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ABSTRACT. - I study the construction of cp4 quantum field theories
by means of lattice approximations. It is easy to prove the existence of

the continuum limit (by subsequences) ; the key question is whether this
limit is something other than a (generalized) free field. I use correlation

inequalities, infrared bounds and field equations to investigate this question.
For space-time dimension d less than four, I give a simple proof that the
continuum-limit theory is indeed nontrivial ; it relies, however, on a conjec-
tured correlation inequality closely related to the T6 conjecture of Glimm
and Jaffe. Moreover, the Euclidean invariance of the continuum theory
is an open question within the present approach. For space-time dimen-
sion d greater than or equal to four, I argue - but do not prove - that
the continuum limit is inevitably a (generalized) free field, irrespective
of the choice of charge renormalization. The argument is based on old
ideas of Landau and Pomeranchuk, improved through the use of corre-
lation inequalities applied to the exact field equations.

RESUME. - On etudie la construction des theories cp4 des champs quan-
tifies au moyen de l’approximation du reseau. On demontre facilement

(*) This paper is a slightly revised version of a Ph. D. thesis presented to the physics
department at Princeton University (January 1981). The research was supported in part
by NSF grant PHY 78-23952.
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318 A. D. SOKAL

l’existence de la limite du continu (par sous-suites) ; la question sérieuse
est de savoir si cette limite est necessairement un champ libre (generalise).
Pour examiner cette question on utilise les inegalites de correlation, les
bornes infrarouges, et les equations de champ. Pour la dimension d’espace-
temps d  4, on donne une demonstration simple de la non-trivialite
de la limite du continu ; cette demonstration repose cependant sur une
inegalite de correlation non encore demontree, celle-ci ayant un rapport
étroit avec la conjecture r6 de Glimm et Jaffe. De plus, 1’invariance eucli-
dienne de la théorie continue est une question non resolue dans le cadre
de la présente methode. Pour la dimension d’espace-temps d &#x3E; 4, on
presente des raisonnements qui, sans pour autant aboutir a une demonstra-
tion rigoureuse, suggerent que la limite du continu est inevitablement un
champ libre (generalise), quel que soit le choix de la renormalisation de
charge. Le raisonnement se fonde sur des idees anciennes de Landau et
Pomeranchuk, precisees ici par l’utilisation des inegalites de correlation
appliquees aux equations de champ exactes.
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AN ALTERNATE CONSTRUCTIVE 

1. INTRODUCTION

The p roof of the existence and nontnviahty of the q uantum field
theory [1-5"" ] is one of the great triumphs of modern mathematical
physics, a tour de force of intricate and exceedingly difficult mathematical
argument. I should like to suggest, however, that need not be as compli-
cated as it has heretofore seemed. In this paper, I shall propose an alternate
program for the construction of the theory, one which I believe to be
simple and intuitive. However, I should warn at the outset that in this
paper I only begin the proposed study; I do not complete it. In particular,
much of the present work relies on a conjectured correlation inequality
(Conjecture 3.2) which, though very likely true, has not yet been proven.
Moreover, the Euclidean invariance of the continuum limit is an open
question within the present approach.
The extraordinary complexity of the cpj theory arises, of course, from

its ultraviolet divergences. Unlike the P( CP)2 theory, in which all ultra-
violet divergences are cancelled by the simple expedient of Wick orde-
ring [6 ], the theory requires additional « infinite » mass and vacuum-
energy renormalizations. The conventional constructions of the theory
are based on guessing explicitly the required « infinite » counterterms - that
is, on guessing explicitly the required dependence of the bare mass and
bare vacuum energy as a function of the ultraviolet cutoff - and then on
demonstrating explicitly that these counterterms do, in fact, suffice to
yield the desired finite (and controllable) result in the limit of infinite cutoff.
It is this latter step which is, of course, at the heart of the difficulty: one
must explicitly demonstrate complicated cancellations among formally
infinite quantities.
What I should like to point out, however, is that there is no real need

to know explicitly the infinite counterterms : for the construction of the
renormalized theory, it suffices to know simply that such counterterms
do exist. Furthermore, in the approach proposed here, the vacuum-energy
renormalization never arises. Thus, the proof of existence of the continuum
(infinite-cutoff) ~p3 theory is reduced to the existence of the needed mass
renormalization, a question which is already largely settled [7]. Indeed,
I shall argue that the proof of existence of the continuum cp4 theory is in
fact a very simple matter [8 in any space-time dimension; what is really
difficult is not the existence but the nontriviality. That is, the central pro-
blem is to show that the continuum ~p4 theory, obtained as a limit of cutoff cp4
theories, is something other than a (generalized) free field. And I shall
argue that even this problem is not really so difficult in space-time dimen-
sion d  4.
More specifically, the proposed approach is as follows :
(1) Begin with the rp4 theory on a finite lattice, and take first the infinite-
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320 A. D. SOKAL

volume limit. This procedure [9] ] has the advantage that translation inva-
riance and other symmetries of the infinite-volume lattice theory can be
exploited in the study of the ultraviolet problem; we need not worry about
finding the correct renormalization counterterms in finite volume (1).

(2) Perform the desired mass, field-strength and charge renormaliza-
tions [7] ] [12 ], and take the lattice spacing to zero. One can always extract
at least a convergent subsequence [8 ]. This limiting theory satisfies all
the Osterwalder-Schrader axioms [6] ] [13 ] [14 ] except perhaps Euclidean
(rotation) invariance.

(3) The key problem is to show that the continuum-limit theory is non-
Gaussian, or equivalently [12b ] [15], that the dimensionless renorma-
lized 4-point coupling constants of the lattice theories are bounded away
from zero as the continuum limit is approached. To do this 2014 and this
is the main new idea of the present paper - I follow the intuition suggested
by perturbation theory, namely, that the renormalized coupling constant
is given by g = go + 0(go)? where go is the bare coupling constant. (Here
the leading term is given simply by the tree graph.) If it can be shown that
this is really true - that the non-leading contributions are uniformly
in the lattice spacing as it tends to zero - then it will immediately follow
that g is nonzero in the continuum limit for sufficiently small but nonzero go.
To bound the non-leading terms, I exploit the field equations, correlation
inequalities and infrared bounds. But the heuristic idea is simply that all
radiative corrections, except for the mass renormalization, are ultraviolet
convergent in dimension d  4.

In dimension d &#x3E; 4, on the other hand, this is not the case. Indeed, the
opposite is true: high orders of perturbation theory are dominant, even
for small bare coupling, if the ultraviolet cutoff is large (i. e. if the lattice

spacing is small). This observation can be made the basis of a possible
approach to what I call (perhaps whimsically) destructive quantum field
theory - that is, to proving that the only continuum limits of cp4 lattice
theories are (generalized) free fields. The basic idea was proposed by Landau,
Pomeranchuk and collaborateurs [16-23] ] (see also [24-29 ]) a quarter-
century ago, but it has remained unclear whether their result is merely
an artifact of low-order perturbation theory. Indeed, it has become clear

that the ultraviolet behavior of non-asymptotically-free theories, such
as cp4 theory in dimension d &#x3E; 4, is an extremely difficult strong-coupling
problem. The new ingredient proposed here is the use of correlation inequa-
lities, applied to the exact field equations, to show that a huge class of
diagrams neglected by Landau et at. are totally harmless : if treated exactly,

(~) On the other hand, the conventional procedure [6] [10] ] [1 1 of taking the continuum
limit before the infinite-volume limit has the advantage that the Euclidean invariance of
the final theory is manifest - provided that one has sufficient control over the continuum
limit to ensure the Euclidean covariance of the continuum theory in finite volume.

Annales de l’Institut Henri Poincaré-Section A



321AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (p3 QUANTUM FIELD THEORY

they would merely reinforce the Landau result. The arguments given here
are far from being a complete rigorous proof, but they do provide a plausible
and self-consistent picture of the dynamical mechanism by which cp4 theory
in dimension d &#x3E; 4 probably becomes free in the continuum limit.

It should by now be clear that many of the ideas in the present paper
are not novel ; rather, the approach taken here is an eclectic combination
of ideas of many previous workers, with perhaps a shift of emphasis. The
key new ideas are in step 3 outlined above for and in the corresponding
argument (with the opposite conclusion !) for cp1. Many of the technical
estimates are based on ideas of Glimm and Jaffe [30 ], which I clarify and
extend. These estimates, contained mostly in Section 2.2 and Appendix A,
are likely to have applications in statistical mechanics and quantum
field theory beyond those considered here (see e. g. [31, 31’ )); therefore,
they may be of interest even to those readers who remain unconvinced
by the proposed approaches to cp3 and ~p4.
The plan of this paper is as follows : In Chapter 2,1 review the properties

of the cp4 lattice model and show how to take the continuum limit. The
heart of the paper is Chapter 3 (and technical Appendix A), where I combine
correlation inequalities and infrared bounds with a detailed study of the
field equation for the 4-point function, to show that the continuum limit
is non-Gaussian for weakly coupled qJd models (d  4). In Chapter 4,1 begin
the analogous study for CPd models in dimension d &#x3E;_ 4, and argue (but
do not prove !) that the continuum limit is always Gaussian. I conclude,
in Chapter 5, with discussion of some open questions. Appendix A contains
a variety of estimates on the 2-point function. Appendix B applies the
ideas of [30] ] [32] ] and the present paper to derive bounds on critical expo-
nents for cp4 lattice models studied from the viewpoint of statistical mecha-
nics. Among the results is that, assuming Conjecture 3.2, hyperscaling
fails (as expected) for co4 lattice models in dimension d &#x3E; 4.

IMPORTANT NOTE.

After the completion of this work, Michael Aizenman [229] ] [230] ]
succeeded in proving, by a beautiful argument quite different from the
ones used here, that the continuum limit of cp4 or Ising models, with arbi-
trary charge renormalization, is always a (generalized) free field for dimen-
sion d &#x3E; 4. (In particular, hyperscaling fails.) Shortly therafter, Jurg Froh-
lich [231 ] obtained the same result using the random-walk ideas of [128-
131 ] [232] (see Section 4.1). Both of these proofs are ab initio, i. e. they
do not require Conjecture 3.2 or any other unproved result.
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2. LATTICE cp4 MODEL
AND THE CONTINUUM LIMIT

2.1. Review of Renormalization Theory.

The qJd Euclidean field theory is defined formally by the family of Schwin-
ger functions (complete Euclidean Green’s functions)

with the Hamiltonian density

Usually Ao = 1 and Bo = mõ, but we retain the more general notation
for reasons that will become clear shortly. Of course, the functional inte-

gral (2 .1 ) fails to make rigorous sense for a number of reasons [6] ] [33 ],
but we can expand it formally in perturbation theory (powers of 10) as
a source of insight. It then turns out [34 ] that for d &#x3E; 2, the Schwinger
functions develop infinities associated with the divergence of momentum

integrals at large momenta (« ultraviolet divergences »). In order to save
the situation, we proceed as follows :

First we modify (« regularize ») the theory so that the momentum inte-

grations are effectively cut off at some large but finite momentum A;
then we attempt to choose the « bare parameters » Ao, Bo and ~o as func-
tions of the ultraviolet cutoff A in such a way that the cutoff Schwinger
functions converge to finite limits as A - 00. If this can be arranged,
we can then study the limiting Schwinger functions in order to verify the
Osterwalder-Schrader axioms [6 ] [13 ] [14 ] and other physically desirable

properties. The key question of renormalization theory is : What are the

possible limiting theories (if any) as n -~ oo for the various choices of

Ao(A), Bo(A) and 1o(A)?
Annales de l’lnstitut Henri Poincaré-Section A



323AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (P3 QUANTUM FIELD THEORY

A variety of regularization procedures are available [35 ] ; in this paper,
we use (for reasons that will become clear shortly) a spatial lattice of spacing
a, so that That is, we replace the Euclidean space ~d by the simple
(hyper-) cubic lattice a 7Ld, and replace (2 .1)-(2 . 2) by a lattice approximation :

1, ... , xn)

where the letters i, j, etc. denote points in Zd, and xl - ail, etc. The new
bare parameters are given by

The point of this exercise is that (2.3) defines a ferromagnetic Ising model
with nearest-neighbor interaction and single-spin measure

much is known rigorously about these models. Of course, (2.3) is still,
as it stands, a formal expression, because of the infinite-volume sums;
but unlike (2.1), it is not hard to make rigorous sense of (2.3) [see Sec-
tion 2 . 2 ].

A HEURISTIC ASIDE.

The reader may well inquire as to the dimensions, in the sense of dimen-
sional analysis, of the quantities introduced above. The assignment of
dimensions contains considerable arbitrariness : for example, classical phy-
sics introduces mass, length and time as independent fundamental quantities,
while the modern field-theoretic convention is to define ~ and c as dimen-
sionless (and equal to unity !) and thereby to reduce the three fundamental
quantities to one. Dimensional analysis should be viewed as a convenient
way of summarizing the transformation properties of various quantities
under one or more scalings; thus, the assignment of dimensions should
depend on which scalings are of interest. We shall be interested in two
types of scaling, namely = and x = hence, we introduce two

Vol. XXXVII, n° 4-1982.



324 A. D. SOKAL

fundamental dimensions, field strength (F) and length (L). Thus, by defi-
nition.

It follows that

However, these dimension assignments should. be considered as merely
a heuristic shorthand for the rigorous scaling laws.
To derive such a scaling law, let us consider the change of variables

CPi = in (2.3). Then a trivial calculation shows that

....x,; Bo, )"0’ J) = a2Bo, a4~,o, oc2J) (2.10)

for any a &#x3E; 0. Thus, of the three parameters in (2.3), only two are really
significant; the third leads to a mere change of scale of the field. Only
quantities invariant under the rescaling (2.10) can have physical signifi-
cance. Thus we define the bare coupling in the statistical-mechanical nor-
malization convention

and the bare coupling in the field-theoretic normalization convention

They are related by

and have the dimensions

[~] = dimensionless

Both are free of dimensions F, by construction. -

Similarly we would like to investigate the consequences of a change
of variable x = f3x’. Since this is slightly subtle, we postpone it to the end
of this section. Suffice it to say here that only those quantities invariant
under both the field rescaling qJ = and the length rescaling x = f3x’
can have physical significance in the continuum limit. We reserve the term
dimensionless for such quantities.
The purpose of explaining these matters in such pedantic detail is to

help alleviate the widespread confusion caused by the existence of the two
different normalization conventions. As practice in learning to translate

Annales de l’Institut Henri Poincaré-Section A



325AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (p3 QUANTUM FIELD THEORY

between the two languages, let us consider two commonly-used ways of
taking the continuum limit (a - 0) :

CASE 1 : I fixed.
This is the standard procedure in super-renormalizable field theory

(d  4). From the point of view of field theory, no nontrivial coupling-
constant renormalization is being performed ; and none need be performed,
since the ultraviolet divergences are not so severe in d  4. From the point
of view of statistical mechanics, the theory is becoming extremely weakly
coupled (~ ~ a4 - d ) ; but the effects of this coupling are amplified by the
infrared divergences of the cp4 lattice theory near the critical point in
d  4 [34 ], leading to a non-Gaussian limit. (As will be seen in Section 2. 3,
the mass renormalization will entail a choice of lattice theories with cor-
relation lengths ~ ~ a -1; thus the critical point is inevitably approached
as a - 0. See e. g. [9 ].)

CASE 2 : ~,o fixed fixed or almost fixed).
This is the standard procedure in the statistical-mechanical theory of

critical phenomena : after all, here the interactions are fixed - by Nature !
Typically we fix ho and Bo and increase J towards its critical value J~ ;
as J - J~, approaches a constant, so it is for all practical purposes fixed.
(Alternatively we could fix ~,o and J and decrease Bo towards its critical
value Boc; then is strictly fixed.) In this theory it is for d &#x3E; 4 that matters
are simple: correlation functions are given by a perturbation expansion
around mean field theory that is free of infrared divergences [34 ]. From
the point of view of field theory this might seem surprising, since the (~
field theory for d &#x3E; 4 is non-renormalizable, with horrendous ultraviolet
divergences ; but this is mitigated by the fact that the theory is becoming
weakly coupled (A§’~ - ad-4). On the other hand, for d  4 the theory
of critical phenomena is quite complicated, by virtue of infrared diver-
gences ; this is reflected in field theory in the fact that the theory is becoming
extremely strongly coupled (h§" - aa - 4~, causing perturbation theory
to break down even through the internal momentum integrations are
ultraviolet convergent. (Such « super-strongly-coupled » field theories
have been studied by Wilson [36 ].)

Clearly it is the factor a4-d in (2.13) which accounts for the interplay
between ultraviolet and infrared as one translates from one viewpoint
to the other. In the remainder of this paper, I shall often appeal to the
field-theoretic viewpoint for heuristic and motivational purposes, but
shall adhere to the statistical-mechanical normalization convention for
all rigorous arguments. (This choice is simply a matter of taste.) In any
case, I shall always attempt to make clear which viewpoint I am using !

Let us now return to consider what can be learned from the change of
variables x = f3x’. It is most natural to make this change of variables in

Vol. XXXVII, n° 4-1982.
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the continuum expression (2. 1); a formal computation yields the putative
relation

N rV N

r4 / ..........." ~1 1

However, this relation is valid only in those cases in which (2.1) makes sense
without cutoffs, i. e. d =1. Otherwise this relation is meaningless. The correct
definition of (2 .1 ) requires the introduction of an additional dimensionful
parameter, the ultraviolet cutoff A; the correct scaling law is

However, this relation is totally uninteresting: using the lattice cutoff,
for example, and recalling (2 . 4)-(2 . 6) and A ~ a-1, we find that the left
and right sides of (2.16) refer to the same lattice theory (Bo, J) evaluated
at the same lattice sites i 1, ..., Equality here is hardly very informative.

Since (2.16), unlike (2.10), places no constraints on the lattice-model
correlation functions, the lattice quantities need not be invariant under
the rescaling x = f3x’ in order to have physical significance. The rescaling
x = f3x’ is of interest only in the continuum limit; and even there it is

problematic when applied to the bare (unrenormalized) parameters, as
the discussion of (2.15) shows. For a (presumed) scaling relation with
respect to the renormalized parameters, see (2.70)-(2.71).

2.2. Properties of the Lattice Model.

We now review the properties of the model (2. 3) studied from the view-
point of statistical mechanics. Here Bo, ho and J are arbitrary parameters
(with, of course, ho &#x3E; 0 and J &#x3E; 0); we forget about (2.4)-(2.6). Thus the
lattice spacing a never appears ; we might as well imagine a = 1.
To define the model (2.3), we consider it first in finite volume V c 7Ld

with zero boundary conditions (2) :

(2) In the statistical-mechanics literature, these are often called free b. c. ; in the field-

theory literature, these are called Dirichlet (or- half-Dirichlet) b. c. See the warning in [10,
p. 206 ].

Annales de l’Institut Henri Poincaré-Section A



327AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (p3 QUANTUM FIELD THEORY

if all il, ..., in E V, ~ cpil ... = 0 otherwise. (We have shifted for
convenience to the statistical-mechanics notation.) The infinite-volume
limit V i Z~ can now be taken, using Griffiths’ inequalities [37] ] [38 ] ;
the correlation functions ( CPil ... CfJin )v increase monotonically to a

limit ( CfJil ... which has the following properties [38 ] :
a) There exists a probability measure J.1 on such that

is invariant under all symmetries of the lattice 7Ld (lattice transla-
tions, lattice rotations, and lattice reflections) and under the transforma-
tion qJ - - cp ;

c) J1 satisfies the Dobrushin-Lanford-Ruelle (DLR) equations [38-43 ]
and the superstability bounds [43] ] [44] ] [38].

Moreover, J1 satisfies the following correlation inequalities (among
others) :

d) Griffiths’ first and second inequalities [45 ] :

Here A = is a multi-index, and

e) Ginibre inequalities [45 ] :

Here qi = cpD/)2, ti = (CPi + where { ~,} and { 
are independent sets each distributed according to the measure ,u.

f ) Lebowitz inequality for the 4-point function [45 ] :

g) Gaussian inequality [46-48 ] :

where ~ is the set of all partitions of { 1, ..., 2n ~ into pairs. (Of course,
the Lebowitz inequality (2 . 23) is actually a special case of this.)

h ) FKG inequality [6 ] [49 ] :

for any increasing functions F, G on f~n.

