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Section A :

Physique theorique.

ABSTRACT. - We show that the eigenvalues of a Dirac Hamiltonian
with two centers of force converge to those of the Hamiltonians with only
one center of force in the limit as the spacing goes to infinity. We discuss
perturbation theory and show how to estimate the spread of asymptotically
degenerate sets of eigenvalues. The methods are for the most part not
special to Dirac operators.

RESUME. - On montre que les valeurs propres d’un Hamiltonien de
Dirac avec deux centres d’interaction tendent vers celles des deux Hamil-
toniens ayant seulement un centre d’interaction quand la distance de ces
centres tend vers l’infini. On étudie la theorie des perturbations et on montre
comment on peut estimer l’étalement de familles de valeurs propres asymp-
totiquement dégénérées. L’essentiel des methodes n’est pas particulier aux
operateurs de Dirac.

I INTRODUCTION

Consider the operator

(*) Partially supported by USNSF grant MCS 7926408.
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154 E. M. HARRELL AND M. KLAUS

on ~L,2((~3) 14, where To is known as the free Dirac operator, Q is
multiplication (in all spinorial components) by a real-valued, measurable
potential function QM, and al, a2, a3, and a4 == ~3 are the Dirac matrices,
satisfying the commutation relations 03B1i03B1j + 03B1j03B1i = 203B4ij, i = 1, 2, 3, 4. The
vectors a and p stand for (oci, a2, a3) and - In this
note Q(x) is of the form

where R = (0, 0, R). The Hamiltonian (1.1) models the motion of an elec-
tron in the field of two nuclei or positive ions after separation of the time
variable, provided that V and Ware predominantly negative near x3 = 0,
fall off at infinity, and are otherwise reasonable. Some conditions will
be placed on V and W below. We shall denote the operator (1.1) with Q
as in (1. 2) as T(R); various aspects of T(R) have been studied previously [1] ]
[2] ] [3 ], and in particular [2] ] contains a comprehensive list of further
references. Part of the motivation for this note is that in these references
some conclusions about the spectral behavior of T(R) as R -~ 0 or R  00
are based on intuition alone and need to be put on a rigorous basis. In
addition we lay the foundations of a general perturbation theory in Sec-
tion III for the limit R -~ oo and control eigenvalue gaps in Section IV.
We normalize so that m = 1, making the mass gap of T(R) the interval
( - 1.1 ).

II. The main issue in this paper is the behavior of the discrete eigenvalues
of T(R) as R ~ oo . The nature of the limit is described by Theorems 11.2
and II. 3. The restriction to one particle and two centers of force is largely
for convenience; we believe that analogues of most of the theory of Morgan
and Simon for Schrodinger operators hold for Dirac operators as well,
given the techniques described below. Morgan and Simon [5] have shown
that nonrelativistic molecular energy levels in the Born-Oppenheimer
approximation converge to the constituent energy levels as the nuclear
spacing increases to infinity. They rely on the min-max principle, which
restricts them to operators bounded below, which Dirac operators are not,
but we shall replace min-max with a simple lemma in spectral theory due
to Weinhold [6 ] [7 ], which applies to a discrete eigenvalue of any self-
adjoint operator, whether bounded below or not. Moreover, we shall be
able to make simpler commutator arguments because the Dirac diffe-
rential operator is only of the first order.

LEMMA II .1. - (Weinhold) : If A is self-adjoint and 03A6 E D(A),!! = 1,
then A has spectrum in the interval
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155ON THE DOUBLE-WELL PROBLEM FOR DIRAC OPERATORS

where ’

The idea is that the eigenfunctions of the two-center problem can be
used to estimate those of either one-center problem and vice-versa, so
Lemma II. 1 will imply that the eigenvalues of the two operators are paired
up within some small interval, which has vanishingly small width in the
limit. We remark that given n orthonormal trial functions, a simple gene-
ralization of Weinhold’s lemma guarantees that the eigenspace associated
with the interval (2.2) is at least n-dimensional ; this is clear since the proof
of the lemma uses min-max applied to the operator [A 2014 (I)~A~)]~.

THEOREM 11.2. - Let V and W be compact relative to To and suppose that

where x is the characteristic function of the subscripted set. Then the pure-
point part of the spectrum ofT(R) consists of continuous functions Ei(R) ofR;
for any discrete eigenvalue It of To + V(x) or To + there exist eigen-
values Ei(R) such that lim Ei(R) _ It. There are no accumulation points
o, f ’ the discrete point spectra o, f ’ T(R) as R -~ o0 other than the points o, f ’

+ 03C3pp(T0 + W), possibly also including the edges of the essen-
tiat spectrum. The number of functions counting multiplicities, equals
the multiplicity of the limit It if it is in only one of the point spectra 03C3pp(T0 +V)
and 03C3pp(T0 + W), and otherwise equals the sum of the multiplicities of It in
both point spectra.

