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A completeness theorem
relative to one-dimensional Schrödinger equations

with energy-dependent potentials (**)
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Section A :

Physique théorique, ’

ABSTRACT. - The one-dimensional Schrodinger equations :

are considered as matrix eigenvalue equations :

We prove that if x), resp. x), is a particular vector eigen
function of H resp. H* (the « adjoint » operator of H), then all functions
of a certain class ~ can be uniquely expanded through x) and x).

RESUME. - On considere les equations de Schrodinger a une dimension :

(*) Physique Mathematique et Theorique, Equipe de recherche associee au C. N. R. S.,
n° 154.

(**) This work has been done as part of the program « Recherche Cooperative sur
Programme n° 264 : Etude interdisciplinaire des problemes inverses ».
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16 C. JEAN

ecrites sous la forme d’équations matricielles aux valeurs propres :

Nous montrons que si x), resp. x), est une fonction propre
particuliere de H, resp. de H* (1’operateur « adjoint » de H), associee a
la valeur propre ( ± k), alors toute fonction vectorielle appartenant a une
certaine classe ~ peut etre développée de façon unique a 1’aide de x)
et de 

1. INTRODUCTION

We deal with the one-dimensional Schrodinger equations :

which It is easy to write both, in a single expression :

where u(x) and q(x) belong to a large class of potentials.
These equations have already been considered by M. Jaulent and

C. Jean [7] in order to study the corresponding inverse problem. Appli-
cation of this work to other inverse scattering problems occuring in absor-
bing media has been treated in [3 ]. Furthermore, M. Jaulent and I. Mio-
dek [4] ] have obtained a class of non linear evolution equations associated
with ( 1. 3).

In this paper, we prove a completeness theorem relative to (1.3). For
this, we consider the equations ( 1. 3) as matrix eigenvalue equations :

to which we associate the « adjoint » matrix eigenvalue equations :
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17THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

where

the « scalar product » of two vector functions F(x) and G(x) is defined by

and f2(x) resp. and g2(x) being the components of F(x) resp. G(x),
and « T » meaning « transposed ».

In section 2, we state the definitions, the properties and the rela-
tions relative to the fundamental solutions of (1. 3), particularly 

the Jost solutions at +00 resp. at -~.
In section 3, we study interesting orthogonality properties of

and

which are vector eigenfunctions respectively of (1.4) and (1.6) associated
with the eigenvalue ( ± k).

In section 4, starting from ( 1. 3) and using the Green’s function, we
prove that all the vector functions of a certain class ç may be expressed
through x) and F2 (k, x).

In section 5, we show that this expression is unique.
More precisely, we establish the following theorem :
Let ç be the class of four times continuously differentiable vector complex

valued functions 0(jc) defined in R such that x0(x) and the first four deri-
vatives are integrable in [?. Then, ~(x) is uniquely written as :

Vol. XXXVIII, n° 1-198 3 .



18 C. JEAN

where

We recall that W [/ g is the wronskian of f and g. We note == 

dk 
and later on, we apply the same notation to all the partial derivatives
with respect to k.

2. FUNDAMENTAL SOLUTIONS OF (1.3).
PROPERTIES AND RELATIONS

In this paragraph, we state all the results relative to the equations ( 1. 3)
which will be used throughout the following study. We suppose that u(x)
and q(x) as complex valued functions on [R satisfy :

H 1 : u(x) is a twice continuously differentiable function such that x2u(x)
and the first two derivatives are integrable in tHL

H2 : q(x) is a three times continuously differentiable function such that
xq(x) and the first three derivatives are integrable in !R.
We only recall the definitions, the properties and the relations which

have already been proved in [7]. The results especially established for
this paper are given without proof because the technics used are rather
standard. For more details, we refer to [5].

the Jost solutions of (1. 3) defined by

are unique and continuous as functions of k for  0, analytic for
 0 and derivable for k E f~* (cf. [5 ], Appendix A); they obey the bounds :

where xo is any fixed real number and Cxo is, for given xo, a positive constant;
moreover, x), x), x) resp. f2 ’(k, x), x) and x)
are continuous for k E [?*, and their behaviour, for  0, ~ 5~ 0, when
x ~ oo resp. x -~ 2014 oo is given by : (cf. [5 ], Appendix A).

Annales de l’Institut Henri Poincaré-Section A
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THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

where

where

where K and K’ are arbitrary positive constants.

are not defined uniquely for  0 however such solutions can be
defined (cf. [2 ], chap. I, section 4); let us remark that :

The functions and for k ~ 0, are
related by :

where

Vol. XXXVIII, n° 1-1983.