Vol. XXXVII, n° 4-1982.
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i) Newman’s Lee-Yang inequalities [15 ] : Let X be any finite sum
~ oci cpi with all ai &#x3E; 0, and define the cumulants u" by

Then 0 and ( - 0 ; moreover, if any u2m = 0, then
in fact un = 0 for all n &#x3E; 2 and X is Gaussian. (A quantitative version of
this result is given in [15, Theorem 6 ].) If X is Gaussian for all such { 03B1i },
then J.1 is Gaussian.

j) Newman’s exponential bound [15 ] [50 ] :

for any complex { 
k) Schrader - Messager - Miracle-Sole inequalities [51-54]: The

two-point function

is decreasing in each in particular,

whenever a ~ I :::; x ~ ~ == max A diagonal version of this inequality
1 id

says (among other things) that

(l ) ,u is reflection-positive (RP) [55 ] with respect to coordinate hyper-
planes through sites, coordinate hyperplanes bisecting bonds, and dia-
gonal hyperplanes through sites. It follows [30 ] [56 ] [57 ] that the Fourier-
transformed 2-point function

satisfies the spectral representation discussed below, and the infrared
bound [58] ] ] [59] ]

(For the case we consider, c = 0.)
Annales de l’lnstitut Henri Poincaré-Section A
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Remark. It is not entirely trivial to prove both of the Schrader - Messa-
ger - Miracle-Sole inequalities [(2.29) and (2.30)] for the same infinite-
volume state. (2.29) holds initially for certain finite-volume rectangular
boxes, while (2. 30) holds for certain diamond-shaped boxes ; it is not obvious
how to arrange for both of them to hold in the infinite-volume limit. We
are saved by the Griffiths inequalities, which ensure [37] ] [38] ] that the
same infinite-volume state J1 is obtained irrespective of the sequence of
finite-volume boxes employed; thus both (2.29) and (2 . 30) do hold in
the infinite-volume limit. The same remark applies to the simultaneous
attainment of the three types of reflection positivity.
We now recall some properties of the 2-point function G. Of course,

G(jc) &#x3E;: 0 by the Griffiths inequality. Moreover, we shall be interested
in the regime in which G(x) decays exponentially as I x I - oo (perhaps
at a very slow rate). Hence we define the susceptibility

and, for each § &#x3E; 0, the correlation length of order ~

(Note that, by Hölder’s inequality, ç4&#x3E; is increasing in We also define
the exponential (or « true ») correlation length

and the mass gap

(Actually, the lim sup is unnecessary; it follows from the spectral repre-
sentation (2.37) that the limit (2.35) exists.)
Remark. By the FKG inequalities, all correlation functions cluster

at a rate at least m [?] ] [31, 61 ].
From now on, we assume for simplicity that m &#x3E; 0 ; this will hold for all

cases we need to consider. It then follows from reflection positivity (with
respect to both coordinate hyperplanes through sites and those bisecting
bonds) that G has the spectral representation [30 ] [56] ] [57] ]

for some cp &#x3E;_ 0 and some measure dpp(a) &#x3E;_ 0. [Here we have written
p = (pl, p). ] The field strength renormalization constant Z is then defined
Vol. XXXVII, n° 4-1982.
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as the strength of the « one-particle pole » at zero spatial momentum, i. e.

Clearly Z &#x3E; 0:

Remarks. 1. - The constant c" corresponds to the term a = 00 in dp,,(a).
It is generally believed that cp = 0 (except in the case J = 0 of uncoupled
sites), but I do not know of any proof. In any case, the cp term will have no
effect on our results.

2. A representation analogous to (2.37) can be derived using diagonal
reflection positivity [57 ] ; we shall not need it in this paper. But see Remark 4
following Proposition A. 4.
We are now prepared to prove a number of fairly easy bounds which

we shall need later. The first is

which for m « 1 (i. e. ~ » 1) reduces simply to

The lower bound in (2.39) is an immediate consequence of the spectral
representation (2.37) and the definitions of Z and x = G(0). To deduce
the upper bound in (2 . 39), combine the infrared bound (2. 32) [here c=0] ]
with the spectral representation (2 . 37), and evaluate at p = 0, Pi = x :

Since a &#x3E; cosh m - 1, we have

Hence

since 0. This proves (2. 39).
Next we prove an inequality relating the correlation lengths ~ and ~:

const x S çø  const x ç, (2.44)

where the constants depend on cp and d but on nothing else, and where
the lower bound in (2 . 44) is actually valid only for ç not near zero 

- 
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The proof of (2.44) is easy in concept but disgusting in details, most of
which I therefore omit. To simplify matters, define first

and

for each ~ &#x3E;_ 0. Thus x = xo (x~l xo) 1’~. Moreover,

so we might as well work with x~. By Fourier transforming (2.37), we
find that

where fl = cosh -1 ( 1 + a). (For cp = 0, the term Co in (2 . 37) also contri-
butes. We neglect co everywhere, since it is easy to see that it (which cor-
responds to a = oo) can’t do any harm that contributions in dpo(a) from
large but finite a couldn’t do.) Now

where by ~ we mean that this is the correct asymptotic behavior for
0 oo, hence that the stated expression multiplied

by suitable constants can be both an upper and a lower bound for 
uniformly over the entire range 0  ,u  oo . Substituting (2 . 49) into (2 . 48),
we find immediately that

this gives the upper bound in (2.44). Making the same substitution and
discarding all but the a = cosh m - 1 contribution in (2.48), we find

Inserting the upper bound of (2. 39), we find, after a little algebra, an ugly
expression which reduces to the lower bound in (2.44) if we assume that ç
is not near zero.

Finally we prove the inequality

in view 01 (2.44), which says that isn’t much bigger than ~ but could
be much smaller, this is an improvement of the upper bound in (2 . 39)-(2 . 40).
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To prove (2.52), we use (2.48) and (2.49) along with (2.41):

where the key step used Holder’s inequality. A little juggling yields (2.52).
This completes the list of ugly but necessary inequalities.

Rernarks. l. The upper bound in (2.44) has been used by the present
author [61 ] as a technical device in the proof of the low-temperature
Josephson inequality for critical exponents. But this is probably due more
to my lack of insight into the Josephson inequality than to any profundity
inherent in (2.44).

2. By (2.39) we have 0  ZJ _ const for ç not near zero; this is the

analogue of the Källén-Lehmann bound 0 ; Z  1 in quantum field

theory. What is more difficult is to show that ZJ is bounded away from zero;
indeed, this is a detailed dynamical issue, and is presumably not true in
general. However, it is true in the superrenormalizable case, as we show
(modulo a conjectured correlation inequality) in Section 3 . 3.

3. Simon [62] ] [63] ] has shown, using a new correlation inequality,

that Z - &#x3E; sinh m in the spin - 2" Ising model. A simple modification of
his proof, using [63, Theorem 3.1], shows that ZJ &#x3E; const x m for all
models satisfying the Lebowitz inequality. However, this bound, which
vanishes as the critical point is approached, is too weak for our purposes.

It is useful also to introduce the inverse propagator

(Note that our definition of r is the negative of that used in [30, 5b, b4, 6~].)
r has the spectral representation [30, 56, 64, 65]

with cxp ~ 0, (J p real, and 0. Moreover,

These formulas will be important in Section 3.3.
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Finally, we study the mass renormalizability of the qJd lattice theory :

PROPOSITION 2.1. - Fix and J &#x3E; 0. Then there exists Boc
(if d &#x3E; 2, then Boc &#x3E; - oo) such that ç is a continuous decreasing func-
tion of Bo [cf. (2. 3) ] in the interval (Boc, oo), with 0  ç  oo and

Moreover, for each 1&#x3E; &#x3E; 0, çcjJ is a continuous function of Bo in the same
interval, with 0  oo and

In particular, ~ and çø assume each positive value in the region Boc  Bo  oo.

Proof The hard part of this proposition (that dealing with ç) has
already been proven by Rosen [7] ] (see also [66 ] [62 ] [63 ] [67 ~). To prove
the other part, recall first the definition (2 . 45) of x~. Clearly 0  x, Xø  00

for Boc  Bo  oo, and x and Xø are decreasing functions of Bo there.
Then we have formally

where the lower bound is Griffiths’ inequality (2. 20) and the upper bound
is Lebowitz’ inequality (2.23). It follows that obeys a universal
bound in terms of x and x~, so that, in particular, ’C/&#x3E; is continuous. This
argument is not yet a rigorous proof, because the equality in (2.62) [a
« fluctuation-dissipation relation »] ] is as yet only formal. However, it
can be proved rigorously by the methods of Bricmont and the author [61,
Appendix ] : the idea is to begin with (2 . 62) in finite volume (where it is
trivial to make rigorous), and then use the dominated convergence theo-
rem to pass to the infinite-volume limit. The estimate which makes this
possible is precisely (2 . 63). [See Note Added in Proof. ]
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(2.61) follows immediately from (2.59) and (2.44). (2.60) follows from
(2 . 52) and the fact that x - oo as Bo 1 Boc [d2, 63, 68 ] (if x didn’t approach oo
as Bo 1 Boc, then the theory at Boc would have a nonzero mass gap [62 ] [63 ],
contradicting (2.58) and the monotonicity of ~). II

Remarks. - 1. There are probably cleaner proofs of (2.60).
2. Virtually identical arguments show that we could alternatively fix ho

and Bo and increase J toward a critical value Jc, obtaining identical control
over ç and ~.

3. Presumably 03BE03C6 is, like ç, a decreasing function of Bo, but this has not
been proven. It is a very interesting question; its proof would presumably
involve a new family of correlation inequalities which, unlike previous
ones, would explicitly involve the geometric structure of the lattice. In
any case we do not need here the monotonicity of çq, ; if çø is non-mono-
tonic, then the mass renormalization is non-unique, but that is of no
importance.

4. The fact that ç  oo for the zero-boundary-condition infinite-volume
state (or more generally that G(x)  0( ~ r~"~ as x I - oo, which
entails exponential decay anyway [62 ] [63 ]) implies that this state is the
unique regular Gibbs state [69 ]. The proof uses a result of Lebowitz and
Martin-Lof [70] ] [44] ] together with the GHS inequalities [45 ].

2.3. The Continuum Limit.

It is now easy to take the continuum limit. The idea is simple : we consider
a sequence of qJd lattice models with correlation lengths ç4&#x3E; going to infi-
nity, and rescale them to lattice spacings ~2014 ~~ 1. Thus the rescaled
field has correlation length O(1). Moreover, we rescale the magnitude
of the field so as to fulfill a second normalization condition [say, that
the rescaled susceptibility is also 0(1)]. (By (2.10), this latter rescaling
can always be accomplished by a suitable choice of parameters in the
lattice model.) These two normalization conditions on the 2-point func-
tion imply that all of the correlation functions converge for a suitable

subsequence [8 ] [12 ] [7J] ] [50 ], and that the limiting 2-point function
function is not identically zero. Moreover, the limiting Schwinger func-
tions are easily seen to obey all Osterwalder-Schrader axioms except
perhaps Euclidean (rotation) invariance. Thus, the only remaining ques-
tion is whether the continuum-limit theory is non-trivial, i. e. whether
the connected 4-point and higher-point functions are nonzero. This

depends [1S ] on the vanishing or non-vanishing of a single quantity g, the
dimensionless renormalized 4-point coupling constant [see (2.67) and
(2 . 77) ].
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More precisely, we seek to normalize the continuum theory according
to the zero-momentum (« intermediate ») normalization 

’

Here z and m are arbitrary scale factors which can be adjusted at will

by the trivial rescalings ~p - and x - /3x; thus there would be no
loss in taking z = m - 1, although we shall not do so. (The usual field-
theoretic convention [34] ] [71] ] does take z = 1.) But this exhausts the
trivial rescalings; the dimensionless renormalized 4-point coupling constant
of the continuum theory -.. ’"

is invariant under these rescalings.
Remarks. - 1. The definitions (2.64)-(2.67) differ by a constant fac-

tor from the standard ones [34 ] [71 ]

Note also that gSTD is called u in references [34 ] [71 ].
2. A continuum qJ4 theory rescaled by qJ - is still

a continuum cp4 theory; this is because the scalings can be implemented
in the approximating lattice theories by a change in parameters [cf. (2 .10) ]
and/or a change in lattice spacings [cf. (2 . 84) ]. Thus, f for each para-
meter set ( z, m, ~) there is at most one continuum ~p4 theory (this is pre-
sumably true, although we shall be unable to prove it because of our use
of subsequences), then the continuum theory satisfies the scaling laws

and

Thus, only the dimensionless combination g has physical significance.
Equation (2 . 71) is the useful analogue of (2 .15)-(2 .16) . (2 . 70)-(2 . 71) lead
to homogeneous renormalization-group equations (albeit trivial ones).

If the normalization of the lattice theories were to carry over to the
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continuum limit (this has to be proved [12 b ]), then (2 . 64)-(2 . 66) would
correspond to

where a is the lattice spacing, x and 03BE2 are defined in (2. 33)-(2. 34), and u4
is the connected 4-point function [see (3 .16) ] at zero momentum

all in the lattice theory. Moreover, g corresponds to the dimensionless
renormalized 4-point coupling constant of the lattice theory

i. e.

We shall shortly prove that the ~ sign in (2.73)-(2.75) and (2.78) can be
interpreted as equality, in the sense that the continuum quantity on the
left side is the limit of the lattice quantities on the right side.
To take the continuum limit, we proceed as follows : First choose the

desired normalizations z and in for the continuum theory (this has no
physical significance, and we could just as well take z = m = 1). Then
choose a charge renormalization go(a), where go is the dimensionless bare
coupling constant

this is the crucial physical choice. For example, in the superrenormali-
zable case (d  4) we shall choose go constant (i. e. ÀÕT constant) as a ~ 0
(see Section 2 .1). Now, for each a &#x3E; 0, pick a qJ1 lattice theory as follows :
First imagine fixing J = 1, and fixing ho according to (2. 79) ; then choose Bo
by Proposition 2.1 so as to achieve a correlation length

This gives some susceptibility x with 0  x  oo ; now pick a rescaling (2 .10)
so as to make

(Such a rescaling leaves Ç2 and go unchanged.) Thus, for each a &#x3E; 0, we
find a parameter set (Bo, ho, J) satisfying the normalizations (2. 73), (2. 74)
and (2.79).

Remark. Since the effective ultraviolet cutoff is A ~ (2. 80) says
that ~2 can be interpreted as 
We now wish to study the convergence properties of the just-defined

lattice models as a - 0. First, some notation : If 11 is a probability measure
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on which is supported on ~’(Z~), the space of polynomially bounded
sequences (the measures for lattice qJd models certainly have this pro-
perty [44 ]), then for any lattice spacing a &#x3E; 0 we can define a probability
measure a on the Schwartz distribution space ’(Rd), as follows :

(Here ~x denotes the delta function located at the point x.) The Schwinger
functions are then given by

LEMMA 2.2. - be a sequence of cpd lattice measures, and
0 be a sequence of strictly positive numbers. Assume that

uniformly in m, for some fixed ý? -norm" . Then there exists a subsequence
{ and a probability measure v on ~’(f~d) such that

~ 

. 

-

and

for all (complex-valued) g fl, ...,in E ~(f~d). Moreover, the Schwinger
functions (2. 87) satisfy all the Osterwalder-Schrader axioms except perhaps
Euclidean (rotation) invariance and clustering.

Proof - See [8 ] ] [50 ] for the proof of everything except the trans-
lation invariance of v. To prove this, it suffices to show that

for all real-valued f E and all b E where

Now since am ! 0, there exists a sequence of hm E with bm  b. Thus,
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by (2 . 86) and the Zd-translation invariance of the lattice models, we find
~ ~

where we have written dv~ as shorthand for Now using

we bound (2.90) in absolute value by

Now introduce gj then, whenever b - _ 1, we have

for a suitable function h E ~((~d) [dependent on f but independent of j ].
Thus, by (2.84) and Griffiths’ inequality,

by hypothesis (2 . 85). This vanishes as j - co. N

COROLLARY 2 . 3. - be the sequence of models [for the

given {~}] ] constructed in (2. 79)-(2 . 81). Then (2. 85) holds, and hence
so do the conclusions of Lemma 2. 2.

Proof By (2. 84),

and this is bounded in absolute value by
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where

but tor any a  1,

where

and Ci is the unit cube centered at i. Moreover,

for any a &#x3E; d/4, and thus is surely an ~-norm. II
So we can at least choose a subsequence for which all the Schwinger

functions converge, in the sense of the usual (either weak or strong) topo-
logy on The only remaining question is: do the normalization

conditions (2 . 64)-(2 . 66) turn out right ? That is, do (2 . 73)-(2 . 75) and (2. 78)
hold? We shall show, following Schrader [12b] ] with slight variations,
that under suitable conditions they do.

Consider, for example, the susceptibility condition (2.64). For each
lattice spacing a, the lattice 2-point Schwinger function (in difference

variables) is a positive measure on [Rd (by Griffiths’ inequality) with
total mass 

..

this was arranged by construction [cf. (2 . 81) ]. Moreover, by (2.87), we have

for the chosen subsequence of a 1 0, for each fe i7( R~). Thus, to prove (2 . 64),
we need to extend (2.101) to hold also for the function f * 1, which does
not lie in ~. A sufficient condition is given by the following lemma : ,

LEMMA 2 . 4. - Let { p~ }, p be positive measures on !R", with

for all fe Let F be a nonnegative continuous function on [Rn such
that ,
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uniformly in m. Then (2.102) holds also for every continuous f with is 0(F)
as x ~ I - oo, i. e. for which the set

is compact for each 8 &#x3E; 0.

Proof - First let K be any compact set in and let F E Co be a non-

negative function which is equal to 1 on K. Then converges

to F(x)dp(x)  oo as m -~ oo, hence is uniformly bounded. So we can

assume without loss of generality that F(x) &#x3E;_ 1 on K.
Now let {F~} E Co be a sequence with 0 ~ Fj i F pointwise. Then,

for each j,

so by the monotone convergence theorem,

Now fix 8 &#x3E; 0, and let K be a compact ball containing the set (2.104).
Then there exists a function g E Co such that f (x) - g(x) ) I for x E K,
!/(x) - g(x) I s f(x) for x ~ K. Thus f (x) - bF{x) for all x. The
claim of the theorem then follows from (2.102) together with (2.103)
and (2 , 106)..
We apply Lemma 2 . 4 with &#x3E; 0. Thus, for (2 . 64)

to hold, it suffices that be bounded as a - 0, for some ~ &#x3E; 0. But
this holds, by construction [cf. (2 . 80) ], for ~ = 2.

Similarly, for (2. 65) to hold, we need (2.101) for/M = I X 12; it thus
suffices that al:,cp be bounded as a - 0, for some § &#x3E; 2. Using (2.80),
this is equivalent to the boundedness of ~~/~2. By (2.44), it is certainly
weaker than the boundedness of ~/~2. But we shall prove in Section 3.3
that is indeed bounded (for d  4, assuming Conjecture 3.2).

Finally, we apply the same method to study (2.66)/(2.78). The lattice
connected 4-point Schwinger function (in difference variables) x2, x3)
is a negative measure on [R3d, by the Lebowitz inequality. Applying
Lemma 2.4 with

for some a &#x3E; 0, we need to prove a uniform bound

uniformly in a. We mimic the proof of the Glimm-Jaffé upper bound
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on g [72 ]- [74 ]. By an inequality of Newman [46, Theorem 5 ] (which also
follows [74 from the Ginibre inequality  0 and permutations),
we have

where G4 is the connected 4-point function of the lattice theory [cf. (3.16)].
Thus, for example,

where

and

By Young’s inequality, (2.110) is bounded by

By a simple argument using Holder’s inequality [ 74 ], this is bounded by

for any 03C6 &#x3E; - + 2a. Combining this with (2.80) and (2.81), we find that
(2.108) is bounded provided that ~~/~2 is bounded for some cjJ &#x3E; d/2.
But for d  4 this is trivial, since we can take cjJ = 2 ! (For d &#x3E;_ 4 it requires
some extra control over the 2-point function.)

This completes the proof of existence and correct normalization of
the continuum limit (modulo the bound on ç/ç2 from Section 3.3). Thus,
to prove that the continuum theory constructed here is non-Gaussian, i. e.,
that g &#x3E; 0, it suffices to show that g is bounded away from zero uniformly
as the lattice spacing a tends to zero. This is a statement about the lattice 
theories, and it forms the subject of the next chapter.

