
ANNALES DE L’I. H. P., SECTION A

EDWARD B. MANOUKIAN
Lower bounds to Feynman integrals and class Hn

Annales de l’I. H. P., section A, tome 38, no 1 (1983), p. 37-47
<http://www.numdam.org/item?id=AIHPA_1983__38_1_37_0>

© Gauthier-Villars, 1983, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1983__38_1_37_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


37

Lower bounds to feynman integrals
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Vol. XXXVIII, n° 1, 1983,

Section A :

Physique théorique, ’

SUMMARY. - Lower bounds to the absolute value of Feynman inte-
grands are derived by introducing in the process a class of functions called
the Hn functions defined in terms of tower power asymptotic coefficients.
If the so-called power counting criterion is satisfied, then it is shown that
the integrals of the absolute value of the integrands belong to such a class Hn
(with a different n) as well. When a certain condition on the lower power
asymptotic coefficient is satisfied then usual evaluation of such integrals
as iterated integrals may lead to ambiguous and non-unique results. The
above results hold rigorously for scalar theories and up to an « almost
surely » restriction in the general cases. This analysis is expected to have
applications in the self-consistency problems of non-renormalizable theories.

RESUME. - On obtient des bornes inferieures pour la valeur absolue
des integrands de Feynman en introduisant dans la demonstration une
classe de fonctions, appelee la classe Hn, definie en terme de coefficients
asymptotiques inferieurs. Si Ie critere du « comptage des puissances »
est satisfait, l’intégrale de la valeur absolue des integrands appartient aussi
a la classe Hn (avec un n different). Quand Ie coefficient asymptotique infe-
rieur satisfait un certain critere, on demontre que la methode habituelle
d’evaluation de ces integrales comme integrales iterees est ambigue et

donne des resultats non uniques. Les resultats obtenus sont applicables

(*) This work is supported by the Department of National Defence Award under
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38 E. B. MANOUKIAN

rigoureusement aux theories scalaires, et « presque surement » dans les
cas generaux. Cette analyse devrait avoir des applications dans Ie pro-
bleme de consistance des theories non-renormalisables.

1. INTRODUCTION

The basic ingredient in Lagrangian field theory is the so-called Feynman
integral. Basic computations done in quantum field theory involve the
evaluation of Feynman integrals as iterated integrals. A detailed knowledge
of the structure of Feynman integrals is extremely useful not only for
evaluating « elementary » type of such integrals but also to study the
asymptotic behaviour [7] ] [3] ] in various regions of more complicated
type of Feynman integrals which cannot be evaluated by elementary and
direct means in closed forms. To this end the so-called class Bn functions [4] ]
property [5] ] has been very useful. Most studies and rules dealing with
consistency problems related to Feynman integrals are based on derivations
of upper bound values of Feynman integrands and integrals and hence
generally lead to sufficiency conditions for the existence of the corres-
ponding integrals and for the correctness of the results embodied in the
underlying analysis. Unfortunately the formulation of necessary condi-
tions for existence problems in this analysis is not always possible but
is certainly advisable. In this paper we want to take a modest step in this
latter direction. To this end we introduce a class of functions called the
class H" of functions and we show that Feynman integrands belong to
such a class by deriving in the process tower bound values to the absolute
value of the integrands. If the so-called power counting criterion [6 ]
is satisfied then we show that the integrals of the absolute value of the
integrands belong to class Hn (with a different n) by deriving, inductively,
lower bounds to the integrals. The importance of deriving lower bounds
to Feynman integrals was already emphasized over twenty years ago [6 ].
As a corollary to our basic theorem we give a criterion, which if satisfied,
shows that the evaluation of Feynman integrals as iterated ones may
generally give ambiguous and non-unique results. This is quite important
as Feynman integrals are treated as iterated integrals. The class H" of
functions is defined in Sect. 2. In Sect. 3 we establish the class Hn property
of Feynman integrands. Our basic results related to the integrals of the
absolute Feynman integrands are given in Sect. 4. The above results hold
rigorously for scalar theories and up to an « almost surely » restriction
(Sect. 5) in the general cases. It is expected that our analysis will be useful
in establishing rigorously that certain field theories are non-renormalizable.
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39LOWER BOUNDS TO FEYNMAN INTEGRALS AND CLASS H"

2. DEFINITION OF CLASS Hn

Consider two functions f and g of k real variables xl, ..., xk. If we may
find real positive constants bl &#x3E; 1, ..., bk &#x3E; 1, and we may find a strictly
positive constant C independent of x1, ...,xk, such that for

we have

then we denote the relation (2.2) as

and use the notation x 1 ~ I ~ oo, ...J ~ ~ -~ oo, independently.

DEFINITION OF CLASS Hn. - A function f(P) with P E [R" is said to

belong to a class H", if and only if, for each non-zero subspace S c (Rn
there exists a coefficient (a real number) a(S), such that for each choice

independent vectors L 1, ..., Lk and a bounded region W in [Rn
we have

where

and CeW. By definition, by the condition (2 . 4) it is meant that there
exist real numbers b 1 &#x3E; 1, ..., bk &#x3E; 1 such that 171 1 &#x3E; b 1, ..., ~k &#x3E;_ bk.
For a subspace S spanned by a set of independent vectors L 1, ... , Lr
we use the standard notation : S = { L1, ...,L,.}. The coefficients 
will be called tower power asymptotic coefficients of f.

3. CLASS Hn PROPERTY OF FEYNMAN INTEGRANDS

A Feynman integrand has the very general structure in the form :

where

Vol. XXXVIII, n° 1-1983.



40 E. B. MANOUKIAN

with K denoting the set of integration variables, P denoting the set of the
components of independent external momenta of the graph in question,
and  denotes the set of masses available in the theory, and we assume
that the // &#x3E; 0 are kept fixed for i = 1, ... , p. In (3.1) we have adopted
the ie prescription first introduced in [7]. Y is a polynomial in the elements
in (3 . 2), in ~, and may be even a polynomial in the ( i)-1 as well. The poly-
nomial dependence of Y on the ( ui) -1 is well known for higher spin fields.
Each ,u~ in (3.1) coincides with one of the elements in the set ,u. The Q/s
is (3.1) are of the form :

The Euclidean version of (3.1) is defined by

by replacing the Minkowski metric by the Euclidean one :

and setting E = 0 in (3 .1) In particular Q E = Qi + QP2 denotes the Eucli-
dean version of Qi - Q?2. Up to Sect. 5 we restrict our analysis
to scalar theories, and in Sect. 5, we explain how all of the results proved
in the paper hold true under an « almost surely » restriction to be discussed
later. Accordingly up to Sect. 5, y and yE in (3.1) and (3.4), respectively,
will be taken as constants.

Let 
-

and suppose that the elements in the sets K and P may be written as some

linear combinations of the (standard) components of the vector P. Suppose
that P is of the form :

k

where 1  ~ ~ 4 n + 4m, L 1, ..., Lk are k independent vectors in ~~~
and C is confined to a finite region in f~4~ + 4m. Since the (4n + 4m) inde-
pendent variables in the sets K and P may be written as some linear combi-
nations zi, i = 1, ... , 4n + 4m, of the components of the vector P, we
note that the zt depend on the parameters of 11 1, ..., nk, i. e.,

Annales de l’Institut Henri Poincaré-Section A



41LOWER BOUNDS TO FEYNMAN INTEGRALS AND CLASS Hn

with

We introduce vectors Vi, ..., V4L in such that

where

The correctness of (3 .9) follows from the fact that the QT are some linear
combinations ((3.3)) of the z~ ((3.8)), and the latter in turn are some linear
combinations of the components of the vector P E .

We first state the following lemma.

LEMMA. Let 0, ...,~ &#x3E; 0, ai E [Rl (finite with arbitrary signs),
with 0, and consider the expression

Then we may find constants b1 &#x3E; 1, ..., bn &#x3E; 1, Mo &#x3E;_ mo &#x3E; 0, such that
for x 1 2 b ~ , ..., xn we have

where

A proof of this lemma is given in [5 ].
Suppose that for j fixed with value in the set [1, ..., 4L ] :

Then we may write

where cj = We may also rewrite (3.14) as

From an analysis similar to the one in [5] we may then find constants
b 1 &#x3E; 1, ..., bk &#x3E; 1, by the application of the above lemma, such that for

we have the following inequalities

where C1 and C2 are strictly positive constants. The exponents (-03B1r)

Vol. XXXVIII, n° 1-1983.
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coincide, respectively, with the degrees of + with respect to

the parameters and 0 are 
" of the form:

where = 1, if and only if, for the fixed t in question :

and/or

and = 0 otherwise. The conditions in (3.19) may be equivalently stated
as having at least one of the vectors V4(Z-1)+ 1, ..., V4(Z-1)+4, for each l,
not orthogonal to the subspace {L1, ...,Lr} and we may rewrite ar
in (3.18) as

Finally by using the inequality [7 ],
1

we see from the of the inequality in (3.17) that

where Ai, A2 are some positive numbers, thus establishing the fact that I
and IE belong to class Hn. The cases when Y and YE are, in general, not
constants will be taken up in Sect. 5.

4. Hn PROPERTY OF THE INTEGRALS :
SCALAR THEORIES

Consider a one dimensional integral

where f (P + Ly) E Hn, and

Annales de Henri Poincaré-Section A



43LOWER BOUNDS TO FEYNMAN INTEGRALS AND CLASS H"

with Li, ..., Lk k independent vectors. As in [6] we niay write the infinite
interval ( - as the union of a finite number of intervals. These inter-
vals may be so chosen as they do not overlap [8 in the following form :

where the intervals = 0, 1, 
and are of the form :

for some 1 ... ik) &#x3E; 1. The parameters fi, ... , i~ vary over a finite set
of integers.
On each of the intervals through (4 . 4)-(4 . 6) we may then use the class Hn

property of f Suppose that is locally integrable. Then on each of the
intervals J~...~y= 1, ... , k, the integrals over them give finite

contributions since these intervals are bounded. On the intervals J~ we have

Accordingly for C 7~ 0, the integral on the left-hand-side of (4.7), and
hence also the integral in (4.3), diverges if

On the other hand if

then the integral on the right-hand-side of (4. 7) By an analysis
similar to the one in [7] we obtain in this case

r ~:

Vol. XXXVIII, n° 1-1983.
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with A(I) denoting the projection operation on a complement E of I in [R",
disjoint from I, along the subspace I [6 ] [9 ] : tR" = I EB E. dim S denotes
the dimension of the subs pace S. Note that in (4.11) we have min rather

A{I)S’ = S
than max . We note that the relation (4 . 9) may be equivalently rewritten as

since I itself is the only non-zero subspace of I.
In the sequal (x(S) will denote ordinary power asymptotic coefficients

of f [6 ]. We denote by (Xj tower power asymptotic coefficients of the inte-

gral | /! i = ! f|. The symbol / will denote any of the Feynman integrands I,
IE. ~

THEOREM 4 . 1. 2014 7~

then | I f II E where dim I = 4n, with lower power asymptotic coefficients:

The proof is by induction. As an induction hypothesis suppose that
the theorem is true whenever dim I  4n. Let 4n - 1 = k’. Then we prove
that the theorem is true for dim I = k’ + 1. First we recall the situation
for dim I = 1. Quite generally we note from (3.17) that we always have

Hence the condition (4.13) implies (4.12) and therefore the theorem is

true for dim I = 1.
In general let I = 11 EB I2, where dim I2 = k’, dim I1 = 1. We note

that (4.13) implies from (4.15) that

and

for i = 1, 2. Eq. (4.15) also implies from (4.17) that

Annales de l’Institut Henri Poincaré-Section A



45LOWER BOUNDS TO FEYNMAN INTEGRALS AND CLASS Hn

The power counting criterion (4.13) ((4.16)) implies that we may inte-

grate ~|f as in 1 (11 fI since its value is unique by Fubini-Tonelli’s
Theorem [10 ]. According to the induction hypothesis we have

I f|I2 E H4n+4m-k’ with lower power asymptotic coefficients:

where 1 =I~3E~S’c=E2. Eq. (4.16) in particular implies that

where 11 == { L }. On the other hand we may bound the expression on the
extreme left-hand-side of (4.20) from below by 

.

where we have used the relation in (4.19). Since dim I1 - dim {L} = 1

and (4.21) is true, we may use our previous analysis in one dimension to
conclude; by using in the process (4 .13), that :

with lower power asymptotic coefficients

min { min (4 . 23 )-* ~ 

or

This completes the proof of the theorem.

COROLLARY. Suppose that

for some I2 c 1. If there exists a one dimensional subspace I1 of I disjoint
from 12 such that

r~~T~! 11 ~ n rd ~~~

then the following iterated integral

diverges.

Vol. XXXVIII, n° 1-1983.
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The proof of the corollary follows immediately from the above theorem.
The corollary leads to questions of ambiguities in the evaluation of the

integrals as iterated integrals and hence it embodies powerful results.
In the next section we study the generalization of our results to the cases
when Y and YE in (3.1) and (3 . 4), respectively, are not necessarily constants.

5. EXTENSION TO THE GENERAL CASES
AND APPLICATION

In this section we discuss how the analysis carried out in the bulk of
the paper is modified to treat the situations when Y and YE in (3.1) and
(3.4), respectively, are not constants. An application of the main analysis
will be then pointed out.

Since Y and YE are some polynomials in Zi, ... , z4n + 4m ~ as defined

in (3 . 8), we may then find, in general, positive constants D1, D 2 such that

Accordingly unless the polynomials Y, YE vanish for vectors P as given
in (2. 5) by some detailed cancellations we then see that I and IE « almost
surely » belong to class H4n + 4m~ in the general cases as well. The proof
of Theorem 4.1, given in Sect. 4, then remains intact in such cases except
that the statement of the theorem should be slightly modified by saying
that if (4.13) is true then almost surely The same conclusion

is reached for the corollary of Sect. 4, where it should be stated that under
the conditions of the corollary, the iterated integral in (4. 27) almost surely
diverges. The almost sure divergence as opposed to a sure divergence
follows from the fact that a « miraculous » cancellation may occur which
« makes » a constant C in (2.2) equal to zero for 

Non-renormalizable theories in the strict sense are generally defined
as those theories in which the naive degree of divergence associated with
Feynman graphs increases with the order of perturbation theory. As the
present paper develops lower bounds to Feynman integrals, the analysis
may be useful in the study (at least for scalar theories in Euclidean space,
prior to applications of subtractions) of the non-existence of a certain
class of Feynman integrals as iterated integrals. This ultimately may provide
a test to discriminate, rigorously, between renormalizable and non-renor-
malizable theories in the strict sense. In a forthcoming report the analysis
of this paper will be applied to study such self-consistency problems related
to non-renormalizable theories.
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