20 C. JEAN

it follows from (2 .17) and (2 .18) through (2 . 22) and (2 . 23) that :

The functions (k E ~*) and (Im k  0, k ~ 0) are continuous,
continuously differentiable for k E [R* while is analytic for  0.

We now make a supplementary assumption H 3 :

One can prove that (Im k  0) have each a finite number of zeros,
located at the points kn (n = 1, ..., Ni:). The corresponding func-

tions are (modulo normalization) the only solutions

of ( 1. 3) for 0 and are « the bound states ». Let us remark that

[Cf2(k)]-1 can be continuously extended to k = 0 and obviously :

It is useful to know the behaviour and 

when oo . It is not difficult to show (cf. [5 ], Appendix B) that we

have, for K, 0 :

where

and are twice continuously differentiable, 
g2 ’(x), gi "(x) are bounded in R, and are continuously
differentiable, (x) and hf(x) are bounded in M, 
and x) are bounded for x E (R and k ~ &#x3E; K, K ~ 0.

Taking into account (2.22), (2.23), (2.27), (2.4), (2. 5), (2.10) and (2.11),
we deduce from (2 . 26) and (2 . 27) :

If we now consider (p(~) a three times continuously differentiable function

defined o in [R such that and o the first three derivatives are 
’ integrable

Annales de l’Institut Henri Poincaré-Section A



21THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

in R, we can prove (cf. [5 ], Appendix C) from the derivability 
for that :

and from (2.26) and (2 . 27) that :

3. EIGENFUNCTIONS OF ( 1. 2) AND ( 1. 4)

Let us consider and 

Using the definition of H (1. 5) and H* 1. 7 we easily find that :

It is then interesting to evaluate the « scalar product » of and

F2 (k’, x). We find that this product exists only for certain values of k and k’
for which x) and F2 (k’, x) are « conjugated ». Let us prove precisely
proposition 1:

PROPOSITION 1. - ~ Fl (k, x), F~ (k’, x) ~ exists and

in the following cases

where kn has been defined by ( 1.12).

Proof. - To prove the property a), we multiply on the left each member

Vol. XXXVIII, n° 1-1983.



22 C. JEAN

Differentiating (3.4) with respect o and o multiplying £ on the left by
11 (k, x)T, we find :

Subtracting (3 . 9) from (3 . 8), we obtain :

and then, using the definitions ( 1. 5), (1.7), ( 3 .1 ) and (3 . 2), we find :

where

Starting from (2.19) and (2.20), with the help of (2.4), (2. 5), (2. 8) and

(2 . 9) we can deduce for k E and x ~ oo ;

nf (2.10). (2.11). (2 .14) and o (2 .15) we obtain oo :

and then taking into account (2 . 4), (2.5) and (2 .14), (2 .15), it follows :

hence, it is clear that  Fi (k, x), F2 (k, x) ~ doesn’t exist for k E f~*. Let

us now consider k non real,  0. Starting from (2.19) and using (2.1)
and (2 .16), we find, for x ---+ oc :

with the help of (2.1) and (2.16) in (2.20), we have for x -~ - 00

and then :

Annales de l’Institut Henri Poincaré-Section A



23THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

exists only for k = kn and its value
is directly deduced from (3 .25).. ,

Now, for k ~ k‘, let us From (3.1)
and (3 . 2) through (1. 8), it can be written as :

Starting from ( 1. 3) in which, in a first step, we substitute y ± 
and in a second step, k by k’ and y ± by , f ’2+ (k’, x), we obtain :

then, we multiply (3 . 28) by ~’2 (k’, x) and (3 . 29) by x) and we subtract
the new resulting equations ; we deduce for k ~ k’ :

where

let us prove that the formula (3 . 30) is also valid for k = k’ and let us work
out its value. To this end, we rewrite (3.32) in the case x = A and x = B

taking into account (2. 21) and the analyticity for  0 or the deriva-

bility for and we

can assert that (3 . 30) is also valid when k tends to k’.
Let us now compute (3.33) when A 2014~ oo. Starting from (2.19) and

making use successively of (2 . 4) and (2 . 5), (2 . 30) and (2 . 31 ), we find the
estimates :

Vol. XXXVIII, n° 1-1983.