3. DETAILED STUDY OF THE FIELD EQUATIONS

3.1. Derivation of the Field Equations.

We are now ready to attack the heart of the problem : to show that the
continuum limit of the (PJ lattice theory (d  4) with the conventional
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(superrenormalizable) charge renormalization is non-Gaussian. By the
results of Section 2. 3, it suffices to show that g, the dimensionless renor-
malized 4-point coupling constant of the lattice theory, is bounded away
from zero uniformly as the critical point is approached. To demonstrate
this for sufficiently small (but nonzero) bare coupling constant go, we
follow the intuition of field-theoretic perturbation theory: namely, that
the leading (tree-graph) contribution to g is just go, while the non-leading
contributions are O(go) uniformly as the ultraviolet cutoff A tends to infinity.
(This is because, in dimension d  4, all graphs are finite once the mass
renormalization has been performed.) Since perturbation theory can be
obtained as the formal iterative « solution » of the exact field equations,
it is natural to make use of these equations. We emphasize that we always
work with the lattice theory defined by (2 . 3) and (2 , 1 7) ff.; in this framework,
the field equations are rigorous theorems relating the various correlation
functions.
The field equations can be derived by integration by parts in the func-

tional integral defining the theory [75 ] [64 ]. To make this rigorous, consi-
der first the finite-volume theory (2 .17) written as follows :

where

and a is an arbitrary number strictly greater than 2dJ. We have introduced
the magnetic field hi for reasons that will become clear shortly. Using
the identity

we conclude that
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for each i E V. Now consider an infinite-volume theory defined formally by

and satisfying the requisite DLR equations. Then, for any finite volume V,
the conditional expectation of  . ), conditioned on the spins outside V,
is given by (3.1) with

Thus the conditional expectation satisfies (3.5), and ( . ) satisfies

for each i E 7Ld, and for each well-behaved function F of a finite number of
spins (for example, a finite product). This is the basic field equation.
Note now that since we have taken a &#x3E; 2dJ, the infinite matrix K is

invertible ; let C be its inverse. Then (3 . 8) implies

( It is easy to see that the formal manipulation of infinite sums here is legi-
timate, at least if ~ . ~ satisfies the superstability bounds.) However, (3 . 9) is
not yet suitable for our purposes, because it contains the bare propagator C,
which is divergent due to infinite mass renormalization in dimension d &#x3E;_ 3.
(Actually, since we have not bothered to Wick order, it is divergent in d &#x3E; 2.)
We therefore wish to rewrite (3.9) using the interacting propagator

We proceed as follows [64 ] : Setting = qJ j in (3 . 9), we obtain
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Inserting this into (3.9), we find

Assume now that the state ( . ) is translation-invariant. In that case, the
second term in (3 .12) can be rewritten as

where we have used (3.9) and introduced the inverse propagator
r = G -1 [30 ] [64 ]. (We assume that the state ( . ) is ergodic, so that

0 as Ii - j I - oo ; then r is well-defined [30 ]. Note that our
definition of r is the negative of that used by Glimm and Jaffe [30 ] [64 ].)
Inserting (3.13) into (3.12), we conclude that

where we have introduced for notational convenience the projection ope-
rator

(3 .14) is the mass-renormalized field equation: compared to (3. 9), the
replacement of C by G is compensated by the term involving Pl. Note
that the bare mass never occurs in (3.14) : C is explicitly absent, and the
term (Bo - in is annihilated by the projector 1 - Pi. Thus
we can work with (3.14) and never again worry about the mass renorma-
lization.
Our basic tool in this paper is the field equation for the connected 4-point

function. Taking F( qJ) = (3 .14) and rewriting in terms of
the connected correlation functions
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and

we find, after a bit of algebraic manipulation,

where we have introduced the connected 6-point function one-particle-
irreducible in a single channel

Pictorially we have

3 permutations

Here the lines are full propagators G, and the blobs are connected corre-
lation functions G4 and G6PI.
To summarize the argument thus far:

THEOREM 3.1. - Any translation-invariant, ergodic, even measure

satisfying the superstability bounds and the DLR equations for the
model (2.3) satisfies the field equations (3.8), (3.9), (3.11), (3.14) and
(3.18).

Remarks. - 1. The reader should convince herself, using Feynman
graphs, that (3 . 20) is correct - in particular, that the 1 PI nature of the
last term is what converts bare to interacting propagators on the upper leg.

2. These equations have also been obtained by Johnson [76 ], cf. his
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equation (22); in fact, he goes much further, and attempts to eliminate
the bare charge as well as the bare mass, in favor of the fully renormalized
quantities. Although his work is extremely interesting, we take a different
approach. Unlike Johnson, we do not consider the field equations as
continuum equations in search of a solution, but as true stratements (one
among many) concerning an already-defined theory : the qJ4 lattice model.

3. It should be noted that the field equations do not contain the full
content of the theory. This is easily seen, for example, in the d = 0 theory,
where the field equations are three-term recursion relations for the expec-
tations ( qJ2n ). Although the theory is uniquely defined, the field equations
have a one-parameter family of solutions labelled, for example, by the
arbitrary choice of ( qJ2 ). Presumably only one of these solutions satisfies
Nelson-Symanzik positivity, namely the correct one given by

4. DLR-like equations for the correlation functions which contain
more information than the field equations used here have been derived
by Suzuki [77] ] and Schwabl [78 ], among others. It would be very inte-
resting to make use of these equations in the present context, but I have
not found a way to do so.

3.2. Proof of a Lower Bound

on the Renormalized Coupling.

The idea of the proof is as follows : The first term on the right side of (3 . 20)
is explicitly nonzero, since it is proportional to )"0’ Hence it suffices to

show that the second and third terms are O(~), uniformly as the critical
point is approached. We shall handle the third term by a (conjectured)
correlation inequality. We handle the second term by iterating (3 . 20) once ;
this strategem works precisely because the leading radiative correction
to the 4-point function is ultraviolet convergent in dimension d  4. In

other words, the tree graph really is the dominant term on the right side
of (3.20), for d  4.
Note first that the connected 4-point function with two arguments tied

together takes on a particularly simple form in the Gaussian (Ào = 0)
and Ising (ho = oo) limits :
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The Gaussian value of zero is obvious; the Ising value follows from the
fact that, in an Ising model, w takes only the two values + c and - c, so that

combining this with (3.16) gives (3.21). Moreover, in any qJ4 theory, this
4-point function is rigorously bounded between its Ising and Gaussian
values, i. e.

these are just the Griffiths and Lebowitz inequalities, respectively.
Remark. In the continuum ~p4 theory in dimension d &#x3E;_ 4, the rigo-

rous bound (3.23) is violated in every order of perturbation theory, since
the tying together of two arguments produces an ultraviolet divergence.
Thus, perturbation theory (even renormalized perturbation theory) is an
extremely unreliable guide for d &#x3E;_ 4. Rather, the ultraviolet behavior of G4
in the continuum qJ4 field theory must be considerably softer than that
predicted by perturbation theory. (Of course, it may be so soft as to be
identically zero, i. e. a (generalized) free field !) A similar rigorous result
(which refers, however, to the amputated vertex function) has been derived
by Lehmann, Symanzik and Zimmermann [79] ] (see also [80 ]- [83 ]) for
the Yukawa theory, and by Evans [84] ] for quantum electrodynamics.
These bounds are also violated in every order of perturbation theory,
as is the Kallcn-Lehmann positivity condition for the 2-point function.
The meaning of this violation of (3.23) will be discussed further in Sec-
tion 4. 3.

Similarly, the connected, partially-1 PI 6-point function with three argu-
ments tied together reduces to a simple form in the Gaussian and Ising cases :

The Gaussian value is obvious; the Ising value follows, by a straightforward
computation using (3.17) and (3.19), from the identities ~p2 - c2 and
~p = Hence it is natural to conjecture:

CONJECTURE 3.2. - In any qJ4 lattice theory,

This conjecture is supported by the analogy with (3.23) and more gene-
rally by the idea that one expects all qJ4 theories to « lie between » the Gaus-
sian and Ising extremes. However, I have at present no idea how to prove
Conjecture 3.2; this problem is discussed further in Chapter 5.
Remarks. 1. One can also introduce [64] the connected (unamputated)

6-point function which is one-particle-irreducible in all channels, denoted I-’6.
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A similar computation then shows that

(This has been noticed in [38 ] [85 ] for the special case jl =.j2 =.j3~) It is
then natural to conjecture that

for all qJ4 theories. The weaker conjecture

has been employed by Glimm and Jaffe [64 ] [30 ] to derive some rather
strong information on the field-strength renormalization; see also Sec-
tion 3.3 below. There is some numerical evidence for (3.28) in dimen-
sion d = 1 [86].

2. (3.25) and (3.27) are true in the lowest non-trivial order of pertur-
bation theory [O(ÀÔ) for (3 . 25), for (3 . 27) ].
We are now prepared to analyze (3.18)/(3.20) and to show, assuming

Conjecture 3.2, that the renormalized coupling constant g is bounded

away from zero. By the Lebowitz inequality, is pointwise
negative; we first show that it is not too negative. Since the second term
in the brackets in (3.18)/(3.20) is pointwise negative (by the Lebowitz
and Griffiths inequalities), it can be discarded. Using the upper bound
in (3.25), we conclude that

Thus, the connected 4-point function is bounded by three times its tree-
graph value.
Now we show that G4(i, j1, j2, j3) is sufficiently negative. By the lower

bound in (3 . 25), the last term in (3 .18)/(3 . 20) can be discarded. So we need
only look at the second term in the brackets in (3.18)/(3.20); we bound
it using (3.29) with two arguments tied together. Thus
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Pictorially,

3 permutations

Now the heuristic idea is that the right-most graph in (3 . 31) is ultraviolet
convergent for d  4, so that this term is really 0(;’6) [or more precisely,

uni,f’ormly in the ultraviolet cutoff A. Of course, this idea is not quite
right, because the lines in (3.31) are interacting propagators G. But we
can still get the desired bounds. Evaluating (3 . 30)/(J. 31) at zero momentum
(i. e. summing over /i,/2,/3), we get

But by the universal bounds proven in Appendix A (Propositions A. 4
and A. 5), we have

for d  4, for a suitable (universal) constant c 1. Hence

Now recall that we are using the conventional superrenormalizable charge
renormalization, in which and hence go are held fixed. By (2. 79) and
(2. 80),

so

by (2.52), for a suitable (universal) constant c2 and for Ç2 not near zero.
In Section 3.3 we shall obtain a non-zero uniform lower bound on 
It then follows that if we choose
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we find a nonzero lower bound on g, uniform as the critical point is

approached. This is precisely what we set out to prove.

Remarks. - 1. The bound (3.29) implies a critical-exponent inequality
which entails the failure of hyperscaling for qy4 models in dimension d &#x3E; 4 ;
see Appendix B. This has recently been proven also by Aizenman [229, 230 ]
and Frohlich [231 ] without using conjecture 3 . 2.

2. We didn’t really need the full strength of Conjecture 3.2; it would
have sufficed to have instead

for some universal constants Cl  6 and c2  ~. Moreover, we need the lower
bound in (3 . 39) only at zero momentum (i. e. summed over 71~2~3)’ Since
the upper bound is used with two legs tied together [see (3 . 29) - (3. 30) ],
not all the legs can be at zero momentum; but it suffices to know the inequa-
lity, say, summed over j2 and 73. See, however, Section 3 . 3, equation (3 . 45) ff.

3. The argument can also be made to work on the basis of the r 6 _ 0
conjecture of Glimm and Jaffe [30] ] [64 ]. However, this is somewhat

tricky, because the extra terms involving r may not have a definite sign
in position space (cf. [30, Proposition 3 . 2 ]). One must proceed cleverly
so as to arrange that all r lines carry zero momentum (for we do know
that 0). However, this is hardly worth the effort; it shows that

the « naturai » conjecture for this problem concerns G6PI, not r 6. See also
Section 3.3 and Remark 4 there.

4. The argument fails for d &#x3E;_ 4 because the right-most graph in (3.31)
is ultraviolet divergent; in other words, (3.33) does not hold. Indeed,
the divergence of this graph can be made the basis of a possible approach
to 4) yielding a conclusion exactly opposite to that obtained for
d  4; see Section 4.2.

3.3. Bounds on the Field-Strength Renormalization.

In order to complete the argument of the preceding section, we need
to derive a uniform lower bound on This quantity is essentially
the field-strength renormalization constant in the « intermediate renor-
malization »; it is thus closely related to the physical field-strength renor-
malization constant Z. [See also (2 . 40) and (2 . 44). ] In this section we shall
in fact prove a uniform lower bound on both and ZJ. Unlike the bounds

proven in Section 2 . 2, however, this one is a deep dynamical issue : we shall
need to use the field equation for the inverse propagator r, as well as Conjec-
ture 3. 2.
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Note first that

where we have used the fact that p-o = 0 by symmetry. Hence we
need to study r.
To derive the field equation for r [64 ], we apply the operator C-1 r = I-’C-1

to (3.II): 
-

by reflection invariance. Inserting (3 .14) [with F( qJ) = V’( ~p~) ], we find

(Note that the arbitrary number a has disappeared from (3.44), as it had
better.) This is the field equation for r. Note that, unlike (3.14), this equa-
tion is not entirely free of references to the bare mass term Bo ; so it might
be thought that it is of no use to us when the mass renormalization is infinite.
(To be sure, the ultraviolet divergence in Bo must be cancelled by a similar
divergence in ( CPJ ), leaving a finite remainder; but this observation does
us no good, since we have no control over this cancellation. Indeed, our
entire approach is based on renouncing the attempt to control explicitly
the mass renormalization.) But the crucial fact is that the uncontrolled
mass renormalization affects only the i == j term in by (3 . 40), this
does not contribute to the field-strength renormalization. (In the language
of field theory, this is simply the fact that the proper self-energy part may
be infinite while’its second derivative with respect to momentum is finite.)
To bound (3 . 44) for i ~7, we first expand the last term :
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By the Lebowitz inequality, G4 ::;;; 0. Hence, using the upper bound in
Conjecture 3.2 [needed here only for ji = /2 = /3 ], we find

and hence

Moreover, by the universal bounds proven in Appendix A (Proposition A. 5 ),

Thus, for the superrenormalizable case (d  4 and go fixed), we find,
inserting (3 . 48) into (3 . 47) and (3 . 40) and using (3 . 35) and (2 . 52) :

This gives the desired bound on (3.37), and completes the argument of
the preceding section.
Only slightly more argument [30 ] [64] is required to obtain a bound

on the physical field-strength renormalization constant Z. By (3 . 47), we have

as xi ) I - oo. It follows [56] ] [64] ] [65] ] that the spectral weight dvo(a)
occurring in (2.55) is supported on a &#x3E; cosh (3m) - 1. (In other words,
there is an upper mass gap extending to 3m, and also the absence of CDD
zeros below 3m.) Thus, the integral appearing in (2 . 57) can be bounded :

and hence, by (2.57) and (2.55),

Thus our previous argument proves also that

By (2.44), this also gives an upper bound on 
Summarizing the results of this chapter, we have proved the following :

THEOREM 3.2. - Assume Conjecture 3.2, and consider lattice ~
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models (d  4) with go fixed. Then and are all bounded
above as the critical point is approached; and if go is sufficiently small
(but nonzero), then the dimensionless renormalized coupling constant g
is bounded away from zero as well. Thus, a continuum limit theory exists
(by subsequences), satisfies all Osterwalder-Schrader axioms except perhaps
Euclidean (rotation) invariance, and is non-Gaussian.

Remarks. - 1. For d &#x3E; 4, we find [by (3 . 48) ] that and

are all bounded provided that we take 03BBSM0 bounded as we go to the
critical point. (This extends [30, Theorem 5.1] ] and corrects an error in
its proof; see Remark 2 following Proposition A. 5. I should emphasize
that the essential ideas of this section are taken almost verbatim from

[30 ] [64 ].) Moreover, in this case the continuum limit theory is Gaussian ;
this is immediate consequence of (3.29). (This fact was anticipated in
[30, Theorem 5 . 2 ], by an entirely different argument. For further discussion,
see Appendix B.) Of course, it has recently been proven [229-231 ] that
the continuum limit for qJd (d &#x3E; 4) is Gaussian no matter how ~o is varied
as we go to the critical point (see also Chapter 4) ; but it is possible for the
limit to be achieved at different rates (i. e. with different critical exponents)
for different modes of variation of ho. Moreover, one limit might be an
ordinary free field (cf. [30, Theorem 5 . 2 ]) while another is a generalized
free field. As will be seen in Section 4. 2, ~ bounded is a natural borderline.

2. The same comments hold for d = 4, again by (3.48), provided that
we take /~ ~ O(1/log ç) as we go to the critical point. As will be seen in
Section 4.2, this also is a natural borderline.

3. The heuristic basis of this section’s argument is the following: For
d  4 (with go fixed), the leading perturbative contribution to the field-
strength renormalization, namely

is ultraviolet convergent. The rigorous argument uses a correlation ine-
quality to bound the exact field-strength renormalization by a quantity
of the same form as (3 . 54), but with the exact propagator G replacing the
free propagator Go. We then use infrared bounds (and the Schrader-Mes-
sager-Miracle-Sole inequality) to bound this quantity by a constant
times its free-field value [cf. (3 . 48) ]. An exactly analogous (but simpler)
argument [87] ] bounds the specific heat by a constant times its leading
perturbative contribution

4. The use of the G6PI conjecture instead of the T6 conjecture avoids
some annoying extra terms [30, Proposition 3.2 and Theorems 5.1 and
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6.2] ] which have the effect of shifting the critical dimension (speciously)
from 4 to 5. The ease of the argument (3.45)-(3.46) shows again that the
G6PI conjecture is the « natural » one. The reason, of course, is that the
field equations (3.14) and (3.43) give rise to correlation functions which
are one-particle-irreducible in a single channel.

5. Paes-Leme [65] ] proves a (3 - 8)m exponential decay rate for r(x)
[cf. (3. 50) ] at high temperature.

4. SPECULATIONS ON THE TRIVIALITY OF tp a (d &#x3E; 4)

1 would like to offer a theoretical prediction at the
5 % confidence level: within five years, there will

be a rigorous construction of the solutions of
~(~p4)4 and of spin 1/2 quantum electrodynamics
in four-dimensional space-time.
- Arthur Wightman (1977) [88].

4.1. Critical Review of Previous Work.

The existence or nonexistence of interacting quantum field theories
in four-dimensional space-time has been the prime open question of
axiomatic and constructive quantum field theory since their inception [89 ].
Despite much work and much controversy [16] ] [90], this remains an
unsolved and apparently extremely difficult problem. In fact, recent renor-
malization-group ideas [29] ] [91-94’ ] have made clear that the behavior
of the continuum limit in non-asymptotically-free field theories is inherently
a strong-coupling problem, hence inaccessible by purely perturbative
methods. As a result, the subject has remained in limbo since the pioneering
work of the mid-1950’s: although new insights [91-96] ] have clarified
the problem, they have contributed (as yet) little toward solving it.
My purpose in this chapter is to make a modest contribution toward

solving this problem, for the particular case of the qJ4 theory in space-time
dimension d &#x3E;- 4. I argue in favor of the nonexistence that is, I argue that
the continuum limit of 03C64d lattice models (d &#x3E; 4) is necessarily a (generalized)
free field, irrespective of how the charge renormalization is performed.
The essential physical idea goes back to Landau, Pomeranchuk and colla-
borators [7~-29] a quarter-century ago; the key new ingredient is to use
correlation inequalities to justify (in part) the Landau approximation.
Although the arguments presented here are far from a complete rigorous
proof, they do open up, in my opinion, a number of promising avenues for
further investigation.

It is widely believed [93 ] [94 ] [97] (with, however, considerable dissent
[88 ] [98 ]) that a nontrivial continuum qJd theory does not exist in dimen-
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sion d &#x3E;- 4 (3). (Even the dissenters would generally concede the nonexistence
for sufficiently high d - say, d &#x3E; 4). The evidence in either direction is

extremely sketchy, but it can be summarized in four categories: high-
temperature expansions, random-walk ideas, partial summation of Feyn-
man diagrams, and renormalization-group methods. (The last two are

closely connected, as I shall explain below).

HIGH-TEMPERATURE EXPANSIONS [99].

This approach is theoretically unprejudiced and conceptually straight-
forward ; on the other hand, its results are inherently inconclusive, inasmuch
as they are based on numerical analyses with (as yet) uncontrolled errors.
The basic idea is simple : the correlation functions of the qJd lattice model
can be expanded in a power series in the nearest-neighbor coupling J,
with a nonzero radius of convergence [100-102 ]; if this series converges up
to the critical point J~ (or can be transformed to do so), then one can in
principle extract a complete knowledge of the model as a function of the
bare parameters Bo, ~,o and J ; in particular, one can survey all possible
charge renormalizations and determine whether any of them lead to a
nontrivial (i. e. non-Gaussian) continuum limit. Of course, the inherent
difficulty is in extracting reliable numerical information from a finite
number of terms of the infinite series. Although there do exist circumstances
in which rigorous upper and/or lower bounds can be obtained from finite
orders in a power series [103 ], none of these mathematical results is known
(or believed) to apply to the case at hand (but see [104 ]).
The existing high-temperature analyses are of two kinds: those which

survey the entire parameter space (Bo, Ao, J) 194 ] [7~] ] [106 ] (4), and those
which survey only a restricted subset (usually the Ising model ~o = oo)
[107-120"]. The latter case, though sufficient for the purposes of the
statistical mechanics of critical phenomena, in which ~,o is fixed, is insufficient
for the purposes of field theory, in which arbitrary charge renormalizations
are allowed. If, however, the renormalized coupling g is monotonic in the
bare coupling go (at each fixed ç) - as is generally believed [12 ] [34 ] [86 ]
(with, however, some dissent for dimension d &#x3E;- 3 [105 ] [106 ]) - then it
suffices [12] ] to investigate the continuum limit of the Ising model. This
question can then be posed as follows: is the hyper scaling relation [73] ]
[107] ] [121 ]

true (and unmodified by logarithms) ? It is known rigorously [72-74] ]

(~) Aizenman [229] [230] ] and Frohlich [231 ] have recently proven essentially this
result, for d &#x3E; 4.

(4) Actually, one of the parameters, say Bo, is superfluous in view of the scaling (2.10).
Vol. XXXVII, n° 4-1982.



356 A. D. SOKAL

that dv~ 2014 2a4 + y &#x3E; 0 ; the continuum limit of the Ising model is non-
Gaussian if and only if the equality (4.1) holds (unmodified by logarithms).
This is known to be true for d =1 [122] and d = 2 [123, 230 ] ; it is a two-
decade-old open question for d = 3 [124] ] [125] ] [107] ] [108] ] [111-115]
[7 7 7-720"] ] (5). It is generally believed that (4.1) holds for d = 4, but
modified by logarithms [34] ] [109] ] [770] ] [77~] ] and that (4.1) does not
hold for d &#x3E; 4. (These expectations are based, in part, on the renormalization
group, discussed and criticized below. Also, Aizenman [229] ] [230] ] and
Frohlich [231 ] have quite recently proven this result for d &#x3E; 4.) The latest
high-temperature-series results for d = 4 [109] ] [770] ] [77~] ] [777] ] are

consistent with these beliefs, but do not rule out alternate possibilities [119 ].
A fair judgement, I believe, would be to describe these computational
efforts as heroic but (as yet) inconclusive.
The theoretical agnosticism of the high-temperature-series method is

not only its strength but also its weakness : whichever conclusion the num-
bers may lead to, one gains little physical insight into why it should be so.
The other three methods have the opposite property: it is not obvious
whether the arguments are to be believed, but they do in any case give a
(more or less) clear picture of the physical mechanism by which ~pd (d &#x3E;- 4)
is alleged to become free in the continuum limit.

RANDOM-WALK IDEAS.

Consider first, by way of analogy [126 ], a problem from nonrelativistic
quantum mechanics : the motion of a particle in d-dimensional space under
the influence of a repulsive delta-function potential. By analogy with
quantum field theory, we consider the regularized Schrödinger operator

where 5g is an approximate delta function [5~ &#x3E; 0, ~E(x) = 0 if x &#x3E; 8,

and = 1 with ð, E COO (say) Then ~-1 is the analogue of the

ultraviolet cutoff A, and 03BB~ is the « bare charge ». Now it can be shown
[127; 33, p. 72-73 ] that if d &#x3E; 2, then the operator HE converges in strong
resolvent sense to Ho = - A, as 0, irrespective of the choice of ~.E
as a function of 8, provided only that ~,E &#x3E; 0. (If d &#x3E;- 4, the restriction

~ &#x3E; 0 is unnecessary.) This result has a very simple interpretation in terms
of the Feynman-Kac formula for the Euclidean propagator the

probability of a Brownian path hitting the ball of radius 8 within the finite
time interval [0, T ] vanishes as 0, in dimension d &#x3E;- 2. (This follows,
by countable additivity of the measure, from the fact [33, p. 83-84] that

(~) Of course, if hyperscaling fails for d = 3, then the monotonicity must also fail, since
nontrivial continuum cp3 models are known to exist !
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a point is hit with probability zero.) 0 implies that the Feynman-
Kac integrand is bounded (between 0 and 1), the contribution of this set
of paths vanishes as s ! 0, and only the free-particle result remains. (This
argument is a slight variant of the one given in [33 ].)
The analogous argument in quantum field theory is based on a represen-

tation of qJ4 theory due to Symanzik [128] ] [129 ], in terms of a gas of
Brownian paths (see also [130-131" ]). The interaction occurs whenever
a Brownian path intersects either itself or another of the paths. But this
occurs with probability zero, in dimension d &#x3E; 4 ! [129 ] [132 ] (One should
also ask about the probability that two paths come within G of each other.
This also vanishes as G ! 0 for d &#x3E; 4 ; the case d = 4 is quite delicate.)
Thus, by analogy with (4. 2), one expects that the theory approaches a free
field as the ultraviolet cutoff l~ ~ oo, irrespective of the choice of ~,o(A)
as a function of A, provided only that ~o ~ 0. Rigorous results in this
direction are, as yet, meager; but see [133-134 ]. Added Note: Fröhlich
et al. [231 ] [232] ] have recently used the random-walk ideas to derive
rigorous correlation inequalities which imply, among other things, that
the A -~ oo limit is indeed a (generalized) free field, at least for dimension
d &#x3E; 4. The proof of Aizenman [229] ] [230] ] is also based on somewhat

related ideas.

PARTIAL SUMMATION OF FEYNMAN DIAGRAMS.

This is, in essence, the method of Landau, Pomeranchuk and collabo-
rators [16-23] ] (but see also [24-29 ]), whose solution of approximate
Schwinger-Dyson equations in the high-energy asymptotic regime is

equivalent to the summation of the « leading logarithms » in the Feynman
perturbation series. A very simple but instructive example is the bubble
approximation to the connected 4-point function in qJ1 theory (with ultra-
violet cutoff A) :

The sum is just a geometric series ; we find

for A » m. [Here we use the standard field-theoretic normalization conven-
tion, calling g what we previously called gSTD and m what we previously
Vol. XXXVII, n° 4-1982.
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called cf. (2 . 68) and (2 . 69). ] Thus

as A - oo, irrespective of the choice of go as a function of A, provided
only that go &#x3E; 0. Thus, in this approximation, the continuum limit of
a qJ4 theory is inevitably a (generalized) free field. This is the famous « zero-
charge difficulty » of Landau [16-25 ] [135 ]. Of course, the real question is
whether it is a property of the full qJ4 theory, or merely an artifact of the
above (incredibly crude) approximation. In Section 4.2, I shall argue
(but not prove !) that it is the former.
The physical mechanism underlying the result (4.4)-(4.5) is simple

enough : charge screening [18] ] [19] ] [136 ]. It is most easily explained in the
analogous example of quantum electrodynamics: a bare positive charge,
for example, polarizes the vacuum (exactly as if the vacuum had a dielectric
constant greater than unity), attracting the electrons of the virtual electron-
positron pairs and repelling the positrons ; thus the observed charge g
is less than the bare charge go. As the ultraviolet cutoff A tends to infinity,
the screening becomes complete, and g tends to zero. Moreover (and
this is the crucial point), it does no good to make go increase with A : for this
has the side effect of increasing the efficiency of the screening, so that the
increase in the denominator in (4.4) nullifies the gain in the numerator !
Of course, it is an open question whether this behaviour occurs also in the
full, unapproximated theory.

It might be argued, however, that qJ1 has a perfectly good renormalized
perturbation series. If this series is not asymptotic to a continuum 0/1 theory,
then what does it mean ? Although I am unable to answer this question
(but see [137 ]), it is worth demonstrating that the existence of a renormalized
perturbation series has no bearing on the existence or nonexistence of the
exact theory. Consider, for example, the bubble sum (4. 3) : renormalized
perturbation theory would instruct us to fix g &#x3E; 0 and to blindly choose
go(A), order-by-order, however necessary to maintain the selected g. But
inspection of (4 . 4) reveals what we would, in our blindness, be doing:
for A sufficiently large [so that g &#x3E; we would be taking go  0,
which is sure to lead to trouble [138 ] [93 ] [135 ]. (In the nonperturbative
lattice theory (2.12), for example, this is clearly forbidden.) Sure enough,
we get the trouble we deserve: the renormalized infinite-cutoff bubble
sum (4.3) exhibits a tachyon pole (in contradiction with axiomatic requi-
rements), the famous « Feldman-Landau ghost » [139] ] [140] ] [24] ] [25] ]
[135 ] [141 ].

In any case, the success of the bubble sum in predicting the triviality
of qJ1 is also its downfall: precisely because it vanishes as A - 00, it follows

that even a single one of the neglected diagrams is large compared to the sum
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of the ones considered. This discouraging observation applies, of course,
not only to the bubble sum, but to any incomplete partial sum, no matter
how comprehensive, in which g is found to vanish as A - oo (6). As a
result, the Landau argument is tantalizing but ultimately inconclusive.
We are left with the same old question, with even greater urgency : what
can we say on an exact, nonperturbative basis about the qf theory ?

Remarks. - 1. The exactly-soluble Lee model [142-144] ] [80] ] [81] ]
exhibits precisely the behavior discussed above : the « zero-charge difficulty »
and, in an otherwise unobjectionable renormalized perturbation series,
the « ghost ». This is simply because, in the Lee model (which lacks anti-
particles and crossing symmetry), the bubble sum is exact. Of course,
this can hardly be taken as evidence that the same pathologies occur in
realistic field theories such as the qy4 theory. But it does show that such
pathologies are not inconsistent with the existence of a renormalized

perturbation series.
2. The same qualitative behavior is found in the summation of all

« leading-logarithm » 4-point graphs (not just the bubble graphs). This is
the so-called parquet sum [20 [22] ] [145] ] [146 ], which has also been applied
to fermion models [28 ] [147], to the infrared behavior of qJ4 models
[148-152 ], and to various solid-state problems [~53-156 ]. The parquet
approximation can be derived from the exact crossing-symmetric Bethe-
Salpeter equations [22] ] [146] ] [150] ] [157-160 ] by approximating the
2-particle-irreducible (2PI) 4-point function as a point vertex [146 ] [150 ].
Of course, its use for studying the ultraviolet behavior of renormalizable
(or nonrenormalizable) field theories is subject to the objections noted
above (see also [150 ] and below).

3. The bubble sum (including crossed graphs so that we now get a geo-
metric series in each channel) is also the leading term in the 1/N expansion
for an N-component O(N)-symmetric qJ4 theory [36] ] [135 ] [141 ] [161 ].
Coleman, Jackiw and Politzer [135] ] argue that, although the Landau
argument is suspect because it takes lowest-order perturbation theory
too seriously in a regime where the renormalization-group-invariant
coupling is in fact large (see below), the 1/N-expansion result is not open
to any such easy criticism, since the location of the ghost pole is independent
of the expansion parameter 1/N. However, this argument is insufficient :
it is perfectly possible (and perhaps even likely [7~7 ]) that the remainder

(6) Of course, this does not necessarily mean that partial resummations of the perturbation
series are worthless. One could imagine, for example, rearranging the perturbation series
into a number (presumably infinite) of infinite classes of diagrams, such that the sum of
each class is well-behaved (or even vanishing) as A ~ 00. (This is essentially what occurs
in renormalization-group-improved perturbation theory for asymptotically-free theories.)
Of course, such a rearrangement of a highly divergent series is far from obviously valid,
but neither is it manifest nonsense.
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term in the 1/N expansion is nonuniform in the ultraviolet cutoff A, thereby
invalidating the I/N expansion for the study of the limit 1~ ~ oo.

4. A similar attempt to sum infinite classes of divergent (but cutoff)
graphs in the hope of finding a gentler behavior after summation was
proposed about 15 years ago under the name of peratization. It has been
applied to nonrenormalizable field theories [162-168] ] and to singular
potentials in nonrelativistic quantum mechanics [169 ] [170 ], but not with
much success [170-174].

5. Similar methods have been used, from a point of view opposite to
that taken here, by Parisi [175 ].

RENORMALIZATION-GROUP METHODS.

It was discovered long ago [77~-77~] ] [29] ] that the Landau et al. « zero-
charge » and « ghost » results can also be derived by renormalization-
group methods. The Landau formulae are, in fact, those found by lowest-
order renormalization-group-improved perturbation theory [141 ] [179] ]
-that is, by calculating the renormalization-group coefficient functions
in lowest-order perturbation theory and then solving the renormalization-
group equation exactly. (This is clearly equivalent to a partial summation
of Feynman diagrams, although it may not always be clear which ones
[779] ] [180 ].) This interpretation also makes clear the unreliability of the
Landau result : for it is based on taking seriously the lowest-order pertur-
bative result for the j8 function, i. e.

for ~p4 theory, even for large g where it is clearly nonsense. Assuming (4. 6),
one finds that the running coupling constant get), defined by dg/dt = 
is given by

which reaches + oo at a finite t and then reappears at - oo. [This is

essentially the same as (4.4), up to a factor 3 arising from the fact that (4. 6)
incorporates contributions from all three channels. Crudely speaking,
g(t) is analogous to the bare coupling go(A) at cutoff A ~ ] The diver-
gence of g( t) at finite t also induces a « ghost pole » in the various correlation
functions. This disaster occurs for any theory in which
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On the other hand, it could be avoided if j8 has a zero for some g* &#x3E; 0,
or if f3 increases sufficiently slowly at infinity. Thus, the key question is

the behavior of peg) at non-necessarily-small g : this is clearly a question
which goes beyond perturbation theory.

Remarks. - 1. By « renormalization group » I always mean the field-
theoretic renormalization group of Gell-Mann and Low, Callan, Symanzik,
Weinberg, ’tHooft and others [34 ] [91-93 ] [181 ]. The « modern » renorma-
lization group of Wilson [94 ] [182 ], which works within an infinite-dimen-
sional space of Hamiltonians, is much deeper. For some crude results on

cp1 in this approach, see [94, Section 13]; for the d = 4 Ising model,
see [183] ] [184 ].

2. The above discussion is vague because I cannot make much sense out

of it. The field-theoretic renormalization group is concerned with how

various continuum cp4 theories transform into each other under dilations.
But if the only continuum cp1 theory is g = 0, what does the function peg)
even mean ?

3. I have perhaps been too hasty in my repeated assertion that strong-
coupling behavior cannot be computed from perturbation theory. In fact,
resummation methods have been successfully applied to the anharmonic
oscillator [185-187] ] and to cpj [71 ] [188-190] ] (but see [119 ]), allowing
the quantitative (and quite accurate) computation of strong-coupling
behavior from a manageable number of terms of the weak-coupling pertur-
bation series. Khuri [98 ] has attempted an analogous Borel summation
of the perturbation series for f3(g) in cp1, using the first four terms of the
series [191 ] [192 ]. However, Khuri’s work is based on an ad hoc prescription
for handling the renormalon singularities which seems difficult to justify ;
therefore his results cannot, in my opinion, be taken seriously (see also [137 ]).

4. The earlier work of Khuri [193 ] [194 ] is, on the other hand, quite
interesting. It tends to show that if a nontrivial continuum cp1 theory
exists, then the correlation functions cannot be analytic in a sector in the
complex g-plane ; in particular, they cannot be the inverse Borel transform
of any distribution [195] ] [196 ]. (This casts further doubt on the results
of [98 ].) Essentially, the Landau ghost has reappeared, this time at slightly
complex g [197 ].

5. The renormalization group is often cited [34 ] [107 ] [109 ] ] [77~] ]
as predicting that the d = 4 Ising model has mean-field critical exponents
with logarithmic corrections. This argument implicitly assumes that the
Ising model is within the « infrared domain of attraction » of the g = 0
fixed point -an assumption which may well be true, but is certainly an
open question. 

’
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4.2. A Possible Destructive Approach to ~p4.

The Lee model is a very special one, considerably
differing in several respects from physical inter-

actions ; and the validity of Pomeranchuk’s proofs
has been doubted. In my opinion such doubts are
unfounded.
... It therefore seems to me inopportune to attempt
an improvement in the rigour of Pomeranchuk’s
proofs, especially as the brevity of life does not

allow us the luxury of spending time on problems
which will lead to no new results.
- L. D. Landau (1959) [198 ].

In this section I shall give some heuristic arguments -and some ideas
for a possible proof - that the continuum limit of ~p4 lattice theories
(d &#x3E; 4) is necessarily a (generalized) free field, irrespective of how the
charge renormalization is performed. The arguments are motivated by the
bubble sum (4. 3)-(4. 5) ; the idea is to use correlation inequalities (or
integral-equation arguments) to show that the qualitative behavior found
in the bubble sum is also a feature of the exact theory.

Let us first consider, for purposes of motivation, the bubble approxima-
tion to the connected 4-point function with two arguments tied together :

where + P2) is the bubble integral with cutoff A and momentum
pi + p~ flowing through, i. e.

Thus, as A ~ oo, also approaches oo. Provided that go(A) is not
chosen to vanish too fast as  ~ oo, we find that (4.10) approaches
G(pl)G(p2), which is just the Ising-like form (3.21) [up to a factor of 2
which should not be taken too seriously, in view of the complete mutilation
of crossing symmetry involved in this approximation]. This behavior
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can also be expressed by saying that the fluctuations of the field qJ2 are
much smaller than those of the field in other words, the field qJ is tending
to become concentrated near two values, - c and + c (for some c). We thus
conjecture the following physical picture: ultraviolet divergences for
d &#x3E; 4 drive the theory toward Ising-like behavior for the field ~2 (and
more generally as A -~ and the theory becomes Gaussian in this
limit. This conjectured behavior is at least consistent with the belief that
the Ising model itself becomes Gaussian in the continuum limit for d &#x3E; 4
(recently proven by Aizenman [229] ] [230 ] and Frohlich [231 ] for d &#x3E; 4).

Remark. - If we take go(A) 0(l/logA) as A ~ oo, then (4.10)
can avoid approaching the Ising-like form. Of course, this procedure
is also guaranteed, by (3 . 29), to give us a Gaussian theory in the continuum
limit. (See also Appendix B and Remark 2 of Section 3.3.) Thus, we get
a Gaussian theory either way, but the rate of approach may be different ;
also, the limit might be an ordinary free field if go(A) - O( 1/log A) but a
generalized free field otherwise.

Motivated by the above conjecture, we rewrite the exact field equation
(3.18)/(3.20) so as to exhibit explicitly the deviations from the Ising-like
behavior (3 . 21) and (3 . 24) ; we then try to argue that these deviations
vanish as A ~ 00. It is most convenient to use pictures rather than write
out the equations. We define first the deviations from the Ising-like forms :

and

Substituting this into (3.20), we find

(Note that the tree-graph term has disappeared. This is as it had better be :
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in the Ising limit the left side approaches a finite limit, so the
brackets had better vanish.) By Conjecture 3.2, we have

pointwise, so that

3 permutations

pointwise. Thus, to get an upper bound on - u4 (and hence on g), it suffices
to get an upper bound on (4.13) evaluated at zero momentum. To get an
equation for (4.13) in terms of itself, we tie together two arguments in (4.15) :

2 permutations

We can now bring the first term in the brackets to the other side and expli-
citly invert the resulting operator ; defining

(remember that this is an integral on the torus) and

2 permutations
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The first term on the right side of (4 . 21) is clearly the bubble sum (4.~9) ;
inserted into (4.17) it would give the bubble sum (4.3) in each of three
channels. The question is: do the other two terms on the right side of
(4.21) alter the qualitative behavior ? I have no definitive answer, but
I can say this much : the first term in the brackets does not do so. This is
because, by the correlation inequality (3.23), we have

pointwise. Obviously the 2-point functions occurring in that term are
also pointwise positive. The wiggly propagator (4.20) is not necessarily
pointwise positive in position space, but it is positive when summed over
position space, i. e. at zero momentum. We thus have

at zero momentum. In other words, the first term in the brackets in (4 . 21 )
would, if treated exactly, merely reinforce the vanishing of (4.13) found
in the bubble approximation. 

’

This is the end of the line : I do not know how to handle the 6-point
function term occurring in (4.23). By (4.16) it has a sign which could hurt
us. Of course, Conjecture 3.2 gives the lower bound 

’

but this does us no good: inserted in (4.23) it produces an ultraviolet-
divergent bubble which cancels the damping factor carried by the wiggly
propagator; as a result, that term is 0(1) rather than the hoped-for
0(1/log A).
However, (4.23) does lend support to the physical picture conjectured

above, for we have the following self-consistency result : Assume that the
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6-point deviation from Ising vanishes in a suitable sense as the ultraviolet
cutoff is removed, e. g.

pointwise, with C~ -~ 0 as A ~ oo. Then the 4-point deviation from
Ising also vanishes in this limit, in the sense that

at zero momentum, which vanishes as A -~ oo. [Here we assume, as betore,
that does not go to zero too fast as A -~ oo ; to be precise, we

, 
assume that ),oF(0) - oc as A -~ oc. Of course, if this is not the case,
then the limit is. Gaussian anyway, by (3 . 29). ]

- Remarks. - 1. Quite possibly the above argument can be extended,
using the higher-point field equations, to show that if a suitable 8-point
deviation from Ising vanishes as A -~ oo, then so do the 6-point and
4 -point ones, and so on. (However, one has fewer correlation inequalities
available, at least at present, as one moves to higher-point functions.)
Such a self-consistency argument would be useful from a heuristic point
of view (if not from a rigorous one) by giving further confidence in the
physical conjecture underlying the arguments of this section. Indeed,
perhaps one can develop a formal perturbation expansion in powers
of 1/log A for the various correlation functions.

2. I have sloughed over an important point by tacitly assuming that the
bubble integral (4.19) diverges as 11 -~ oo.; since interacting propagators G

occur, this is not entirely trivial. Let us return to the statistical-mechanical
normalization convention, and evaluate the relevant quantities. Ignoring
the 6-point function term in (4. 23), and inserting (4 . 23) into (4.17), we find

or
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To show that g - 0 as j - oo, irrespective of the charge renormali-
zation ~o(~), it suffices to show that

as j - oo. (I am sloughing over the distinction between ~ and ~~.) That
is, we need a lower bound on

I conjecture that

F(0) &#x3E; const

this would imply (4.29) for d &#x3E;_ 4. But I have so far been unable to prove
(4.31). The weaker inequality

for all d can be derived as follows : using the spectral representation (2 . 37)
consecutively in all lattice directions, one finds

inserting this into (4.30), one obtains (4.32). One expects better than
(4.33) ; for example if G had a Euclidean-invariant Källén-Lehmann
representation, (4.33) would be replaced by

which does imply (4.31). Of course, a lattice theory cannot be exactly
Euclidean-invariant, but one does expect approximate Euclidean invariance
for theories near the critical point (i. e. with ç » 1). Equivalently, a proof
of (4.34)/(4.31) is connected with the Ornstein-Zernike decay of the
2-point function [65 ] [199 ] [200 ], i. e. to the expectation that

with b = (d - 1)/2 rather than (the apparently also allowed) b = 0.
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A partially alternate approach to proving the triviality of continuum
~pd (d &#x3E; 4) is based on the observation that the field equation (3 .18)/(3 . 20)
is a linear integral equation for G4, with the tree graph and the 6-point-
function term acting as an inhomogeneity. (The kernel of this integral
equation depends, of course, on the interacting propagator G.) The bubble
sum tells us that if this integral operator is mutilated so as to replace the
three permutations in (3.20) by a single one (thereby wrecking crossing
symmetry), then the solution G4 becomes small in the continuum limit
(provided we invoke Conjecture 3.2 to bound the inhomogeneity G6PI).
It would be of great interest, therefore, to investigate the properties of the
unmutilated linear integral equation

where

and

The conjecture is that T has no nullspace, and that T-1 [ f ] is « small »
for « reasonable » inhomogeneities / A rigorous understanding of the

properties of the linear operator T could well lead to a rigorous proof of the

triviality of the continuum limit for d &#x3E; 4 [modulo, as always, the correla-
tion inequalities required to bound the inhomogeneity (4. 38) ].
As a warm-up to this problem, it might be interesting to study the integral

equation T [G4] = f for a restricted class of inhomogeneities £ for example,

Here c = 1 corresponds to the naive (Gaussian) approximation 
while c = 3 corresponds to the approximation giving G6PI its Ising-like
value (3.24). As explained earlier in this section, I believe that c = 3 is

a good approximation for d &#x3E; 4 and large A ; but the point now is that
it does not matter what c is, as long as it is bounded - this just alters the
solution by an irrelevant constant factor. Let us study, therefore, the integral
equation with the inhomogeneity (4.39), i. e.
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3 permutations

By analogy with (4.13), define

We then have

3 permutations

and

v

2 permutations

As before, we can bring the first term in the brackets to the other side ;
introducing the wiggly propagator (4.20), we find

2 permutations

Let us now define
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(This just amputates the legs on A, for convenience.) Then (4.43)/(4. 44) can
be written .

where the bubble F is defined by (4.19), and is expected to behave crudely
like (4 .12) [in the field-theoretic normalization convention ].

Unfortunately, I am unable to say much of anything about the properties
of the linear integral equation (4 . 47). I conjecture that the solution is unique
and behaves crudely for large A like the leading approximation

i.e. B ~ 0(1jlog A), but I have no particularly strong evidence for this
belief. Perhaps an approximate solution in the regime A » p » m can be
found by assuming that B(pi, p2) is a « slowly varying » function of p1, p2
[as (4 . 48) is ] ; see [20] ] [22] ] [145 ] [148 ] [149 ] [152 ] for a similar approxi-
mation in the parquet problem.

Remarks. 2014 1. In the first part of this section we were manipulating the
exact field equation, interpreted as one true statement (among many)
about the CPd theory ; thus, we did not need to consider an arbitrary solution
of the equations, but could restrict our study to those solutions satisfying
other known exact properties, such as correlation inequalities. This crucial
fact allowed the use of (4.22) to discard the crossed terms involving the
4-point function. Here, however, we are considering the approximate
field equation (4 . 40) ; thus, we have no right to invoke correlation inequa-
lities. (Moreover, since the magnitude of c is unknown, so is the sign of A.)
Now I suspect that a solution to (4 . 47) necessarily satisfies 
[if so, it would immediately imply that (4 . 48) is an upper bound ], but this
must be demonstrated using only (4.47).

2. The approximate equation (4 . 40) is closely related to, but not identical
to, the parquet approximation [20] ] [22] ] [145 ] [146 ]. Every graph obtained
in the iteration of (4.40) is a parquet graph, but not all parquet graphs
are obtained ; in fact, the only graphs obtained are those in which two of
the four external legs meet immediately at a vertex, and in which the graph
obtained by the deletion of this vertex and its two attached external legs
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still has this property. [This is immediate from inspection of (4.40).] ]
For example, the parquet graph

and higher ladder graphs do not appear in the iterative solution to (4.40).
Moreover, those graphs which do occur are given different weights than
would be assigned in the parquet approximation (even if c = 1) ; this is
because some of the graphs that would have been contributed by the
G6PI term are parquet graphs.

3. The approximate equation (4.40) is also considered, from a different
point of view, by Bender et al. [207 ].

4.3. Another Possible Destructive Approach to qJ 1.

In the preceding section I explained an approach to cp4 that would, if
correct, give an understanding of the dynamical mechanism by which ~p4
becomes trivial in the continuum limit (and would even allow calculation
of the rate at which this occurs as A - oo). Here I should like to explain
an alternate idea which might yield an essentially axiomatic proof that
continuum qJd (d &#x3E;- 4) is necessarily a (generalized) free field. The disadvan-
tage of this method is that it affords less physical insight; the advantage is
that it is much more general, covering a wide range of possible ways in
which one might try to construct a continuum qJd theory, including but
not limited to lattice approximations.
The key observation is that the Griffiths/Lebowitz inequality (3.23),

or more generally the Ginibre/Lebowitz inequality [46 ] [74 ]
- 2 min [Gk1k3Gk2k4, permutations ]  G4(kl, k2, k3, k4)  0 (4 . 50)

[see (2 .109) ], is violated in every order of renormalized perturbation theory
for the continuum qf theory, for any configuration of ki, k2, k3, k4 which
brings a pair of arguments sufficiently close while keeping all others well
separated (’). This is because the bringing together of two arguments
produces an ultraviolet divergence in G4 - proportional to log (1/E),
where 8 is the separation of the arguments - even though the bounds (3 . 23)
and (4. 50) remain perfectly finite. (The same is true for the tree graph in
dimension d &#x3E; 4 ; the divergence is proportional to E4 - d. Higher graphs,
being unrenormalizable for d &#x3E; 4, can’t really be considered.) Thus, the

(~) It is even allowed to have two close pairs, provided that these two pairs are kept
separated from each other.
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ultraviolet behavior of G4 in any continuum vf field theory (d &#x3E; 4) must
be considerably softer than that predicted by perturbation theory. On the
other hand, as I shall argue (but not prove !), this is unlikely for an interacting
field theory. The only way out is to have G4 = 0, i. e. a Gaussian theory.
The belief that the exact ultraviolet behavior of G4 must be at least

as « hard » as that found in lowest-order perturbation theory comes from
at least two sources :

1) ANALOGY WITH THE 2-POINT FUNCTION.

Positivity of the metric in the physical Hilbert space (equivalently,
Osterwalder-Schrader positivity in Euclidean space) implies, via the
Kallen-Lehmann spectral representation, that the exact 2-point function
is at least as singular in the ultraviolet region as is the free 2-point function.
Of course, this is hardly much evidence that the same behavior occurs
for the connected 4-point function, but it is suggestive. (Even the analogy
is not precise : we wish to compare G4 not to its free-field value (which is
zero !), but to its value in first-order perturbation theory.)

2) CONFORMAL-INVARIANT SKELETON THEORY.

If the Callan-Symanzik 03B2 function [92 ] [93 ] [181 ] has a zero at some g*,
then it is believed [202] ] [203] ] that the continuum ~p4 theory at g = g*
will be asymptotically conformal-invariant at momenta p » m. Now
conformal invariance (together with Osterwalder-Schrader positivity)
puts considerable constraints on the correlation functions, and it may be
possible to test whether these constraints are compatible with (3.23) and
(4.50). Unfortunately, the conformal-invariant 4-point function retains
considerable arbitrariness [204-206 ], so I have been unable to say anything
concrete. However, in a conformal-invariant Yukawa theory (or theory
of two interacting scalar fields), the 2-point and 3-point functions are
completely determined, up to a multiplicative constant, by the dimensions
of the fields [207-209 ] ; and it is explicitly seen [207 that they are at least
as singular in the ultraviolet as the ordinary perturbative forms. Moreover,
in the conformal-invariant skeleton expansion [207] ] for the 4-point
function, (3. 23) is violated : the graph

(with conformal-invariant propagators and vertices) is logarithmically
divergent for d = 4, irrespective of the dimensions of the fields. Again,
this does not rule out the possibility that the exact 4-point function might
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be softer than each individual term in the skeleton expansion, but it is

suggestive.
Remarks. - 1. The amputated 2-point and 3-point functions have softer

ultraviolet behavior in a conformal-invariant theory than in ordinary
perturbation theory [207]; it is crucial, therefore, that (3 . 23) and (4 . 50)
refer to the unamputated 4-point function G4. For this reason, an analogous
argument based on the LSZ theorem on the vertex function [79-84 would
not work (cf. the comments in [~0 ]).

2. The correlation inequalities (3.23) and (4.50) are proven first, of
course, in the lattice theory ; they obviously carry over to the continuum
limit. To be sure, other methods of taking the continuum limit (for example,
those employing Pauli-Villars regularization) could cause these inequalities
to be violated in the cutoff theory. But I think it is fair to say that any
continuum scalar field theory violating (3 .23) and (4. 50), though it may be
a perfectly good theory, ought not to be called a cp4’ theory.

3. Hidenaga Yamagishi has pointed out to me the possibility that

~p4 exists but that g* = oo, so that no conformal-invariant theory exists.
Alternatively, one could have g*  oo but things sufficiently singular so
that no theory at g* exists.
The problem can thus be stated : is (4 . 50) compatible with Osterwalder-

Schrader positivity (or O-S positivity and conformal invariance [209] ] [210 ])
with d &#x3E;_ 4 and G4 t= 0 ?

Remark. If one assumes also that the given continuum theory satisfies
the Lee-Yang theorem (as a limit of lattice cp4 theories would certainly do),
then G4 = 0 implies that the theory is a (generalized) free field [15 ].

5. SOME OPEN QUESTIONS

This has been a long paper, with both many facts and many conjectures.
Its purpose is to propose an alternate program for the construction of the
03C643 theory, and a possible program for the destruction of the qj theory
(d &#x3E; 4). The first of these programs has been carried quite far ; the second
is still extremely speculative. Since my goal is to stimulate further research,
I should like to close by stating as clearly as I can that which I do not
know.

Only two points remain incomplete in the cpj program: the proof of
Conjecture 3.2 and the proof of Euclidean invariance.

1) CONJECTURE 3 . 2 .

This conjecture appears quite difficult to prove ; the key stumbling block
is the appearance of the inverse propagators r in the definition of G6PI,
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which makes (3.25) quite unlike any correlation inequality yet proven.
It is worth noting that r makes sense in an arbitrary finite lattice model ;
it is just the matrix inverse of the positive-definite matrix

As a first step towards understanding inequalities involving r, one might
attempt :

l a) Prove (or disprove) that rij :::; 0 for i # j, for a suitable class of lattice
models. This is known to be true for Gaussian ferromagnets (by a trivial

calculation), for spin - - Ising models of up to 3 sites ( !) (by direct calcu-
lation or by using [10, Corollary A. 3 ] combined with Griffiths’ inequality

and for Euclidean-invariant O-S-positive field theories (by the spectral
representation [34 ]). Certain special cases are also known for reflection-
positive lattice models, by the spectral representation (2.55). But the goal
is to prove the inequality by purely algebraic or combinatoric means,
without using the detailed geometric structure of the lattice. Already for
4 x 4 matrices the conditions for a matrix G to have an inverse with nega-
tive off-diagonal elements become quite complicated - [211-213 ].

lb) Prove (or disprove) Conjecture 3.2 and (3.27) for the 
model (also called the d = 0 model or the « toy integral »).

l c) Study Conjecture 3 . 2 numerically, either by Schrodinger techniques
for the case d = 1 [86 ], or by high-temperature expansions resummed
with Pade approximants.

ld) Verify that Conjecture 3 . 2 is valid in the leading order of perturbation
theory around the Ising model [27~-27~], i. e. that (4 .16) holds in leading
order in 

2) EUCLIDEAN INVARIANCE.

The disadvantage of the lattice as an ultraviolet cutoff is that it is far
from obvious how Euclidean invariance is recovered in the continuum

limit. Indeed, this is a detailed dynamical question [94, Section 12. 3 ],
and is presumably not true in general (e. g. compare [277] ] [277’] ] with [218-
218" ]). Of course, the 03C643 (and theories constructed here are known
to be Euclidean-invariant [3-6] ] [10 ] [11 ] [23b ], but the proof uses all the
complicated machinery which our original motivation was to avoid.

At present, I have no good idea how to prove the Euclidean invariance
of the continuum limit within the present approach. Perhaps the method
of Streater [219 ] [220 ] can be of some use. A first step might be to prove
a Lorentz-invariant spectral condition for the 2-point function, by first
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proving a lattice analogue ; the conjecture is that the « energy gap » 
[56] ] [65 should be bounded below by something which approaches Ip I
in the continuum limit. Preliminary investigations of this issue have been
made by the author and Arthur Wightman, using the diagonal spectral
representation [57].
The program sketched here for the study of the qj theory (d &#x3E; 4) is

at a much earlier stage. Among the key open questions are :

3) Figure out what to do with the G6PI term in (4 . 23).
4) Prove (or disprove) the bound (4 . 31 ).
5) Study rigorously the integral equation (4.36)-(4.38). As a warm-up

problem, study rigorously (4.40)/(4.47). Or even try to calculate, non-
rigorously, the qualitative behavior of the solutions of (4.47).

6) Prove (or disprove) that (4. 50) combined with Osterwalder-Schrader
positivity (or O-S positivity plus conformal invariance) implies G4 --_ 0
for d &#x3E;_ 4. Or try it first for d » 4.

Finally, here are some related interesting questions:
7) Prove (or disprove) that çø is a decreasing function of Bo, and an

increasing function of J (cf. Remark 2 following Proposition 2.1).
8) Prove (or disprove) that g is an increasing function of go, for fixed ç

(the so-called Schrader monotonicity [12] ] [86] ] [105] ] [106] ] [235]). This
is presumably a much harder problem than # 7, although of the same
genre. It is worth noting that the analogous monotonicity can be proven
in the CPÓ theory [221 ].

9) Can the methods of Aizenman [229] ] [230] ] or Frohlich et al. [231 ]
[232] ] be used to verify (or falsify), at least for d &#x3E; 4, the physical picture
conjectured in Section 4.2 ? Specifically, is it true that (4.13) and (4.14)
approach zero in the continuum limit ?

10) What can be said about ~p4 using the methods of Aizenman [229] ] [230 ]
or Frohlich et al. [231 ] [232 ] ?
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APPENDIX A

UNIVERSAL BOUNDS
ON THE 2-POINT FUNCTION

The main purpose of this appendix is to derive universal upper bounds on expressions
of the form

with a &#x3E; 0 and 03B2 ~ 1. Along the way, however, we shall derive some pointwise upper
bounds on G(x) [Lemmas A .1 through A. 3 ] which are of some interest in their own right.

Henceforth we consider G to be the truncated 2-point function

in some translation-invariant, ergodic equilibrium state. The results of this appendix
are then applicable to one-component models with arbitrary (not necessarily even) single-
spin measure and ferromagnetic nearest-neighbor interaction, either above or below the
critical temperature.
We shall use the following properties of G:

(D) There exists a universal constant c &#x3E; 0 such that G(y) &#x3E; G(x) whenever I y  c I x I. .

(A) is a consequence of either the FKG inequality [6 ] [49 ] or the Percus inequality [45 ]
(or of Griffiths’ second inequality if the single-spin measure is even). (B) follows from the
positive definiteness of G, by Bochner’s theorem. (C) is the Frohlich-Simon-Spencer infrared
bound [58 ] [55 ] [59 ], which is a consequence of reflection positivity. (D) is the most subtle
of the four properties ; it is a consequence of the Schrader - Messager - Miracle-Sole
inequalities (2 . 29) and (2. 30), which imply that

In particular, this occurs whenever ) so (D) holds with c = d-1.

Remarks. - 1. Strictly speaking, (B) says that G is a positive measure. By ergodicity,
G vanishes at infinity at least in the mean-square sense, so Wiener’s theorem [222, Theo-
rem XI. 114] ] implies that G has no pure point part. The assertion of (C) is then that G
is in fact absolutely continuous with respect to Lebesgue measure, with Radon-Nikodym
derivative bounded (a. e.) by const/Jp2. The derivation of this property is slightly subtle
when d  2, because the bound is non-integrable. However, it is no loss for our purposes
to assume that x  oo in this case (i. e. G E [1, hence then no difficulties arise.

(Actually, the bound is true without this assumption, as Jean Bricmont has explained to
me.)

2. (D) holds equally well for non-even single-spin measures, because the Schrader
- Messager - Miracle-Sole inequality has been proven also in « Percus form » [54, Theo-
rem 2; 223 ].
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3. Jean Bricmont has remarked to me that (A)-(D) hold also for the plane rotator ; see
[224] for the Schrader - Messager - Miracle-Sole inequalities in this case, and [31’ ]
for an application of Lemma A. 3.

4. At times we shall need only the following weakened version of property (D):

(D’) There exists a universal constant c’ &#x3E; 0

It is easy to see that (D) implies (D’).
Define now the « susceptibility »

Note that G(x) &#x3E; 0 implies that

We then have the following pointwise upper bounds on G(x) :

LEMMA A.I. - Assume (A) and (D’). Then

Remark. - A similar argument shows that

forx#0.

LEMMA A. 2. - Assume (A) and (C). Then

If, moreover, either (B) or (D) holds, then 0  G(x)  G(0) and so G(x) is also bounded
by (A.13).

Proof - By (A) [cf. (A. 10) ] and (C), we have

From this we easily deduce (A 13). G(O) is an easy consequence of either (B) or
(D)..

LEMMA A. 3. - Assume (C) and (D) and d &#x3E; 2. Then
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Now

where Go(p) = 2 / (1 - cos /?J 
1 

is the free massless lattice field (defined only for

i=1 1

d &#x3E; 2). Now x 1-(d-2) for large ) so that Go is in weak Ld/(d-2). Hence, by
the generalized Young inequality (or equivalently, the Hardy - Littlewood - Sobolev
inequality) [225, p. 30-32 ],

so that

But if we take L = [(c/2d1/2)| x ], we have y|~d1/2|y|~  c x| wherever |y|~  2L,
so that property (D) implies that

G(x) S; min G(y)  const x x + 1)-~d-2~ . / (A.21)
2L

Remarks. - I. My proof of Lemma A. 3 is based on ideas of Bricmont et al. [31 ]. They
obtain the much weaker conclusion (but good enough for their purposes)

under (essentially) the much weaker hypothesis (2. 29) [which is a consequence of reflection
positivity] instead of (D).

2. For d = 3 it suffices to assume (B) and (D’) in place of (D). To see this, note that (B)
and (C) together imply that G is in weak L 3/2 ; so by the weak Hausdorff-Young inequality
[225, p. 31-32], G is in weak L3, i. e.

for a suitable universal constant c 1. But take e = c’ -113 ( ~ x ~ + 1) -1. Then G(x) &#x3E; 

together with (D’) would contradict (A. 23). Hence G{x) _ Ci8/J, i. e. (A. 15) holds. I do not
know whether a similar proof can be constructed for d &#x3E;_ 4 ; it would have to be more

subtle, since the weak Hausdorff-Young inequality applies only for 1  p  2, hence
2d4.

3. Frohlich, Simon and Spencer [58] ] note that, alas, the p-space infrared bound

G(p)  does not imply its x-space analogue G(x) _ It is pleasant
to know, therefore, that this x-space bound does hold up to a universal multiplicative constant,
provided that (D) is valid.
We are now prepared to derive an upper bound on (A .1). We first prove a special case

by a direct p-space method [which does not require hypothesis (D) ] ; we then prove the
general case by an x-space method using Lemmas A .1-A . 3. To state the bound, define
first the critical dimension

d~ is the dimension at which (A .1) barely diverges if G = Go, the free massless lattice
field.
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We can easily handle in p-space the case a = 0, f3 integer :

PROPOSITION A. 4. - Assume (A), (B) and (C), and let f3 &#x3E; 1 be an integer. Then

with - 1).

Proof - Let 03B2 = n ; we then compute in p-space

by Young’s inequality. (For n = 1 it is trivial, for n = 2 it is the Plancherel theorem.) We
now use (A), (B) and (C):

This is easily seen to imply (A. 25a) [if d  or (A. 25c) [if d &#x3E; de]. If d = d~, on the other
hand, (A. 28) does not imply (A. 25b) but rather the weaker bound with log replaced by

(note that here n &#x3E;_ 2). Even if we return to (A. 26) and use instead the generalized
Young inequality [225, p. 31-32 ], which allows all but two of the factors G to be estimated
by their weak norms, we still get only To get the correct behavior, we
insert into (A. 26) the bound

where

is the free massive lattice field and a = (2Jx) -1. We then return to x-space to compute
since Ga satisfies hypothesis (D) [it is, after all, the 2-point function of a nearest-

x

neighbor Gaussian ferromagnet ], this can be estimated by the method of Proposition A. 5
below [cf. (A. 34) ]. The result is (A . 25b)..

Remarks. - 1. There ought to be a straightforward p-space argument yielding (A. 25b) ;
I have simply been too stupid to see it.

2. The case ~ = 2 of Proposition A. 4 has been used to derive a rigorous upper bound
on the specific heat [87 ].

3. Holder’s inequality allows interpolation to nonintegral ~, but the optimal result (A. 25)
is obtained only in certain cases. See, however, Proposition A. 5.

4. The p-space method used above can also be extended to cover certain cases with
a = 2k S; f3 = n (k and n integers) ; this requires, however, the new infrared bound [57]

The proof of (A . 31) is somewhat subtle: it requires the use of the spectral representation (2.37)
combined with a new spectral representation [57] based on diagonal reflection positivity.
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PROPOSITION A. 5. - Assume (A), (B), (C) and (D) [or for d  4, assume (A), (B), (C) and
(D’)]. If 0~03B1~ (j8 - then

x 
_ ..

Proof - Consider first the case d &#x3E; 2. Then (A .11) and (A .15) hold (for d = 3 this relies
on Remark 2 following Lemma A. 3 if (D’) is assumed). For d &#x3E; d~ we write simply

By definition of de, the sum converges ; hence (A. 32c) holds. For d we split up the region
of summation :

The second term is finite if a  ({3 - 1)d, in which case it is bounded by (A. 32a). The first
term is bounded by (A. 32a) if d  d~, or (A. 32b ) if d = d~. This completes the proof for
d&#x3E;2.

For d  2 (which is always in the case d  dJ, the result is already proven for a = 0
and {3 integer, by Proposition A. 4. The case a = 0 and general f3 &#x3E; 1 is obtained by a
simple application of Holder’s inequality to interpolate between integer values of ~3. Finally,
for general a  ({3 - I)d, we write

where on the second line we used (A. .11) and on the third line we used the a = 0 case of
the proposition (with f3 replaced a/d)..

Remarks. - 1. The argument (A. 34) works also for d  2 (i. e. d = 1 !) by using (A . 13)
in place of (A. 15) in the first term of (A. 34). However, this method is apparently insufficient
for d = 2: it fails by logarithms to give the desired result.

2. Glimm and Jaffe [30, Theorem 5.1] ] assert the case a = 2, ~ = 3, d &#x3E; dc = 4 of

Proposition A. 5, but their proof contains a gap. In essence, they have assumed that G(p)
behaves at worst like the free massless lattice field in all relevant respects (in particular,
that (A. 31) holds), but this does not follow solely from the spectral representation they
use [our (2 . 37) ].

3. The above methods can also be used (for what it’s worth) to study the moments of
convolutions of powers of G (as occur, for example, in [30, Theorems 5 . and 6 . 2 ]).

4. Cases with a &#x3E; ({3 - 1)d can also be studied, by using (A 12) in place of (A .11),
for some § &#x3E; 1) - d. Of course, the resulting bound then depends on ç4J as well
as on J and x ; by (2 . 52) this is a loss.
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APPENDIX B

SOME INEQUALITIES FOR CRITICAL EXPONENTS

Two types of bounds, which we shall call universal and non-universal, have been used
in the rigorous study of critical phenomena and constructive quantum field theory. They
correspond to different ways of approaching the critical point:

1. Universal bounds.

These are bounds which hold, with universal constants, for wide classes of models,
independently of specific features such as coupling constants. For example, the infrared
bound (2.32) holds for all nearest-neighbor Ising models, irrespective of the single-spin
measure. (In fact, all of the bounds proven in Section 2.2 and Appendix A are universal
bounds.) This type of bound is appropriate to the study of constructive quantum field
theory, which allows an arbitrary manner of approach to the critical point (e. g. arbitrary
charge renormalization).

2. Non-universal bounds.

These are bounds in which the constants are not universal, but depend on various para-
meters of the model. For example, consider a statistical-mechanical model in which one
fixes the single-spin measure [e. g. fixes Ao and Bo in (2 . 3) ] and increases the nearest-neighbor
coupling J toward its critical value J~. Now, for J  Jc we have

by Griffiths’ inequality and (one) definition of the critical exponent ~. However, the
constant C depends on the single-spin measure. Thus, non-universal bounds are appro-
priate only for the study of certain restricted ways of approaching the critical point (e. g.
increasing J with Ao and Bo fixed, or decreasing Bo with Ao and J fixed). These are, however,
precisely the limits of interest in the statistical-mechanical theory of critical phenomena.
As a first example, let us consider the specific heat CH in an Ising or ~p4 model. It was

shown in [87 ], using the Griffiths and Lebowitz inequalities, that

where the last step uses the Schwarz inequality. (We consider only the case J  J~ for sim-
plicity ; then the magnetization M is zero.) By rewriting (B. 2) in momentum space and using
the infrared bound (2.32) [with c = 0], it was shown in [87] that

with a constant depending only on d. (The same result can be obtained directly in position
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space, using Proposition A. 5.) This is a universal bound on the specific heat ; as noted
in [87], it implies the critical-exponent inequality

(Critical exponents are defined in [32] ] [124 ] [226 ].) However, if all one wants is a critical-
exponent inequality, one can use a non-universal bound and do better than (B . 4). For,
by Lemma A. I and inequality (B .1), we have

for all J  J~. Since n &#x3E; 0 [58 ], this improves the bound (A. 15) used in the proof of Propo-
sition A. 5, at the price of a non-universal constant C. Imitating (A. 33) and (A. 34), it is

easy to show that

where the constant is now non-universal. This together with (B. 2) implies the improved
critical-exponent inequality 

r- " -,

It is left to the reader to plug in the numbers for the d = 2 and d = 3 Ising models [190 ]
to see how worthless the change from (B. 4) to (B. 7) really is, from any but a conceptual
point of view.

Remarks. - 1. The idea of using (B .1) to derive critical-exponent inequalities is due to
Fisher [32 ], who used the method to derive the critical-exponent inequality y  (2 - 1J)vcp.
This improves the inequality y  2v4J obtainable from the universal bound (2.52), just
as (B. 7) improves (B. 4).

2. A heuristic « proof » of an inequality weaker than (B. 7) [but incomparable with
(B.4)] is given by Glimm and Jaffe [85]. They claim (4 - d - 2~)v ; this follows

from (B. 7) and Fisher’s [32] inequality y  (2 - 17)V.
3. An analogous argument can be carried through for the critical-isotherm exponents ;

the analogue of (B. 1) is

for H &#x3E;_ 0, which is a consequence of the GHS inequality. (Here G is the truncated 2-point
function.) Following [87] and the above argument, one finds

However, the argument does not work for the low-temperature exponents : the analogue

of (B .1) has not been proven, and is quite likely false. (Cf. Fisher’s [32] inability to prove
7’  (2 - 

4. A careful examination of the above proof shows that the full strength of (B .1) was
not used ; it suffices to take a weaker (and more usual [32 ]) definition of ~, namely
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As a second example, let us consider the field-strength renormalization constant Z.
As shown in Section 3.3, we have, assuming Conjecture 3.2,

Thus, by Proposition A. 5, we have the universal bound

Now fix )"0 and increase J toward its critical value J~ (this is the statistical-mechanical

situation, as opposed to the superrenormalizable field-theoretic situation considered in
Section 3.3). Then we derive immediately the critical-exponent inequality

closely analogous to (B . 4). [Here ~ is the critical exponent of Glimm and Jaffe [30 ] [68 ],
defined by Z - (J~ - J)’, and not to be confused with the traditional exponent’ [32 ].
~0 follows from (2 . 39). ] However, this can be improved by using the non-universal
bound (B. 5) when estimating (B. 11). Again imitating (A. 33) and (A. 34), it is easy to show
that 

-

where the constant is now non-universal. Thus

which improves (B .13) since 11 &#x3E; 0. Moreover, (2 . 39)/(2 . 40) imply that

Combined with Fisher’s [32] ] inequality

[which is a simple consequence of (B .1) ], we find

Combining this with (B .15) and (B .17), we deduce that

(B 15) and (B. 19) are further results [along with (B . 4)/(B . 7) ] asserting that critical expo-
nents take their mean-field values for dimension d &#x3E;_ 4 (possibly modified by logarithms
for d = 4).

Remarks. - 1. (B .18) and (B 19) were already proven by Glimm and Jaffe [30 ] under
an ad hoc hypothesis on the 2-point function. The key observation made here is that this
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hypothesis is unnecessary, and can be replaced by (B .1). (Actually, Glimm and Jaffe obtained
somewhat weaker results due to their use of r 6 instead of G6PL)

2. Unfortunately the above argument does not apply to the Ising model (Ào = oo),
although the conclusion is presumably still true.

Finally, let us derive some critical-exponent inequalities from the bound (3.29) and its
improvement (4 .17) [both of which rely on Conjecture 3 . 2 ]. Indeed, (3 . 29) yields imme-
diately the bound

Now consider the statistical-mechanical situation in which i~o is fixed. Then we derive

immediately the critical-exponent inequality

[Here ~4 is the « gap exponent » [124] ] [73] ] [61 ] defined by - u4 ~ (Jc - J) -’’ - 2 °~’. )
Using the further inequalities 1  y  (2 -  2v. [32] ] [227] [228 ], we find

thus, the hyperscaling relation (4.1) is violated for rp4 models in dimension d &#x3E; 4. Equi-
valently, the dimensionless renormalized coupling constant g vanishes as the critical

point is approached, for d &#x3E; 4 ; the continuum limit is a (generalized) free field.

Remarks. - 1. Unfortunately the above argument does not apply to the Ising model
(Ào = (0). But Aizenman [229] ] [230] has recently shown, by a beautiful argument, the
universal bound

for Ising models (and also a generalization for ~p4 models) ; thus (B. 21) and (B. 22) follow.
A similar bound has also been proven by Frohlich [231 ].

2. The vanishing of g described in (B. 22) ff. should not be confused with that conjectured
in Chapter 4. We are considering here the statistical-mechanical situation in which ho
is held fixed as the critical point is approached ; by (2.13) this means, for d &#x3E; 4, that - 0.

Thus it is hardly surprising that g - 0 for this rather silly choice of charge renormalization.
The tree-graph contribution goes to zero ; and the import of (3 . 29) is that the ultraviolet

divergences do not cause an amplification which destroys this vanishing in the exact theory.
In Chapter 4 we argued for a much stronger conjecture, namely that for d &#x3E; 4 one has

g - 0 irrespective of the choice of charge renormalization.
3. (3 . 29) and (2. 52) imply in fact that g - 0 whenever - 0, not just in the parti-

cular case ho = fixed. However, this only implies that the continuum limit is a generalized
free field ; to be an ordinary free field, might have to go to zero sufficiently fast, for

example, ~ ~ O(~4-d) so that ~ is bounded (d &#x3E; 4) ; see e. g. [30, Theorem 5 . 2 ].
A slight improvement can be obtained by using (4.17) instead of (3.29) [equivalently,

by not discarding the middle term in the brackets in (3 .18)/(3 . 20) ]. For note that

Now by a fluctuation-dissipation relation [61, Appendix],
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Hence

So if we consider a slightly modified way of going to the critical point, in which we fix
and J &#x3E; 0 and decrease Bo towards its critical value Boc, we find that

in view of y &#x3E;_ 1, this is a slight improvement of (B. 21). [Of course, for d &#x3E; 4, we expect
y = 1.] ] Here the critical exponents are defined in the modified way

Presumably (B. 27) is also valid for the ordinary way of going to the critical point, although
I do not know how to prove it.
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Note Added (April 1982).

In the year that has elapsed since this paper was submitted for publication,
considerable progress has been made on the subjects treated here. In
addition, some points made in this paper merit clarification.

1. The continuum limit is defined in this paper by convergence of the
Schwinger distributions in This is natural from the point of view
of Euclidean field theory. However, only the Schwinger distributions at
noncoinciding arguments enter into the Osterwalder-Schrader [13] recons-
truction of the Minkowski-space quantum field theory. Thus, a more general
construction would consider convergence not in but in 
the space of distributions at noncoincident points. This would allow the
construction, from lattice approximations, of quantum field theories more
singular than those constructed here, and of quantum field theories not
satisfying Nelson-Symanzik positivity. It is worth noting, however, that
convergence in sP’(lRnd) is natural from the point of view of the extended
Osterwalder-Schrader axioms of [237] ] [238 ].

2. For the same reason, the condition g # 0, which ensures that the
Euclidean theory is non-Gaussian, does not necessarily imply that the
reconstructed Minkowski-space quantum field theory is something other
than a generalized free field ; for this it is necessary to verify that G 4 =1= 0
for some noncoinciding arguments.

3. The construction given in Section 2. 3, which enforces a very particular
set of mass and field-strength normalization conditions, is one way of

taking the continuum limit ; it is not by any means the only one. Most
generally, one should allow any sequence of lattice models with lattice

spacings am  0, and seek to determine all possible continuum limits.
I thank Jurg Frohlich for bringing these three items to my attention.
4. In Section 4 .1 I stated that the method of high-temperature expansions

is « theoretically unprejudiced » ; this is, in fact, only true in the idealized
case in which the full infinite series is available. In practice, one must try
to extract numerical estimates of the critical exponents from a finite number
of terms of the series ; this always requires assumptions on the critical
behavior, e. g. power-law behavior either with or without confluent sin-
gularities. Such assumptions may well be inspired by theoretical conside-
rations, e. g. the renormalization-group predictions of the existence and
nature of the confluent singularities. Moreover, the choice of assumption
has a profound influence on the numerical results obtained [119 ].

5. Using the « mean-field bound » [239] G(0) &#x3E; const/J (for ~ not near

zero), I can prove the « infrared lower bound » G(p) &#x3E;_ G(n, ..., 7r)
&#x3E;_ const/J for d &#x3E; 3. (A similar inequality, modified by logarithms, holds
for d = 3.) It follows that F(O) 2 const/J2, which is stronger than the

conjecture (4.31) for d &#x3E; 4. However, the crucial case d = 4 is still open.
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6. Brydges, Frohlich and the author [233] ] have succeeded in proving
strengthened forms of the correlation inequalities (3 . 29) and (3 . 30), without
using Conjecture 3.2 or any other unproved result. The proof employs
the random-walk methods of [232 ]. We have then used these inequalities
to give a simple proof [234 ] of the existence and nontriviality of the conti-
nuum limit for (with the conventional mass renormalization), proving
all Osterwalder-Schrader axioms (including a mass gap) except rotation
invariance.

7. I now suspect that ~p4 is more difficult and subtle than is implied by
the bubble-graph-motivated considerations of Section 4.2. In any case,
the question is wide open !

Note Added in Proof: The proof given here of Proposition 2 1 is insuffi-
cient ; a correct proof can be given along the lines of Proposition 5.1 of [234 ].

[1] J.GLIMM and A. JAFFE, Positivity of the 03C643 Hamiltonian. Fortsch. Physik, t. 21, 1973,
p. 327-376.

[2] J. FELDMAN, The 03BB03C643 theory in a finite volume. Commun. Math. Phys., t. 37, 1974,
p. 93-120.

[3] J. S. FELDMAN and K. OSTERWALDER, The Wightman axioms and the mass gap
for weakly coupled (03C64)3 quantum field theories. Ann. Phys., t. 97, 1976, p. 80-135.

[4] J. MAGNEN and R. SÉNÉOR, The infinite volume limit of the 03C643 model. Ann. Inst.
Henri Poincaré, t. A 24, 1976, p. 95-159.

[5] J. MAGNEN and R. SÉNÉOR, Phase space cell expansion and Borel summability for
the Euclidean 03C643 theory. Commun. Math. Phys., t. 56, 1977, p. 237-276.

[5’] G. GALLAVOTTI, Some aspects of the renormalization problems in statistical mecha-
nics and field theory. Mem. Accad. Lincei, t. 15, 1978, p. 23-59.

[5"] G. GALLAVOTTI, On the ultraviolet stability in statistical mechanics and field
theory. Ann. Mat. Pura Appl., t. 120, 1979, p. 1-23.

[5’’’] G. BENFATTO, M. CASSANDRO, G. GALLAVOTTI, F. NICOLÒ, E. OLIVIERI, E. PRE-
SUTTI and E. SCACCIATELLI, Some probabilistic techniques in field theory. Commun.
Math. Phys., t. 59, 1978, p. 143-166.

[5""] G. BENFATTO, M. CASSANDRO, G. GALLAVOTTI, F. NICOLÒ, E. OLIVIERI, E. PRE-
SUTTI and E. SCACCIATELLI, Ultraviolet stability in Euclidean scalar field theories.
Commun. Math. Phys., t. 71, 1980, p. 95-130.

[6] B. SIMON, The P(03C6)2 Euclidean (quantum) field theory. Princeton, N. J., Princeton
University Press, 1974.

[7] J. ROSEN, Mass renormalization for the 03BB03C64 Euclidean lattice field theory. Adv.
Appl. Math., t. 1, 1980, p. 37-49.

[8] J. GLIMM and A. JAFFE, Remark on the existence of 03C644. Phys. Rev. Lett., t. 33, 1974,
p. 440-442.

[9] G. A. BAKER, Jr., Self-interacting, boson, quantum field theory and the thermo-
dynamic limit in d dimensions. J. Math. Phys., t. 16, 1975, p. 1324-1346.

[10] F. GUERRA, L. ROSEN and B. SIMON. The P(03C6)2 Euclidean quantum field theory
as classical statistical mechanics. Ann. Math., t. 101, 1975, p. 111-259.

[11] Y. M. PARK, Convergence of lattice approximations and infinite volume limit in
the (03BB03C64-03C303C62- 03C6)3 field theory. J. Math. Phys., t. 18, p. 354-366, 1977.

Vol. XXXVII, n° 4-1982.



388 A. D. SOKAL

[12] R. SCHRADER, A possible constructive approach to 03C644. I. Commun. Math. Phys.,
t. 49, 1976, p. 131-153, II. Ann. Inst. Henri Poincaré, t. A 26, 1977, p. 295-301,
III. Commun. Math. Phys., t. 50, 1976, p. 97-102.

[13] K. OSTERWALDER and R. SCHRADER, Axioms for Euclidean Green’s functions.
I. Commun. Math. Phys., t. 31, 1973, p. 83-112. II. Commun. Math. Phys., t. 42,
1975, p. 281-305.

[14] J. GLIMM and A. JAFFE, Functional integral methods in quantum field theory. In:
New developments in quantum field theory and statistical mechanics (1976 Cargèse
lectures). M. Lévy and P. Mitter, eds., New York and London, Plenum Press, 1977.

[15] C. M. NEWMAN, Inequalities for Ising models and field theories which obey the
Lee-Yang theorem. Commun. Math. Phys., t. 41, 1975, p. 1-9.

[16] L. D. LANDAU, Collected papers of L. D. Landau (D. ter Haar, ed.), New York-Lon-
don-Paris : Gordon and Breach, 1965.

[17] L. LANDAU, On the quantum theory of fields. In: Niels Bohr and the development
of physics (W. Pauli, ed.), London, Pergamon Press, 1955. Reprinted in [16].

[18] L. LANDAU and I. POMERANCHUK, On point interactions in quantum electrodyna-
mics. Dokl. Akad. Nauk S. S. S. R., t. 102, 1955, p. 489-492. English translation
in [16].

[19] I. POMERAN010CUK, Vanishing of the renormalized charge in electrodynamics and in
meson theory. Nuovo Cim., t. 3, 1956, p. 1186-1203.

[20] I. Ya. POMERANCHUK, V. V. SUDAKOV and K. A. TER-MARTIROSYAN, Vanishing
of renormalized charges in field theories with point interaction. Phys. Rev., t. 103,
1956, p. 784-802.

[21] A. D. GALANIN, On the possibility of formulating a meson theory with several fields.
Zh. Eksp. Teor. Fiz., t. 32, 1957, p. 552-558 [Soviet Phys., J. E. T. P., t. 5, 1957,
p. 460-464].

[22] I. T. DIATLOV, V. V. SUDAKOV and K. A. TER-MARTIROSYAN, Asymptotic meson-
meson scattering theory. Zh. Eksp. Teor. Fiz., t. 32, 1957, p. 767-780 [Soviet Phys.,
J. E. T. P., t. 5, 1957, p. 631-642].

[23] A. A. ABRIKOSOV, A. D. GALANIN, L. P. GORKOV, L. D. LANDAU, I. Ya. POME-

RANCHUK and K. A. TER-MARTIROSYAN, Possibility of formulation of a theory
of strongly interacting fermions. Phys. Rev., t. 111, 1958, p. 321-328. Reprinted
in [16].

[24] E. S. FRADKIN, The asymptote of Green’s function in quantum electrodynamics.
Zh. Eksp. Teor. Fiz., t. 28, 1955, p. 750-752 [Soviet Phys., J. E. T. P., t. 1, 1955,
p. 604-606].

[25] E. S. FRADKIN, The problem of the asymptote of the Green function in the theory
of mesons with pseudoscalar coupling. Zh. Eksp. Teor. Fiz., t. 29, 1955, p. 377-379
[Soviet Phys., J. E. T. P., t. 2, 1956, p. 340-342].

[26] D. A. KIRZHNITS, Contribution to field theory involving a cut-off factor. Zh. Eksp.
Teor. Fiz., t. 32, 1957, p. 534-541 [Soviet Phys., J. E. T. P., t. 5, 1957, p. 445-451].

[27] S. KAMEFUCHI, A comment on Landau’s method of integration in quantum electro-
dynamics. Mat. Fys. Medd. Dan. Vid. Selsk., t. 31, 1957, no. 6.

[28] A. A. ANSEL’M, Asymptotic theory of a one-dimensional four-fermion interaction.
Zh. Eksp. Teor. Fiz., t. 35, 1958, p. 1522-1531 [Soviet Phys., J. E. T. P., t. 8, 1959,
p. 1065-1071].

[29] N. N. BOGOLIUBOV and D. V. SHIRKOV, Introduction to the theory of quantized fields.
New York, Interscience, 1959, Chapter VIII, especially p. 528-529.

[30] J. GLIMM and A. JAFFE, Particles and scaling for lattice fields and Ising models.
Commun. Math. Phys., t. 51, 1976, p. 1-13.

[31] J. BRICMONT, J.-R. FONTAINE, J. L. LEBOWITZ and T. SPENCER, Lattice systems
with a continuous symmetry. II. Decay of correlations. Commun. Math. Phys.,
t. 78, 1981, p. 363-371.

Annales de l’lnstitut Henri Poincaré-Section A



389AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (P3 QUANTUM FIELD THEORY

[31’] J. BRICMONT, J.-R. FONTAINE, J. L. LEBOWITZ, E. H. LIEB and T. SPENCER, Lattice

systems with a continuous symmetry. III. Low temperature asymptotic expansion
for the plane rotator model. Commun. Math. Phys., t. 78, 1981, p. 545-566.

[32] M. E. FISHER, Rigorous inequalities for critical-point correlation exponents. Phys.
Rev., t. 180, 1969, p. 594-600.

[33] B. SIMON, Functional integration and quantum physics. New York-San Francisco-
London, Academic Press, 1979.

[34] E. BRÉZIN, J. C. LEGUILLOU and J. ZINN-JUSTIN, Field theoretical approach to
critical phenomena. In: Phase transitions and critical phenomena, t. 6. C. Domb
and M. S. Green, eds., London-New York-San Francisco, Academic Press, 1976.

[35] K. SYMANZIK, Regularized quantum field theory. In: New developments in quantum
field theory and statistical mechanics (1976 Cargèse Lectures). M. Lévy and P. Mit-
ter, eds. New York and London, Plenum Press, 1977.

[36] K. G. WILSON, Quantum field-theory models in less than 4 dimensions. Phys. Rev.,
t. D 7, 1973, p. 2911-2926.

[37] R. B. GRIFFITHS, Phase transitions. In: Statistical mechanics and quantum field theory
(1970 Les Houches lectures). C. DeWitt and R. Stora, eds. New York-London-
Paris, Gordon and Breach, 1971.

[38] G. S. SYLVESTER, Continuous-spin Ising ferromagnets. M. I. T. dissertation (mathe-
matics), 1976.

[39] R. L. DOBRUSHIN, The description of a random field by means of conditional pro-
babilities and conditions of its regularity. Teor. Veroya. Prim., t. 13, 1968, p. 201-
229 [Theor. Prob. Appl., t. 13, 1968, p. 197-224].

[40] R. L. DOBRUSHIN, Gibbsian random fields for lattice systems with pairwise inte-
ractions. Funkts. Anal. Prilozh., t. 2, no. 4, 1968, p. 31-43 [Funct. Anal. Appl.,
t. 2, 1968, p. 292-301].

[41] O. E. LANFORD III and D. RUELLE, Observables at infinity and states with short
range correlations in statistical mechanics. Commun. Math. Phys., t. 13, 1969,
p. 194-215.

[42] C. PRESTON, Random fields. Lecture notes in mathematics # 534, Berlin-Heidelberg-
New York, Springer-Verlag, 1976.

[43] M. CASSANDRO, E. OLIVIERI, A. PELLEGRINOTTI and E. PRESUTTI, Existence and
uniqueness of DLR measures for unbounded spin systems. Z. Wahrscheinlich-
keitstheorie verw. Gebiete, t. 41, 1978, p. 313-334.

[44] J. L. LEBOWITZ and E. PRESUTTI, Statistical mechanics of systems of unbounded
spins. Commun. Math. Phys., t. 50, 1976, p. 195-218 ; t. 78 (E), 1980, p. 151.

[45] G. S. SYLVESTER, Inequalities for continuous-spin Ising ferromagnets. J. Stat. Phys.,
t. 15, 1976, p. 327-341. 

[46] C. M. NEWMAN, Gaussian correlation inequalities for ferromagnets. Z. Wahrschein-
lichkeitstheorie verw. Gebiete, t. 33, 1975, p. 75-93.

[47] G. S. SYLVESTER, Representations and inequalities for Ising model Ursell functions.
Commun. Math. Phys., t. 42, 1975, p. 209-220.

[48] J. BRICMONT, The Gaussian inequality for multicomponent rotators. J. Stat. Phys.,
t. 17, 1977, p. 289-300.

[49] G. A. BATTLE and L. ROSEN, The FKG inequality for the Yukawa2 quantum field
theory. J. Stat. Phys., t. 22, 1980, p. 123-192.

[50] C. M. NEWMAN, Moment inequalities for ferromagnetic Gibbs distributions. J.
Math. Phys., t. 16, 1975, p. 1956-1959.

[51] R. SCHRADER, New correlation inequalities for the Ising model and P(03C6) theories.
Phys. Rev., t. B 15, 1977, p. 2798-2803.

[52] A. MESSAGER and S. MIRACLE-SOLE, Correlation functions and boundary conditions
in the Ising ferromagnet. J. Stat. Phys., t. 17, 1977, p. 245-262.

Vol. XXXVII, n° 5-1982.



390 A. D. SOKAL

[53] G. C. HEGERFELDT, Correlation inequalities for Ising ferromagnets with symmetries.
Commun. Math. Phys., t. 57, 1977, p. 259-266.

[54] D. SZÀSZ, Correlation inequalities for non-purely-ferromagnetic systems. J. Stat.
Phys., t. 19, 1978, p. 453-459.

[55] J. FRÖHLICH, R. ISRAEL, E. H. LIEB and B. SIMON, Phase transitions and reflection
positivity. I. General theory and long range lattice models. Commun. Math.

Phys., t. 62, 1978, p. 1-34.
[56] R. S. SCHOR, The particle structure of v-dimensional Ising models at low tempe-

ratures. Commun. Math. Phys., t. 59, 1978, p. 213-233.
[57] A. D. SOKAL, Representations and inequalities for the 2-point function in classical

lattice systems. Unpublished manuscript, 1980.

[58] J. FRÖHLICH, B. SIMON and T. SPENCER, Infrared bounds, phase transitions and
continuous symmetry breaking. Commun. Math. Phys., t. 50, 1976, p. 79-85.

[59] B. SIMON, New rigorous existence theorems for phase transitions in model systems.
In: Statistical Physics, « Statphys 13 » (1977 I. U. P. A. P. conference, Haifa),
part 1, D. Cabib et al., eds. Annals of the Israel Physical Society, t. 2, 1978.

[60] B. SIMON, Correlation inequalities and the mass gap in P(03C6)2. I. Domination by
the two point function. Commun. Math. Phys., t. 31, 1973, p. 127-136.

[61] A. D. SOKAL, More inequalities for critical exponents. J. Stat. Phys., t. 25, 1981,
p. 25-50.

[62] B. SIMON, Decay of correlations in ferromagnets. Phys. Rev. Lett., t. 44, 1980, p. 547-
549.

[63] B. SIMON, Correlation inequalities and the decay of correlations in ferromagnets.
Commun. Math. Phys., t. 77, 1980, p. 111-126.

[64] J. GLIMM and A. JAFFE, Three-particle structure of 03C64 interactions and the scaling
limit. Phys. Rev., t. D 11, 1975, p. 2816-2827.

[65] P. J. PAES-LEME, Ornstein-Zernike and analyticity properties for classical lattice
spin systems. Ann. Phys., t. 115, 1978, p. 367-387.

[66] O. A. MCBRYAN and J. ROSEN, Existence of the critical point in 03C64 field theory.
Commun. Math. Phys., t. 51, 1976, p. 97-105.

[67] E. H. LIEB, A refinement of Simon’s correlation inequality. Commun. Math. Phys.,
t. 77, 1980, p. 127-135.

[68] J. GLIMM and A. JAFFE, Critical exponents and elementary partices. Commun.
Math. Phys., t. 52, 1977, p. 203-209.

[69] A. D. SOKAL, Unpublished, 1980.
[70] J. L. LEBOWITZ and A. MARTIN-LÖF, On the uniqueness of the equilibrium state

for Ising spin systems. Commun. Math. Phys., t. 25, 1972, p. 276-282.
[71] G. A. BAKER Jr., B. G. NICKEL, M. S. GREEN and D. I. MEIRON, Ising-model critical

indices in three dimensions from the Callan-Symanzik equation. Phys. Rev. Lett.,
t. 36, 1976, p. 1351-1354.

[72] J. GLIMM and A. JAFFE, Absolute bounds on vertices and couplings. Ann. Inst. Henri
Poincaré, t. A 22, 1975, p. 97-107. 

[73] R. SCHRADER, New rigorous inequality for critical exponents in the Ising model.
Phys. Rev., t. B 14, 1976, p. 172-173.

[74] A. D. SOKAL, Improved rigorous upper bound for the renormalized 4-point coupling.
In preparation.

[75] D. G. BOULWARE and L. S. BROWN, Tree graphs and classical fields. Phys. Rev.,
t. 172, 1968, p. 1628-1631.

[76] R. W. JOHNSON, Finite integral equations for Green’s functions for :03C64: coupling.
J. Math. Phys., t. 11, 1970, p. 2161-2165.

[77] M. SUZUKI, Generalized exact formula for the correlations of the Ising model and
other classical systems. Phys. Lett., t. 19, 1965, p. 267-268.

Annales de l’Institut Henri Poincaré-Section A



391AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (p3 QUANTUM FIELD THEORY

[78] F. SCHWABL, Generating functional and Green’s function hierarchy of the Ising model.
Ann. Phys., t. 54, 1969, p. 1-16.

[79] H. LEHMANN, K. SYMANZIK and W. ZIMMERMANN, Zur Vertexfunktion in quanti-
sierten Feldtheorien. Nuovo Cim., t. 2, 1955, p. 425-432.

[80] G. BARTON, Introduction to advanced field theory. New York, Interscience, 1963,
Chapters 10-12.

[81] K. W. FORD, Problem of ghost states in field theories. Phys. Rev., t. 105, 1957, p. 320-
327.

[82] E. FERRARI and G. JONA-LASINIO, Remarks on the appearance of ghost states in
relativistic field theories. Nuovo Cim., t. 16, 1960, p. 867-885.

[83] K. SYMANZIK, On the many-particle structure of Green’s functions in quantum
field theory. J. Math. Phys., t. 1, 1960, p. 249-273, Section 5 and Appendix B.

[84] L. E. EVANS, High energy theorem in quantum electrodynamics. Nucl. Phys., t. 17,
1960, p. 163-168.

[85] J. GLIMM and A. JAFFE, Critical exponents and renormalization in the 03C64 scaling
limit. In: Quantum dynamics, models and mathematics (1975 Bielefeld sympo-
sium), L. Streit, ed. Wien-New York, Springer-Verlag, 1976. Acta Physica Aus-
triaca Suppl., t. XVI, 1976, p. 147-166.

[86] D. MARCHESIN, The scaling limit of the 03C62 field in the anharmonic oscillator: existence
and numerical studies. NYU preprint, 1978.

[87] A. D. SOKAL, A rigorous inequality for the specific heat of an Ising or 03C64 ferro-
magnet. Phys. Lett., t. 71 A, 1979, p. 451-453.

[88] A. S. WIGHTMAN, Should we believe in quantum field theory? In: The whys of sub-
nuclear physics (1977 Erice lectures). A. Zichichi, ed. New York, Plenum Press,
1979. 

[89] R. F. STREATER and A. S. WIGHTMAN, PCT, spin and statistics, and all that. New York-
Amsterdam, Benjamin, 1964. Second edition, 1978.

[90] G. KÄLLÉN, Review of consistency problems in quantum electrodynamics. In:
Quantum electrodynamics. P. Urban, ed., Wien-New York, Springer-Verlag,
1965. Acta Physica Austriaca Suppl., t. II, 1965, p. 133-161.

[91] K. G. WILSON, Renormalization group and strong interactions. Phys. Rev., t. D 3,
1971, p. 1818-1846.

[92] S. COLEMAN, Dilatations. In: Properties of the fundamental interactions (1971 Erice
lectures), A. Zichichi, ed., Bologna, Editrice Compositori, 1973.

[93] D. J. GROSS, Applications of the renormalization group to high-energy physics.
In: Methods in field theory (1975 Les Houches lectures), R. Balian and J. Zinn-
Justin, eds., Amsterdam-New York, North-Holland, 1976.

[94] K. G. WILSON and J. KOGUT, The renormalization group and the ~ expansion.
Phys. Rep., t. 12, 1974, p. 75-200.

[94’] R. D. PISARSKI, Fixed-point structure of (03C66)3 at large N. Phys. Rev. Lett., t. 48,
1982, p. 574-576.

[95] S. L. ADLER, Short-distance behavior of quantum electrodynamics and an eigenvalue
condition for 03B1. Phys. Rev., t. D 5, 1972, p. 3021-3047; t. D 7, 1973, (E), p. 1948.

[96] K. JOHNSON and M. BAKER, Some speculations on high-energy quantum electro-
dynamics. Phys. Rev., t. D 8, 1973, p. 1110-1122.

[97] B. M. MCCOY and T. T. WU, Non-perturbative quantum field theory. Scientia
Sinica, t. 22, 1979, p. 1021-1032.

[98] N. N. KHURI, Zeros of the Gell2014Mann2014Low function and Borel summations in
renormalizable theories. Phys. Lett., t. 82 B, 1979, p. 83-88.

[99] C. DOMB and M. S. GREEN, Phase transitions and critical phenomena. Vol. 3, Series
expansions for lattice models. London-New York, Academic Press, 1974.

[100] H. KUNZ, Analyticity and clustering properties of unbounded spin systems. Commun.
Math. Phys., t. 59, 1978, p. 53-69.

Vol. XXXVII, n° 4-1982.



392 A. D. SOKAL

[101] G. S. SYLVESTER, Weakly coupled Gibbs measures. Z. Wahrscheinlichkeitstheorie
verw. Gebiete, t. 50, 1979, p. 97-118.

[102] J. GLIMM, A. JAFFE and T. SPENCER, The particle structure of the weakly coupled P(03C6)2
model and other applications of high temperature expansions. Part II: The cluster
expansion. In: Constructive quantum field theory (1973 Erice lectures), G. Velo
and A. Wightman, eds., Berlin-Heidelberg-New York, Springer-Verlag, 1973.

[103] G. A. BAKER, Jr., Essentials of Padé approximants. New York, Academic Press, 1975.
[104] J. D. BESSIS, J. M. DROUFFE and P. MOUSSA, Positivity contraints for the Ising ferro-

magnetic model. J. Phys., t. A 9, 1976, p. 2105-2124.
[105] G. A. BAKER, Jr. and J. M. KINCAID, Continuous-spin Ising model and 03BB: 03C64:d field

theory. Phys. Rev. Lett., t. 42, 1979, p. 1431-1434; t. 44 (E), 1980, p. 434.
[106] G. A. BAKER, Jr. and J. M. KINCAID, The continuous-spin Ising model, g0 : ø4 :d

field theory, and the renormalization group. J. Stat. Phys., t. 24, 1981, p. 469-528.
[107] G. A. BAKER, Jr., Analysis of hyperscaling in the Ising model by the high-tem-

perature series method. Phys. Rev., t. B 15, 1977, p. 1552-1559.
[108] D. S. GAUNT and M. F. SYKES, The critical exponent 03B3 for the three-dimensional

Ising model. J. Phys., t. A 12, 1979, L 25-L 28.
[109] S. MCKENZIE, M. F. SYKES and D. S. GAUNT, The critical isotherm of the four-

dimensional Ising model. J. Phys., t. A 12, 1979, p. 743-746.

[110] D. S. GAUNT, M. F. SYKES and S. MCKENZIE, Susceptibility and fourth-field deri-
vative of the spin-1/2 Ising model for T &#x3E; Tc and d = 4. J. Phys., t. A 12, 1979,
p. 871-877.

[111] S. MCKENZIE, The exponent 03B3 for the spin-1/2 Ising model on the face-centered
cubic lattice. J. Phys., t. A 12, 1979, L 185-L 188.

[112] J. OITMAA and J. HO-TING-HUN, The critical exponent y for the three-dimensional

Ising model. J. Phys., t. A 12, 1979, L 281-L 282.

[113] B. G. NICKEL and B. SHARPE, On hyperscaling in the Ising model in three dimen-
sions. J. Phys., t. A 12, 1979, p. 1819-1834.

[114] J. J. REHR, Confluent singularities and hyperscaling in the spin-1/2 Ising model.
J. Phys., t. A 12, 1979, L 179-L 183.

[115] J. ZINN-JUSTIN, Analysis of Ising model critical exponents from high temperature
series expansion. J. de Physique, t. 40, 1979, p. 969-975.

[116] S. MCKENZIE and D. S. GAUNT, A test of hyperscaling for the spin-1/2 Ising model
in four dimensions. J. Phys., t. A 13, 1980, p. 1015-1021.

[117] D. BESSIS, P. MoussA and G. TURCHETTI, Subdominant critical indices for the

ferromagnetic susceptibility of the spin-1/2 Ising model. J. Phys., t. A 13, 1980,

p. 2763-2773.

[118] B. NICKEL, Hyperscaling and universality in 3 dimensions. Physica, t. 106 A, 1981,
p. 48-58.

[119] B. G. NICKEL, The problem of confluent singularities. In: Phase Transitions (1980
Cargèse lectures), M. Lévy, J.-C. LeGuillou and J. Zinn-Justin, eds., New York
and London, Plenum Press, 1982.

[120] R. ROSKIES, Hyperscaling in the Ising model on the simple cubic lattice. Phys. Rev.,
t. B 23, 1981, p. 6037-6042.

[120’] J. ZINN-JUSTIN, Analysis of high temperature series of the spin S Ising model on
the body-centred cubic lattice. J. de Physique, t. 42, 1981, p. 783-792.

[120’’] R. Z. ZOSKIES, Reconciliation of high temperature series and renormalization

group results by suppressing confluent singularities. Phys. Rev., t. B 24, 1981,

p. 5305-5317.

[121] M. E. FISHER, General scaling theory for critical points. In: Collective properties

of physical systems (24th Nobel symposium). B. Lundqvist and S. Lundqvist, eds.,

Uppsala, Almqvist &#x26; Wiksell, 1974.

Annales de l’lnstitut Henri Poincaré-Section A



393AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (P3 QUANTUM FIELD THEORY

[122] D. ISAACSON, The critical behavior of ø41. Commun. Math. Phys., t. 53, 1977, p. 257-
275.

[123] B. M. MCCOY, C. A. TRACY and T. T. WU, Two-dimensional Ising model as an
exactly soluble relativistic quantum field theory: explicit formulas for n-point
functions. Phys. Rev. Lett., t. 38, 1977, p. 793-796.

[124] M. E. FISHER, The theory of equilibrium critical phenomena. Reports Prog. Phys.,
t. 30, 1967, p. 615-730.

[125] W. J. CAMP, D. M. SAUL, J. P. VANDYKE and M. WORTIS, Series analysis of cor-
rections to scaling for the spin-pair correlations of the spin-s Ising model: confluent
singularities, universality and hyperscaling. Phys. Rev., t. B 14, 1976, p. 3990-4001.

[126] T. SPENCER, Private communication.
[127] C. FRIEDMAN, Perturbations of the Schrödinger equation by potentials with small

support. J. Funct. Anal., t. 10, 1972, p. 346-360.
[128] K. SYMANZIK, Euclidean quantum field theory. I. Equations for a scalar model.

J. Math. Phys., t. 7, 1966, p. 510-525.

[129] K. SYMANZIK, Euclidean quantum field theory. In: Local quantum theory (1968
Varenna lectures), R. Jost, ed., New York-London, Academic Press, 1969.

[130] D. BRYDGES and P. FEDERBUSH, A lower bound for the mass of a random Gaussian
lattice. Commun. Math. Phys., t. 62, 1978, p. 79-82.

[131] A. J. KUPIAINEN, On the 1/n expansion. Commun. Math. Phys., t. 73, 1980, p. 273-294.
[131’] R. L. WOLPERT, Wiener path intersections and local time. J. Funct. Anal., t. 30,

1978, p. 329-340.
[131"] R. L. WOLPERT, Local time and a particle picture for Euclidean field theory. J.

Funct. Anal., t. 30, 1978, p. 341-357.
[132] A. DVORETZKY, P. ERDÖS and S. KAKUTANI, Double points of paths of Brownian

motion in n-space. Acta Sci. Math. (Szeged), t. 12 B, 1950, p. 75-81.
[133] M. J. WESTWATER, On Edwards’ model for long polymer chains. Commun. Math.

Phys., t. 72, 1980, p. 131-174.
[133’] J. WESTWATER, On Edwards’ model for polymer chains. III. Borel summability.

Commun. Math. Phys., t. 84, 1982, p. 459-470.
[134] G. F. LAWLER, A self-avoiding random walk. Duke Math. J., t. 47, 1980, p. 655-693.

[135] S. COLEMAN, R. JACKIW and H. D. POLITZER, Spontaneous symmetry breaking in
the O(N) model for large N. Phys. Rev., t. D 10, 1974, p. 2491-2499.

[136] V. B. BERESTETSKI~, Zero-charge and asymptotic freedom. Usp. Fiz. Nauk, t. 120,
1976, p. 439-454 [Soviet Phys., Uspekhi, t. 19, 1976, p. 934-943].

[137] P. OLESEN, On vacuum instability in quantum field theory. Phys. Lett., t. 73 B,
1978, p. 327-329.

[138] S. COLEMAN, Unpublished. Cited in [93].
[139] G. FELDMAN, Modified propagators in field theory (with application to the ano-

malous magnetic moment of the nucleon). Proc. Roy. Soc. (London), t. A 223,
1954, p. 112-129.

[140] L. D. LANDAU, A. A. ABRIKOSOV and I. M. KHALATNIKOV, An asymptotic expression
for the photon Green function in quantum electrodynamics. Dokl. Akad. Nauk
S. S. S. R., t. 95, 1954, p. 1177-1180. English translation in [16].

[141] D. J. GROSS and A. NEVEU, Dynamical symmetry breaking in asymptotically free
field theories. Phys. Rev., t. D 10, 1974, p. 3235-3253, Appendix.

[142] T. D. LEE, Some special examples in renormalizable field theory. Phys. Rev., t. 95,
1954, p. 1329-1334.

[143] G. KÄLLÉN and W. PAULI, On the mathematical structure of T. D. Lee’s model of
a renormalizable field theory. Dan. Mat. Fys. Medd., t. 30, no. 7, 1955.

[144] S. S. SCHWEBER, An introduction to relativistic quantum field theory. Evanston, Illi-
nois and Elmsford, New York, Row, Peterson and Co., 1961, Section 12b.

[145] A. A. ANSEL’M, Solution of equation for the meson-meson scattering amplitude

Vol. XXXVII, n° 4-1982.



394 A. D. SOKAL

in the asymptotic region. Zh. Eksp. Teor. Fiz., t. 38, 1960, p. 1887-1890 [Soviet
Phys., J. E. T. P., t. 11, 1960, p. 1356-1358].

[146] T. T. Wu, Perturbation theory of pion-pion interaction. II. Two-pion approxi-
mation. Phys. Rev., t. 126, 1962, p. 2219-2226.

[147] A. B. ZAMOLODCHIKOV, Yu. M. MAKEENKO and K. A. TER-MARTIROSYAN, A theory
of direct four-fermion interactions. Zh. Eksp. Teor. Fiz., t. 71, 1976, p. 24-45

[Soviet Phys., J. E. T. P., t. 44, 1976, p. 11-22].
[148] A. I. LARKIN and D. E. KHMEL’NITKSI~, Phase transition in uniaxial ferroelectrics.

Zh. Eksp. Teor. Fiz., t. 56, 1969, p. 2087-2098 [Soviet Phys., J. E. T. P., t. 29,
1969, p. 1123-1128].

[149] A. M. POLYAKOV, Properties of long and short range correlations in the critical
region. Zh. Eksp. Teor. Fiz., t. 57, 1969, p. 271-283 [Soviet Phys., J. E. T. P.,
t. 30, 1970, p. 151-157].

[150] K. SYMANZIK, Infrared singularities and small-distance-behaviour analysis. Commun.
Math. Phys., t. 34, 1973, p. 7-36.

[151] T. TSUNETO and E. ABRAHAMS, Skeleton graph expansion for critical exponents.
Phys. Rev. Lett., t. 30, 1973, p. 217-220.

[152] S. L. GINZBURG, Vertex functions and Green functions in the (4-~)-dimensional
theory of phase transitions. Zh. Eksp. Teor. Fiz., t. 66, 1974, p. 647-654 [Soviet
Phys., J. E. T. P., t. 39, 1974, p. 312-315].

[153] A. A. ABRIKOSOV, Electron scattering on magnetic impurities in metals and ano-
malous resistivity effects. Physics, t. 2, 1965, p. 5-37.

[154] Yu. A. BYCHKOV, L. P. GOR’KOV and I. E. DZYALOSHINSKI~, Possibility of super-
conductivity type phenomena in a one-dimensional system. Zh. Eksp. Teor. Fiz.,
t. 50, 1960, p. 738-758 [Soviet Phys., J. E. T. P., t. 23, 1966, p. 489-501].

[155] B. ROULET, J. GAVORET and P. NOZIÈRES, Singularities in the X-ray absorption
and emission of metals. I. First-order parquet calculation. Phys. Rev., t. 178,
1969, p. 1072-1083.

[156] P. NOZIÈRES, J. GAVORET and B. ROULET, Singularities in the X-ray absorption and
emission of metals. II. Self-consistent treatment of divergences. Phys. Rev.,
t. 178, 1969, p. 1084-1096.

[157] E. C. POGGIO, On the renormalization method: a different outlook, and the energy-
momentum tensor in the g03C64 theory. Ann. Phys., t. 81, 1973, p. 481-518.

[158] R. W. HAYMAKER and R. BLANKENBECLER, Variational principles for crossing-
symmetric off-shell equations. Phys. Rev., t. 171, 1968, p. 1581-1587.

[159] R. J. YAES, Nonassociativity of the operators in the crossing-symmetric Bethe-
Salpeter equations. Phys. Rev., t. D 2, 1970, p. 2457-2463.

[160] W. BECKER and D. GROSSER, Crossing and unitarity in the context of the Bethe-
Salpeter equation. Nuovo Cim., t. 10 A, 1972, p. 343-361.

[161] R. G. ROOT, Effective potential for the O(N) model to order 1/N. Phys. Rev., t. D 10,
1974, p. 3322-3334.

[162] G. FEINBERG and A. PAIS, A field theory of weak interactions. I. Phys. Rev., t. 131,
1963, p. 2724-2761. II. Phys. Rev., t. 133, 1964, B 477-B 486.

[163] B. A. ARBUZOV and A. T. FILIPPOV, Vertex function in nonrenormalizable field

theory. Nuovo Cim., t. 38, 1965, p. 796-806.

[164] B. A. ARBUZOV and A. T. FILIPPOV, Iteration method in nonrenormalizable field

theory. Zh. Eksp. Teor. Fiz., t. 49, 1965, p. 990-999 [Soviet Phys., J. E. T. P.,
t. 32, 1966, p. 688-693].

[165] W. GÜTTINGER, R. PENZL and E. PFAFFELHUBER, Peratization of unrenormalizable
field theories. Ann. Phys., t. 33, 1965, p. 246-271.

[166] T. D. LEE, Analysis of divergences in a neutral-spin-1-meson theory with parity-
nonconserving interactions. Nuovo Cim., t. 59 A, 1969, p. 579-598.

Annales de l’lnstitut Henri Poincaré-Section A



395AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (p3 QUANTUM FIELD THEORY

[167] M. K. VOLKOV, Methods of quantum field theory with rapidly increasing spectral
functions. Fortsch. Physik, t. 19, 1971, p. 757-782.

[168] L. NITTI, M. F. PELLICORO and M. VILLANI, Higher-order corrections in nonrenor-
malizable quantum field theories. Lett. Nuovo Cim., t. 3, 1972, p. 541-547.

[169] N. N. KHURI and A. PAIS, Singular potentials and peratization. I. Rev. Mod. Phys.,
t. 36, 1964, p. 590-595.

[170] W. M. FRANK, D. J. LAND and R. M. SPECTOR, Singular potentials. Rev. Mod. Phys.,
t. 43, 1971, p. 36-98.

[171] T. T. Wu, Theory of Toeplitz determinants and the spin correlations of the two-
dimensional Ising model. I. Phys. Rev., t. 149, 1966, p. 380-401, Section 8(H).

[172] A. A. SLAVUOV and A. E. SHABAD, Elimination of unphysical singularities in the
Feinberg-Pais theory of weak interactions. Yad. Fiz., t. 1, 1965, p. 721-728 [Sov.
J. Nucl. Phys., t. 1, 1965, p. 514-519].

[173] M. B. HALPERN, Nonrenormalizable field theories. Ann. Phys., t. 39, 1966, p. 351-375.

[174] V.Sh. GOGOKHIYA and A. T. FILIPPOV, Approximate methods for solving the Schrö-
dinger equation with a singular potential. Yad. Fiz., t. 15, 1972, p. 1294-1306

[Sov. J. Nucl. Phys., t. 15, 1972, p. 714-719].
[175] G. PARISI, The theory of non-renormalizable interactions. The large N expansion.

Nucl. Phys., t. B 100, 1975, p. 368-388.
[176] J. C. TAYLOR, The form of the divergencies in quantum electrodynamics. Proc.

Roy. Soc. (London), t. 234 A, 1956, p. 296-300.
[177] J. C. TAYLOR, Renormalization in meson theories. Proc. Camb. Philos. Soc., t. 52,

1956, p. 534-537.

[178] K. A. TER-MARTIROSIAN, Charge renormalization for an arbitrary, not necessarily
small, value of e0. Zh. Eksp. Teor. Fiz., t. 31, 1956, p. 157-159 [Soviet Phys.,
J. E. T. P., t. 4, 1957, p. 443-444].

[179] H. D. POLITZER, Asymptotic freedom: An approach to the strong interactions.
Phys. Rep., t. 14, 1974, p. 129-180.

[180] E. S. FRADKIN and O. K. KALASHNIKOV, Renormalized set of equations for the
Green functions in the Yang-Mills field theory and its asymptotic solution. J.
Phys., t. A 9, 1976, p. 159-168.

[181] J. C. COLLINS and A. J. MACFARLANE, New methods for the renormalization group.
Phys. Rev., t. D 10, 1974, p. 1201-1212.

[182] K. G. WILSON, Renormalization group and critical phenomena. I. Renormalization
group and the Kadanoff scaling picture. Phys. Rev., t. B 4, 1971, p.3174-3183.

II. Phase-space cell analysis of critical behavior. Phys. Rev., t. B 4, 1971, p. 3184-
3205.

[183] L. P. KADANOFF, A. HOUGHTON and M. C. YALABIK, Variational approximations
for renormalization group transformations. J. Stat. Phys., t. 14, 1976, p. 171-203;
t. 15 (E), 1976, p. 263.

[184] H. W. J. BLÖTE and R. H. SWENDSEN, Critical behavior of the four-dimensional
Ising model. Phys. Rev., t. B 22, 1980, p. 4481-4483.

[185] B. SIMON, Coupling constant analyticity for the anharmonic oscillator. Ann. Phys.,
t. 58, 1970, p. 76-136.

[186] S. GRAFFI, V. GRECCHI and B. SIMON, Borel summability: application to the anhar-
monic oscillator. Phys. Lett., t. 32 B, 1970, p. 631-634.

[187] G. PARISI, The perturbative expansion and the infinite coupling limit. Phys. Lett.,
t. 69 B, 1977, p. 329-331.

[188] G. A. BAKER, Jr., B. G. NICKEL and D. I. MEIRON, Critical indices from perturbation
analysis of the Callan-Symanzik equation. Phys. Rev., t. B 17, 1978, p. 1365-1374.

[189] J. C. LEGUILLOU and J. ZINN-JUSTIN, Critical exponents for the n-vector model
in three dimensions from field theory. Phys. Rev. Lett., t. 39, 1977, p. 95-98.

Vol. XXXVII, n° 4-1982.



396 A. D. SOKAL

[190] J. C. LEGUILLOU and J. ZINN-JUSTIN, Critical exponents from field theory. Phys.
Rev., t. B 21, 1980, p. 3976-3998.

[191] A. A. VLADIMIROV, Methods of calculating many-loop diagrams and renormaliza-
tion-group analysis of the 03C64 theory. Teor. Mat. Fiz., t. 36, 1978, p. 271-278 [Theor.
Math. Phys., t. 36, 1978, p. 732-737].

[192] F. M. DITTES, Yu. A. KUBYSHIN and O. V. TARASOV, Four-loop approximation in
the 03C64 model. Teor. Mat. Fiz., t. 37, 1978, p. 66-73 [Theor. Math. Phys., t. 37,
1978, p. 879-884].

[193] N. N. KHURI, Solutions of the Callan-Symanzik equation in a complex neighborhood
of zero coupling. Phys. Rev., t. D 12, 1975, p. 2298-2310.

[194] N. N. KHURI, Borel summability and the renormalization group. Phys. Rev., t. D 16,
1977, p. 1754-1761.

[195] A. D. SOKAL, An improvement of Watson’s theorem on Borel summability. J. Math.
Phys., t. 21, 1980, p. 261-263.

[196] J. ZINN-JUSTIN, Asymptotic estimate of perturbation theory at large orders. In:
Hadron structure and lepton-hadron interactions (1977 Cargèse lectures). M. Lévy
et al., eds., New York-London, Plenum Press, 1979.

[197] G. PARISI, The physical basis of asymptotic estimates in perturbation theory. In:
Hadron structure and lepton-hadron interactions (1977 Cargèse lectures). M. Lévy
et al., eds., New York-London, Plenum Press, 1979.

[198] L. D. LANDAU, Fundamental problems. In: Theoretical physics in the twentieth

century, a memorial volume to Wolfgang Pauli, M. Fierz and V. F. Weisskopf,
eds., New York, Interscience, 1960. Reprinted in [16].

[199] D. B. ABRAHAM and H. KUNZ, Ornstein-Zernike theory of classical fluids at low
density. Phys. Rev. Lett., t. 39, 1977, p. 1011-1014.

[200] G. A. BAKER, Jr. and D. BESSIS, Asymptotic decay of correlations in the spin-1/2
Ising model. J. Math. Phys., t. 22, 1981, p. 1264-1266.

[201] C. M. BENDER, G. S. GURALNIK, R. W. KEENER and K. OLAUSSEN, Numerical study
of truncated Green’s-function equations. Phys. Rev., t. D 14, 1976, p. 2590-2595.

[202] B. SCHROER, A necessary and sufficient condition for the softness of the trace of
the energy-momentum tensor. Lett. Nuovo Cim., t. 2, 1971, p. 867-872.

[203] J. C. COLLINS, Renormalization of the energy-momentum tensor in 03C64 theory.
Phys. Rev., t. D 14, 1976, p. 1965-1976.

[204] E. C. POGGIO, Short-distance behavior of a g03C64 theory, and conformal-invariant
four-point functions. Phys. Rev., t. D 8, 1973, p. 2431-2446.

[205] V. K. DOBREV, G. MACK, V. B. PETKOVA, S. G. PETROVA and I. T. TODOROV, Harmonic
analysis on the n-dimensional Lorentz group and its application to conformal quan-
tum field theory (Lecture notes in physics # 63), Berlin-Heidelberg-New York,
Springer-Verlag, 1977.

[206] B. GEYER, V. A. MATVEEV, D. ROBASCHIK and E. WIECZOREK, Analytical properties
of conformal invariant four point functions. Rep. Math. Phys., t. 10, 1976, p. 203-
211.

[207] G. MACK and I. T. TODOROV, Conformal-invariant Green functions without ultra-
violet divergences. Phys. Rev., t. D 8, 1973, p. 1764-1787.

[208] E. S. FRADKIN and M. Ya. PALCHIK, Conformally invariant solution of quantum
field theory equations (1). Nucl. Phys., t. B 99, 1975, p. 317-345.

[209] V. K. DOBREV, V. B. PETKOVA, S. G. PETROVA and I. T. TODOROV, Dynamical deri-
vation of vacuum operator-product expansion in Euclidean conformal quantum
field theory. Phys. Rev., t. D 13, 1976, p. 887-912.

[210] G. MACK, Osterwalder-Schrader positivity in conformal invariant quantum field
theory. In: Trends in elementary particle theory (Lecture notes in physics # 37).
H. Rollnik and K. Dietz, eds., Berlin-Heidelberg-New York, Springer-Verlag,
1975.

Annales de l’lnstitut Henri Poincaré-Section A



397AN ALTERNATE CONSTRUCTIVE APPROACH TO THE (P3 QUANTUM FIELD THEORY

[211] R. A. WILLOUGHBY, The inverse M-matrix problem. Lin. Alg. Appl., t. 18, 1977,

p. 75-94.

[212] T. L. MARKHAM, Nonnegative matrices whose inverses are M-matrices. Proc. Amer.
Math. Soc., t. 36, 1972, p. 326-330.

[213] B. B. MURPHY, On the inverses of M-matrices. Proc. Amer. Math. Soc., t. 62, 1977,
p. 196-198.

[214] G. CAGINALP, The 03C64 lattice field theory as an asymptotic expansion about the
Ising limit. Ann. Phys., t. 124, 1980, p. 189-207.

[215] G. CAGINALP, Thermodynamic properties of the 03C64 lattice field theory near the
Ising limit. Ann. Phys., t. 126, 1980, p. 500-511.

[216] F. CONSTANTINESCU, Strong-coupling expansion of the continuous-spin Ising model.
Phys. Rev. Lett., t. 43, 1979, p. 1632-1635.

[217] L. H. KARSTEN and J. SMIT, The vacuum polarization with SLAC lattice fermions.
Phys. Lett., t. 85 B, 1979, p. 100-102.

[217’] J. M. RABIN, Long-range interactions in lattice field theory. SLAC-Report 240,
June 1981.

[218] H. S. SHARATCHANDRA, Continuum limit of lattice gauge theories in the context
of renormalized perturbation theory. Phys. Rev., t. D 18, 1978, p. 2042-2055.

[218’] N. KIMURA and A. UKAWA, Energy-momentum dispersion of glueballs and the
restoration of Lorentz invariance in lattice gauge theories. Nucl. Phys., t. B 205

[FS5], 1982, p. 637-647.
[218’’] C. B. LANG and C. REBBI, Potential and restoration of rotational symmetry in SU(2)

lattice gauge theory. Phys. Lett., t. 115 B, 1982, p. 137-142.
[219] R. F. STREATER, Connection between the spectrum condition and the Lorentz

invariance of P(03C6)2. Commun. Math. Phys., t. 26, 1972, p. 109-120.

[220] E. P. HEIFETS and E. P. OSIPOV, The energy-momentum spectrum in the P(03C6)2
quantum field theory. Commun. Math. Phys., t. 56, 1977, p. 161-172.

[221] A. D. SOKAL, Unpublished, 1980.
[222] M. REED and B. SIMON, Methods of modern mathematical physics. III. Scattering

theory, New York-San Francisco-London, Academic Press, 1979.

[223] A. D. SOKAL, