iff

u

THEOREM 3. 2014 Let G : P ~ have normal fall-off. Then, for every
v _ ~ E V, y there is an initial interval I such that there is a strictly
unique solution x = x [v _ ~ , y ] of the equation

in the interval I with the initial conditions

For x it even holds that

Every initially unbound solution of (0.7) is such an x[r-~,y] with some
unique v _ ~ E V and y E 

(5) This follows directly from Lemma and (1.5).
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19EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

x is obtained in the following way :
Let xo be the function 7] or any other C2-funetion obeying the

conditions

For every function x : I ~ we define (6)

where it exists.
Then the function x = x [v _ ~ , y ] is given by

There élre positive constants 03BB  1 and p (which may depend on v-~
and r) such that the following error estimate holds :

for all nonnegative integers r. D
As part of the proof of theorem 3 we prove the following lemma :

LEMMA 6. - Let G have normal fall-off. Then every initially unbound
solution x of (0.7) obeys (4.15) and (4.17) with some v-~ E V and y E (Rn)k.

D
For the proofs of theorem 3 and lemma 6 we adopt the following notation :

If f : I ~ !R~ is a positive valued function then every occurrence of
stands for some g(t) where g : I ~ f~N is such that

Every occurrence of ?(/(t)) stands for some g(t) where g : I ~ [RN is such
that
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REMARK 4 (’). 2014 If G has normal fall-off and x and y are initially unbound
functions then

Proof lemma 6. 2014 Let x be an initially unbound solution of (0.7).
Then, by remark 4 and equation (0.7),

By integration it follows that v _ ~ :- lim x’(t ) exists and that
t-+ - 00

Thus x’(t ) - a’(t ) = 0( t ~ 1-1) and, by integrating again,

Since T [a ](t ) = 0( follows from remark 4 and Lemma 2 that

Let

This exists and from (4. 7) and (4.9) it follows that

So also (4.15) holds. D
Next we prove a proposition about the behaviour of x0 in the infinite

past and the assertion that xo solves (0.7) « approximately » :

LEMMA 7. - If xo is as assumed in theorem 3 then there is a positive
constant c 3 and a negative constant t 1 such that

and

and there is an initial interval J such that, with hxo : J ~ as defined
in (3 . 6),

(’) This follows immediately from remark 3.
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21EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

and

Proo~ f 2014 By remark 4 we have, with a(t) := 

By integrating this equation twice and by using the equations (4. 9), (4.19)
and (4.18) we get

from which follows the first part of lemma 7. Because of lemma 2 it also
follows that

and hence, by remark 4,

From definition (4.9) it follows that

From the last two equations and definition (3.6) we get

We integrate this equation twice and make use of (4 .19) and (4.18) to obtain

which proves the remaining assertions of lemma 7. D

LEMMA 8. - Let I be an initial interval and let Io be an initial subinter-
val of I. Let and let x, y : I -* be two solutions
of(0.7)such that sup  1 and sup I  1 for i ~
Th en x = y. []

Proo, f: 2014 Let I1 be the largest initial subinterval of I such that 
Assume that 11 #- I. Then let t1 :==supli. We have t1~I and therefore
~ [x](tl)~ P [Y](t~) E P.
Thus  for all i, ~ ~ with i ~7.

Since 03C4[x] and r[y] are continuous (as we know from lemma 1 ) there is
a t2 &#x3E; t 1 such that  t 1 n  t 1 for t 1 ~ t  t2

j. Let I2 := {  t2 }, Then ~I1 1 and thus
= for t~I2 and i ~j. Thus from ( 1.1 )

Vol. XXXIX, n° 1-1983.



22 E. EDER

we obtain as a function of x(t ) : = (~ ~(0) where
and similarly we obtain and

as functions of x(t ). Hence it follows from (0.7) that x|I2 obeys
an ordinary (and non-retarded) differential equation. Since we also have
w = y|I1 it follows from the same argument that y|I2 obeys the same ordi-
nary differential equation. From the uniqueness theorem for ordinary
differential equations follows x 112 = y 112 in contradiction to the maxi-

mality of I1. D

Proof of theorem 3. 2014 Let G : P ~ (Rn)k have normal fall-off and let

v _ ~ E V, y E (as assumed in theorem 3). We want to apply theorem 2
with the restriction of G to a suitably chosen set A instead of G. Before
we can do this we have to choose positive constants and c, an initial
interval J and a closed set A such that   1 and (3.1), (3.2), (3. 3), (3.4),
(3.5), (3.7) and (3.8) hold.