24 C. JEAN

where

and finally, we find for (3 . 33) :

where

and

To calculate (3.34) when B ~ - oo, we proceed in a similar way.
Starting from (2 . 20) and applying (2 .10) and (2 .11), we have :

where 1
B-

and then we obtain for (3 . 34) :

where

and

Henri Poincaré-Section A



25THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

Collecting (3 . 40) and (3 . 48), we obtain for (3 . 30) :

Then, we see from (3 . 51 ) that ( x), F2:t(k’, ~-) ) exists only for k = ~,
k’ E M* or k E = kn or k = = m (hence (3 . 6) and (3 . 7)
are proved) and also for k = - k’, k’ E !R*; in this case, we have :

It is also useful to know the « scalar product » of x) and F2 (k’, ~-).
In the same way, we obtain similar results which we state in proposition 2:

PROPOSITION 2. - F~(~~ F2 (k’, x) ~ exists and

in the following cases :

and

~roof: - Let us compute  Fl (k, x), F2 (k’, x) ~. We obtain various
results which we only state :

where

in me case where m /« 0 and  0 or  0 and k’ E M* or
k E fR* and  0, a glance at (3 . 51) allows us to see that :

which proves proposition 2.
Vol. XXXVIII, n° 1-1983.



26 C. JEAN

For k and k’ belonging to [R*, it is useful to know the estimate of (3.56)
when A ~ oo and B -~ 2014 oo . We find :

where

from (2.24) and the derivability of A) and S2 (k, k’, B), we deduce
that (3. 59) is also valid for k  - k’.
Note also that (3 . 58) has a meaning when k’ = k, 0, k ~ 0

4. COMPLETENESS THEOREM : EXISTENCE

First, for the sake of simplicity, let us consider the formula (1.9) in the
case where there is no bound state. Using the definitions (3.1) and (3.2),
we obtain for M = belonging to the class ~ :

Annales de Henri Poincaré-Section A



27THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

In fact, we shall prove successively :

We see that in adding (4. 3) and (4. 4) resp.. and (4. 6), we find again
(4.2) resp. (4.1).

Let us note that, when the formulas (4.1), (4 . 2), (4. 3), (4 . 4), (4 . 5) and (4. 6)
will contain the part corresponding to the bound states, we shall call
them « complete formulas ».
To obtain the theorem, we proceed in three steps. In the first one, we

solve the one-dimensional Schrodinger equation (1. 3) with second member,
by using the Green’s function. From the obtained results, in the second step,
with integrations along a closed path contained in the lower-half of the
complex k-plane, we find four relations between (i = 1, 2) and the
Green’s function. And then, in the last part, using algebraic relations, we
deduce the « complete formulas » (4. 3), (4.4), (4. 5) and (4.6).

First, let be a continuous function defined in [? and integrable and
let us now consider the equations :

which we solve by the constant variation method. Let 

Vol. XXXVIII, n° 1-1983.
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be the Green’s function :

where /f~ x), x) and have been defined respectively by (2.1)
and (2 . 9) ; clearly, are, for fixed x and y, continuous as func-
tion of k for Im ~ 0, 0, k ~ kn and analytic for  0, k ~ ~
and verify the bound :

where I is an arbitrary real compact and C is, for fixed k, a constant depending
uniquely of I.
The solution 03C8±(X) of (4 . 7) are then given by :

Now, from the result (4.10), we are going to establish the four following
relations :

1 r ~*00

where the integrals converge uniformly for x E I and is a four times

continuously differentiable function such that and the first four

derivatives are integrable in !RL

For this, let us set :

Annales de Henri Poincaré-Section A



29THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

and apply the result (4.10), we have :

We divide (4.16) by k and we integrate each member of the resulting
formula along a half circle k ~ = R contained in the lower-half of the
complex k-plane.
Thanks to (4.9) we can apply a Jordan’s lemma to prove that :

and then we obtain (4.11).
If we divide (4 .16) by k2 and we integrate each member of the resulting

formula along a half circle k ~ = R,  0, we find :

If R ~ co, using (4.9) to apply a Jordan’s lemma, we prove (4.13).
Since q(x) verifies the condition H2, (4.13) is also valid when we replace
~p( y) by and accordingly, from (4 .11 ), we can deduce (4 .12).

In order to find (4.14), we start again from (4.16) and we subtract (4.16)
corresponding to + from (4.16) corresponding to - ; we have :

we integrate (4.19) along a half circle k ~ I = R,  0; u(y) verifying Hi
and being four times differentiable, we remark that (4.13) is also
valid when we replace by [~’(y) 2014 ] and then we obtain (4.14).

Let us now establish the « complete formulas » (4 . 2) and (4 .1 ). For
this, we consider 03A6(x) = (03C61(x), 03C62(x))T belonging to the class ~ and we
expand the expressions (4.12) and (4.14) resp. (4.11) and (4.13) to obtain
the « complete formulas » (4 . 3) and (4. 4) resp. (4.6) and (4 . 5) and therefore
(4 . 2) resp. (4 .1 ).

Starting from (4.12) where rp(x) has been replaced by we apply
Vol. XXXVIII, n° 1-1983.



30 C. JEAN

the residues method to the integral. By virtue of the definition (4.8) of
y) and 0 the condition H 3 , we find :

- /*+R ° 00

where

note too that the integral of the first term of (4.20) converges uniformly
for x~I.

Now, to compute (4. 20), we substitute G±(k, x, y) through (4. 8) and

using the relations (2 . 7) and (2 . 5) and taking into account that 
= 0,

we obtain :

we then add the formula (4 . 22) corresponding to + and the formula (4. 22)
corresponding to - where we have exchanged k by - k; and by virtue
of (2.19), we can write :

M=l

where the integrals converge uniformly for x E I and where we can exchange

f1+ resp. f1- by f2+ and f2- ;
a glance at ( 1. 9) and ( 1.10) allows us to recognize the « complete 

for-

l’Institut Henri Poincaré-Section A



31THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

mula » (4.3). To obtain (4.4), we start from (4.14) where has been

replaced and similar computations drive us to the « complete
formula » (4 . 4) :

where the integrals converge uniformly for x e I and where we can exchange
f 1’ resp.f1- by f2+

In order to establish the « complete formula » (4 . 5), we first consider (4 .13)
where ~(x) has been replaced by ~p2(x). The condition H3 involves that
~ = 0 is not a pole of G~(k, ~ y), and we have :

/*+R

We subtract (4.25) corresponding to - form (4.25) corresponding to +
and taking into account that /i~(0,~) = f 1+ (o, x), ~(0,y) = f2+ (o, y), we
find :

Vol. XXXVIII, n° 1-1983.
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and then, multiplying by 2 
and expliciting (4 . 26), we obtain the « complete

formula » (4 . 5) :

where the integrals converge uniformly for x E I and where we can exchange
fl + resp. f~ by f2 resp. 12- .
To obtain (4.6), we remark that (4.27) is also valid when we replace

and that (4 . 23) is also valid when we replace 
by ~p 1 ( y). Adding the two resulting relations, we have the « complete for-
mula » (4.6) which we seek.

In fact, from (2.32), (2.2) and (2. 31) it follows that the integrals of (1.9)
converge uniformly for x &#x3E; Xo.

5. COMPLETENESS THEOREM : UNIQUENESS

First, let us remark that o~(k) ( y), C(y) ) is continuous for k E IR
and derivable for k E IR* and has the following behaviour when k ~ 1 ~ oo :

To prove the uniqueness of ( 1. 9), we consider that C(x) is written as :

where X’(~) is a continuous function in [R, derivable in [R* and has the

behaviour of (5.1) when ~ I ~ CIJ and is a constant.

Annales de l’Institut Henri Poincaré-Section A



33THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

Let us now consider the « scalar product »  F2 (k’, x), 03A6(x)&#x3E; where k’
belongs to ~*. From (5 . 2) and with the help of (3 . 7), and (3 . 54) it follows :

/*~ /*~

Remarking that the integrals of (5.2) converge uniformly for x &#x3E; xo
for any xo, we can write :

00 A

Let us make explicit the first integral of the right-hand side of (5.4)
by applying (3.51). We find that :

According to the Riemann Lebesgue’s theorem, the first term of (5.5)
is equal to zero; a glance to (3.41), (3.37), (3.38), (3.39) and to (3.49),
(3.45), (3.46), (3.47) allows us to assert that the third term is also equal
to zero.

Let us now consider the second term T2 of (5 . 5) rewritten as :

Because of the Riemann Lebesgue’s theorem, the second term of (5.6)
is equal to zero.
Vol. XXXVIII, n° 1-1983.
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And then :

Taking into account that a + (k) and are derivable for 

we can apply the Riemann Lebesgue’s theorem to the first and the third
integrals of (5.7) which vanish.

Because A is a positive number and B a negative number, we have :

and finally :

and hence, for we have :

Let us now consider the second term of the right-hand side of (5.3).
With the help of (3 . 59), we find similarly :

The addition of (5 .10) and (5.11) yields :

and hence

because ’ and o are 
" continuous in [RL

Considering 1 the « scalar product » of  F2 (k’, x), C(~-) B we can prove
for 

To show the uniqueness of the coefficients of x) and 0 
Annales de Henri Poincaré-Section A



35THEOREM RELATIVE TO ONE-DIMENSIONAL SCHRODINGER EQUATIONS

in (1. 9), we by means of (5.2). Because of
(3 . 51), (3 . 6) and (3 . 53), we find :

It is obvious that the integral is equal to zero and applying (3.5), it
follows that

and hence

Lastly, in a similar way, the computation of ( F2 (km , x), ~(x) ~ by
means of (5 . 2) yields the equality of /T(~) F2 (km , x), ~(x) ).
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