Rernarks. - 1. The choices open to a discrete eigenvalue of T(R) are to
converge to an eigenvalue of one of the one-center problems; to drop into the
essential spectrum at finite R; or to drop into the essential spectrum asymp-
totically. It can not, for example, approach the wrong value, wiggle around
with no limit, or make an infinite number of passages from one piece of
the essential spectrum to the other (the essential spectrum, as is well known,
consists of the whole real line outside an interval, the mass-gap, in which
there may be bound states).

2. There is nothing special about two centers of force here, except that
we wish to avoid the detailed symmetry analysis of [5] ] for this paper.

3. Relative compactness allows local singularities in V or VV so long
as they are L3. The Coulomb potential just misses this condition, but the
conclusion of the theorem still holds. In (2. 5) below we argue that

(the subscript op will not be written on operator norms when no confusion
will result from its omission) due to compactness of WToB but it also
follows from the fall-off of the unperturbed eigenfunctions as x ~ I ~ oo.

Vol. XXXVIII, n° 2-1983.



156 E. M. HARRELL AND M. KLAUS

Proof. 2014 Continuity: Write

which is unitarily equivalent to

and thus has the same eigenvalues. Given any E &#x3E; 0, E can be chosen
complex and large enough that ~ W(x + 2R)(To -  8, and since

II To(To + V - is bounded as I E I -+ oo, we can also arrange that

by choosing IE large enough. Now let ZR denote the unitary translation
of vectors of H by the amount-R in the coordinate x3, i. e. (ZRf)(x) = f (x + R),
so that + 2R) = The operator

is then norm continuous in R, for ZR is strongly continuous and

W(x)(To - E) -1 is compact. Hence the inverse of (2 . 4),

is norm continuous, which means that its eigenvalues vary continuously,
and so do those of (2. 3).

2014 In the case of the Coulomb potential, by scaling

and translation it is equivalent to consider

and R/R is just a unit vector and is a continuous perturbation; thus
the eigenvalues are still continuous.

Convergence : Since ~A03A6~  8 implies I  I&#x3E; I AI&#x3E; &#x3E;  8 and  ~2,
it suffices to apply Lemma II.1 to

a) Any eigenvalue ~, E 6pp(To + V) U 6 pp(To + W ), for which we must find
a family of trial functions = 1, such that (To + Q -~)Q(R) -~ 0;
and

b) Any of the functions Ei(R), for which we must find a family of trial
functions = 1, such that either 0

or (To + w(x) - 0.

a) For brevity let fR denote the translate ZR f for any vector and

Poincaré-Section A



157ON THE DOUBLE-WELL PROBLEM FOR DIRAC OPERATORS

let BR denote ZRBZ-1R for any operator B on H. Suppose that (To + V)n = 
II = 1; then we take The relevant computation is

by the relative compactness of Wand the weak convergence of

The argument for 03BB E 03C3pp(T0 + W) is the same, mutatis mutandis.
b) Let J E (and depending on R) be such that

and

Then if T(R)P(R) = 

The first term is 0(R ~) and the second -~ 0 by assumption, so

A similar calculation shows that

By the triangle inequality, for any value of R, the norm of either JC(R)
or ( 1 - J)O(R) is at least 1/2. Hence, passing to a subsequence in R if neces-

sary, we may take to be either ( Jl&#x3E;(R)) or ( (1- J)l&#x3E;(R) ) ,Y Y () ,

whichever has a denominator bounded away from zero.
If E(R) had an accumulation point other than an eigenvalue of To + V

or To + W, then the argument just made, applied to another subsequence
so that E(RJ had the accumulation point as a limit, would produce a contra-
diction. The multiplicities add up correctly, because one can make the
same arguments with the n-fold generalization of Weinhold’s lemma,
using an exhaustive finite set of orthonormal trial functions for each of
the (only finitely degenerate) eigenvalues ~, and Ei(R) ; in essence one shows
that the total dimensionality of the perturbed problem is at least the sum
of the dimensionalities of the unperturbed problem, and 
We have thus established that the eigenvalues of T(R) have a kind of

stability allowing possible coalescence and change of multiplicity at R = oo .
The spectral projections fail to converge in norm; however, since

Vol. XXXVIII, n° 2-1983.



158 E. M. HARRELL AND M. KLAUS

and

clearly converge on the functions of D(To) to To + V and To + W res-
pectively, and the resolvents are bounded uniformly as R ~ oo for

z ~ cr(To + V) u a(To + W) by our stability result and the spectral theorem,
a theorem of [9 gives strong resolvent convergence,

and consequently strong convergence of the spectral projections. Indeed,
the double-well problem furnishes an ideal illustration of the distinction
between strong and norm resolvent convergence and their relationship
to eigenvalue stability.

It is possible, on the other hand, to identify a sense in which the pro-
jections converge in norm. Namely, we shall see that if P(R) is the spectral
projection onto some piece of the mass gap for

then ~ P(R) - I --+ 0, where has an additional boundary
condition on the plane {x3 = 0 } analogous to a Dirichlet or Neumann
boundary condition in the Schrodinger case. Of course, P(R) and P(R)x
do not converge separately in norm. We shall develop this idea for use in
Section IV, concerning the case where V and W are symmetric, though
the perturbation theory of Section III will be independent of it. It shows
how the asymptotic eigenvalue degeneracy of, for instance, relativistic H2
corresponds to asymptotic behavior of the symmetry subspaces.

Different choices are available for the boundary conditions. The most
natural choice takes parity into account, but as a consequence treats diffe-
rent spinorial components differently. Let R denote reflection in x3:

and choose the matrices oci so that

if

Annales de l’Institut Henri Poincaré-Section A



159ON THE DOUBLE-WELL PROBLEM FOR DIRAC OPERATORS

then the parity symmetry is expressed as

Now we impose (in a sense to be made precise below) Dirichlet condi-
tions on {x3 = 0 } for the first and fourth spinorial components and Neu-
mann conditions for the second and third (or vice 
The precise operator-theoretic definition of the Dirac operator with this

boundary condition is as follows. The Green matrix for To : (To - z)G = ð
is explicitly known

so the Green matrix for To can be defined by the method of images as

This construction is meant to be conceptually similar to that of the Dirichle
and Neumann Laplacians in [10 ], but the use of a symmetry plane makes
it technically simpler. We let To be the self-adjoint operator with this Green
matrix and observe :

i ~ By comparison with the free operator To and its Green’s function,
it is easy to see that the Green’s function Gx defines a bounded, normal
operator when Z~(2014 oo, 2014 1] u [1, which is self-adjoint for Z real.

if) GX has decoupled action on the half-spaces I+={x3&#x3E;0} and

iii) Denoting the operator corresponding to GX formally as ~To - Z) - 1,
the usual resolvent equation ’

follows from the observations that URG = GUR, U2 = ~ _ ’0, [U,R]=0,
and = 

iv) V, W, and Q = V - R + VVR are still compact relative to i. e. their

products with (T~ 2014 1 ) -1 are compact.
v) To justify regarding (T~ 2014 as the resolvent of an operator To,

it needs to be shown that Ker ((To - r 1~) = {0} [9 ]. But if

r 1~), say, then g = (T° - 
for X3 &#x3E; 0. Since for X3 &#x3E; 0, and
therefore /{x3&#x3E;o}/= O. The argument for I _ is similar.

vi) To is thus a well-defined self-adjoint extension of the minimal ope-
rator I [C~0(R3B{X3 = 0})]4, which, however, is not essentially self-
adjoint.

Let D be the operator (T° - z) - 1 - (Tt - z) - 1. Then a straightforward
Vol. XXXVIII, n° 2-1983.



160 E. M. HARRELL AND M. KLAUS

exercise in noncommutative algebra yields an iterated resolvent equation
for z $ 03C3(T0 + Q) u + Q):

It is easy to see that lim II = 0, by using the exponential fall-off
of the G’s. Now let cø be a contour encircling an interval in the mass-gap,
avoiding the points of 7(To + V) u cr(To + W). A slight variant of Theo-
rem 11.2 shows that the eigenvalues of Tx0 + Q have the same convergence
properties and limits as those of To + Q, so as R ~ oo the contour will
avoid (7(To + Q) u + Q). Then

The term explicitly written is the spectral projection of To + Q(R).
One of the remaining terms is .

because To and To have no eigenvalues in the mass-gap. The other three
integrands are products of bounded operators and Q (R)D, which goes to
zero in norm. This proves the norm convergence :

III. PERTURBATION THEORY

In this section we snow that the perturbation theory of T(R) is up to
errors O(e-aR) for some a &#x3E; 0 identical to that of a pair of independent
single-well Dirac Hamiltonians with well-behaved perturbations. This pro-
cedure is an alternative to the more common argument of performing per-
turbation theory directly on T(R) and arguing the cross terms representing
interactions between the wells away, as in [5 ]. We shall not explicitly write
indices on eigenvalues or always indicate dependence on R, in order to
avoid complicated notation. Thus we write simply where Q is as in Sec-
tion II.
The analysis pivots on a gap formula [77]:

de l’Institut Henri Poincaré-Section A



161ON THE DOUBLE-WELL PROBLEM FOR DIRAC OPERATORS

PROPOSITION III. 1. 2014 Let Q(x; R) = Q(x) for x3  0 (resp. x3 &#x3E; 0) and
Q(x; R) --_ 0 for x3 &#x3E; 0 (resp. x3  0). Let (To + ) = . If

then

The proof of Proposition 111.1 is integration by parts since

- 1. (3.1) also holds for E and  defined by 
2. It is clear from the proof that in the region where we set Q(jc; R) == 0

it could have been chosen largely arbitrary.
Now suppose that and E = E(R) ~ E( (0) as

R ~ 00. Assume first that E( (0) is an eigenvalue (with multiplicity ~) of

To + V but not of To + W. Let R)=Q(jc) for X3 &#x3E; 0 and Q == 0
for X3  O. Since ~ Q - V -R ~op ~ 0 as R ~ 00, perturbation theory tells
us that there are exactly m eigenvalues i (with normalized eigenfunctions
i, f = 1 ... m) of To + Q near E( (0). Let P denote their total eigenpro-
jection. IfP denotes the eigenprojection associated with E( (0) of To + V - R,
then ~  - P~ ~ 0 as R ~ 00.

PROPOSITION 111.2. - For R sufficiently large we can find an eigen
index = f(R) and 8 &#x3E; 0 such that

Vol. XXXVIII, n° 2-1983.



162 E. M. HARRELL AND M. KLAUS

Proof - With the J of Section I argu-
ments of Section I, in fact, II is bounded away from 0 as R ~ oo. In
reasonable cases ~J03C8~ ~ 1 in the absence of a common eigenvalue and
~ 1/)2 if there is a common eigenvalue from a reflection symmetry as
in Section IV.) So -. OasR  oo. Hence 1

by a simple corollary of the spectral theorem (cf. [7J]) and therefore

[ -i 1, too. Thus for some 8&#x3E;0 and i = i(R)
certainly ( ~, ~) ~ &#x3E; 8 for sufficiently large R. To establish (3 . 2), we need

only show that (J03C8,i) differs from {x3&#x3E;0} 03C8.id3x by arbitrarily little

as R ~ oo. Clearly, it suffices to show that

goes to zero. This follows from the Schwarz inequality provided

vanishes as R -~ oo. The latter fact follows from Lemma III . 4 (i) below
and thus Proposition III . 2 is proved.

If E(oo) is a common eigenvalue of To + V, then Proposition III . 2 extends
with only the change that in addition to i(R) the choice of the half-space
x3 &#x3E; 0 or x 3  0 depends on R (recall that either ~J03C6~ or ~ ( 1 - is

bigger than 1 2) ).
LEMMA III . 3. - Suppose E e (-1, 1), and V obeys the ,

assumption of Section I. Then ~ E for all E with 0  8  ~/1 2014E~.
Proof 2014 This is a consequence of the argument of Combes and Tho-

mas [12 ]. We will not repeat the details here, but note that the argument
is simpler for Dirac operators than for Schrodinger operators, for when
one commutes through To in

one picks up only the constant matrix perturbation 
Let for X3 &#x3E; - Rand for X3  -R

(thus QR=ZRQZ-R where Q is as in the discussion preceding Proposi-
tion 111.2). Suppose that and È(R) ~ E( (0), where
E( (0) is an eigenvalue of To + V.

Annales de l’Institut Henri Poincaré-Section A



163ON THE DOUBLE-WELL PROBLEM FOR DIRAC OPERATORS

with C£, De independent of R(O  E  ~/1 - E(oo)~).
Proof 2014 f) Note that ~R obeys

We use (3. 3) to estimate II e~|x|R~ by splitting QR as

and inserting (3.4) into (3.3). One easily obtains the estimate

In the derivation of the second term on the right side of (3. 5) one uses
that!! is bounded independently of R (R large
enough), since E(R) ~ E(oo). Since ~E~{|R|r} ~~ can be made arbitrarily
small (uniformily in R) by choosing r sufficiently large, and ~RR~ ~ C~R~

on account of the (R-independent) boundedness of QR(To + QR - i) -1, (i )
follows.

ii) Write To = (To + QR) - QR, use (i) and estimate I by
introducing ,~r and arguing as in (i).
Lemma III . 4 also implies that the numerator in (3.1) (where ~ is replaced

by a function ~R) as discussed in Proposition III . 2) vanishes exponentially
as R ~ oo. To see this let ~(x) be a Co function with support in -1  x3  1,
~(x3 = 0) =1 and let ~-)==~-+R). Then

where C does not depend on ~R . This follows from the fact that

and the graph norm of To is equivalent to the Sobolev norm. As is easy
see, Lemma 111.4 implies that the right side of (3 . 6) is bounded by const.

)! ~R !!. Thus the numerator of (3 .1 ) can be estimated by the Schwarz

inequality (and translating by - R). The integral ~ ( 2d 2x can

simply be estimated by an R-independent constant, for !! is bounded
independently of R (a consequence of the boundedness of QR(T0 + QR - 
As a result of all this we get.

Vol. XXXVIII, n° 2-1983. 7



164 E. M. HARRELL AND M. KLAUS

THEOREM - With the definitions of Proposition 111.1, for any
E(R) there is a related single-well as in 111.1 such that

In the case where W and V are long-range (say, Coulomb) it turns gene-
rally out that the eigenvalues EI have an asymptotic 1/R expansion. Then
Theorem 111.5 tells us that the actual double-well energies have similar
expansions. Of course, a change of i(R) can then only occur between single-
well energies with identical 1/R expansions. The 1/R expansion has been
dealt with in the context of Schrodinger operators [5] ] [14 ], so we shall
concentrate on its foundations only. The details would become at least
as unpleasant as those of the Rayleigh-Schrodinger series.

Suppose, for definiteness, that E(R) converges to an eigenvalue of To + V,
with an eigenfunction 03C8~ such that (T + V)03C8~ = E(~)03C8~. The limiting
eigenvalue will ordinarily be degenerate because of the parity symmetry,
symmetry under rotation, etc. This is no problem because we will have a
well-defined perturbation problem and the usual procedures of degenerate
perturbation theory can be resorted to, such as projection to symmetry
subspaces.
We have established that the eigenvalues of

differ by an exponentially small amount from those of a related operator
with W2R modified in a more or less arbitrary way for x3 &#x3E; R. Now suppose

n

for X3  R, R), where I An(x, R ) I  const. R - n-1

for all x3  R. Replacement of W b / 2014201420142014, will thus affect eigen-
1

values converging to those of T + V by + 0 (exp ( - ER)) 

Now with a multi le ex ansion of 
1 

W2R can be re laced by

where |Bn(x, R) | _ const. R - n -1 ( 1 + |x|n), affecting eigenvalues of

To + V + W2R to 0(R - n -1 ). The resulting operator is a perturbed single-
well problem with a well-defined asymptotic perturbation theory in the
parameter 1 /R to order R - n -1: each term in the perturbation series is

/1B"
2014 ) times sums of inner products after finitely many applications
R

Poincare-Section A
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of the operators (To + V - z) -1 and integrated over z away from the
spectrum of To + V. according to

Lemma III.3, 03C8~ = e-~|x|03C6~ for some 03C6~ ~ L2, and since is bounded

by for an arbitrarily small 5, Lemma III. 3 implies that all the inner
products entering into the perturbation series as coefficients 
are finite.

IV . EIGENVALUE GAPS
FOR SYMMETRIC POTENTIALS

We conclude with a few remarks about the important special case
where V and W represent two symmetric wells, as in relativistic The

limiting eigenvalue belongs to both To + V and To + Wand the spectral
projections converge to those with mixed Dirichlet and Neumann boundary
conditions we called X in section III. The 1/R-expansion can still be

implemented, as the discussion in section III did not assume that Eoo
belonged only to 6(To + V). However, the pair or cluster of eigenvalues
converging to Eoo will normally be different for finite R. Now suppose
W = (for example, W = V = 1/! jc!). Then

and thus

where the subscripts denote restriction to the symmetry subspaces such that

Such functions satisfy the X boundary conditions of section II, and it
follows from Theorem 11.3 that the eigenvalues ofTo+V.R+WR always
converge in pairs, one + and one - . Also, the phase of a pair of associated
normalized eigenvalues ~+ can be chosen so that

(recall the remarks in the proof of III.2).
But the gap formula (3 .1 a) holds for E + - E- (with Q = Q), so

which is exponentially small because of Lemma III.3c.

Vol. XXXVIII, n° 2-1983.
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Note. 2014 After the preprint of this paper E. B. Davies has found an alter-
native approach to Theorem 11.2 for Schrodinger operators, which also
works for Dirac operators [16 ].
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