First we choose Cl := 1. Let C3 and tl be as in lemma 7 and let

By lemma 7, C2 &#x3E; 0 and thus 0  ,u  1.
Let 5o be as in definition 4 ( « normal fall-off »). We take as our initial

interval J the intersection of the initial interval J of lemma 7 and the initial
interval

From lemma 7 it follows that (3.7) and (3.8) hold. We define

Then A is closed. (3.1) holds because if x is C1-close to xo then

and similarly

and thus p[x](t)~A. 
1)

From the definition of C2 it follows that

. 
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Thus (3.2) holds. From the first part of lemma 7 follows

for any (t, z, v) E A and i, j  k. From the definition of A we have

Hence f Zii - zi~ f ~ c3.1 f t I. Thus

Now let /? == {t, z, v) E A, p = (t, z, v) E A and ~ := ~3 ’~ Then p, p E P ,~
and ~ ~ ~o.

Since G has normal fall-off there exists a positive constant c which does
not depend on p and p such that (4 . 5) and (4 . 6) hold. Because of 03B4(p) ~ 03’ I
and because of (4.20) it follows that there also is a (different) positive
constant c such that (3.3), (3.4) and (3.5) hold.
By theorem 2, applied to the restriction of the function G to the

set A, there is an initial subinterval I of J in which the retarded differential
equation (0.7) with the initial conditions (3 . 9) and with the additional
condition p [~-](~) E A for all t in the domain of definition of x has a strictly
unique solution x.

If now y is any solution of (0.7) defined in an initial subinterval of I
and obeying the initial conditions (3.9) then p [y ](t) E A for sufficiently
small t (the proof is analogous to the proof of (3.1)). Thus it follows from
the strict uniqueness of x that there is an initial subinterval of I in which x
and y coincide. By lemma 8, y is a restriction of x. So we have proved that
there is a strictly unique solution x of (0.7) in I with the initial condi-
tions (3.9). From (4.18) and (4.24) it follows that (3.9) is equivalent to
(4.15) /B (4.17). Since every function x which obeys (4.16) is initially
unbound it follows from lemma 6 that, for solutions x of (0.7), it holds
(4.15) /B (4.16) ~&#x3E; (4.15) /B (4.17). So we have proved the first part of
theorem 3. All the other assertions of theorem 3 follow directly from lemma 6
and theorem 2. D

In the case of our scattering problem we have n = 3 and we have given
real numbers m 1, ... , mk &#x3E; 0 and q 1, ...,~e[R representing the res-

pective masses and electric charges of the k particles. For p = (t, z, v) E P
and i  k the i-th component G(p)i of G(p) is given as a sum of k - 1
terms of the type of the right-hand side of equation (0.1) representing
the contributions of the k - 1 other particles :
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where the contributions Ei~ and Bt~ of the velocity-dependent parts of the
electric field and of the magnetic induction at the i-th particle coming from
the j-th particle are given as in (0.2) and (0.3):

DEFINITION 6 (« truncated equation of motion » ). 2014 If G : P --&#x3E; 
is the function defined by (4 . 25), (4.26) and (4 . 27) then we say that (0.7)
is the truncated equation of motion for a system of k particles with res-
pective masses and electric charges q 1, ... , qx . D

THEOREM 4. - Assume h = 3. Let ..., mx &#x3E; 0 and ..., qk~R.
Then there is a function/: V -~ (~3)x such that for every v _ ~ E V, y E 
there is an initial interval I in which the truncated equation of motion for
a system of k particles with respective masses ml, ..., mx and electric charges
q 1, - ..., qx with the initial conditions

has a strictly unique solution x = x [v _ ~ , y ].
For x it even holds that

Every initially unbound solution x is such a solution ~[u-~,y] ] with
some and x is obtained by an iteration process, as in
theorem 3, with

and the error estimate of theorem 3 holds. D
For the proof of theorem 4 we first have to prove

LEMMA 9. - The function G defined by (4.25), (4.26) and (4.27) has
normal fall-off. D

Proof. 2014 Let  and 03B4 be positive real numbers such that   1. Let

p = (t, z, v) E We define |zii - I for i ~ j. Then for
i ~ j and for all f~ ~ k. In order to obtain an estimate for I
we first estimate the expression for Ei~ given in (4.26):
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Because of (4.27) we thus have

Thus (4. 5) holds if we choose c ~ v. A similar simple calculation shows
that there is a c ~ v such that (4.6) holds for all 5 &#x3E; 0 and all1p = t z, 1v) E P
and p D

Proof of theorem 4. 2014 We want to apply theorem 3. So we calculate the
function ] defined in (4 . 9). In order to do this we have first
to calculate G( p [a ]( t )). For simplicity we first consider only two particles.
We have to evaluate a from equations (0.1), (0.2) and (0.3) for x = vt
and y = w’(~ 2014 r) y j . Here v and ware time-indepen-
dent. A simple calculation shows

where

If we now sum up all these contributions from the various particles as
in (4.25) we obtain

where

From (4.9) and (4. 30) we get setting to := - 1,

From lemma 9 we know that G has normal fall-off. Let

Now we apply theorem 3, with y replaced by y - and obtain imme-
diately the assertions of theorem 4. D

REMARK 5. - Using the methods developed here we can also treat
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TABLE OF MAIN ASSUMPTIONS AND ASSERTIONS IN THE THEOREMS.

Theorem 1 Theorem 2 Theorem 3 Theorem 4

Equation Functional diffe- Retarded differen- Retarded differential Truncated equa-
rential equation tial equation equation tion of motion

x"(t)=F(t, x) x"(t ) = G(p [x ](t )) x"(t ) = G{p [x ](t )) for a system of
particles

assumed Yes Yes No, proved No, proved and
xo explicitly
calculated

Domain of D c xo + X Set A c P « con- P P

definition Where X Banach taining world tubes
of F(t, . ) space (D de- around the parti-
or G pends on xo) cles» (A depends

on xa)

Conditions F(t, x) - F(t, y)I I G(t, z, 1v)- G(t, z, v) I « Normal fall-off» :
assumed ( 1 2 c
forForG T(B n D) c D I t I 1 2 

G(1p)-G(2p)| ~ c 03B43 z - 2z

D closed + 
t 2 f U - 2vI 

c

| G(t, z, v) I ~ ïtï 
ð2

A closed 1 G(p) I 
conditions (3.1), 

I ~p) - b2
(3.2) for A

Initial con- x(t)=xQ(t)+o(1) x(t)=xo(t)+o(1) x(t)=xG[v_x, y](t)+o(1) 
ditions 

, 1 
1 + ( -t)

and what is hid- 
x~(t ) xo(t ) + 0 - I I I ( 1 B 

+y+o(1)

den in x ~ D (the latter condition 
or I) x’(t)=v-~ + 0(1)

is hidden in x ~ D or v_ ~+0(1 |t|)in theorem 1) I t I

Existence of Yes In an initial subin- In an initial interval In an initial in-

a solution terval terval

proved

Uniqueness Yes In an initial subin- In an initial interval In an initial in-

proved terval terval

Strict uni- No, meaningless In an initial subin- In an initial interval In an initial in-

queness terval terval

proved

Every initially unbound solution obeys
a set of initial conditions with some v _ ~
and y

Annales de l’Institut Henri Poincaré-Section A



27EXISTENCE UNIQUENESS AND ITERATIVE CONSTRUCTION OF MOTIONS

the same scattering problem with an additional time-variable external
electromagnetic field which falls off like r- 2 uniformly with respect to
time and whose gradient falls off like r- 3, also uniformly with respect to
time. We can directly use theorem 3 if we add a (k + 1)-th « fictitious »
particle which always stays at the origin and obeys the equation a = 0
instead of (0.1) and which produces the external electromagnetic field.
We must then assume that the limits of the velocities of the particles are
not only different from each other but also from zero in the frame which
we have chosen.
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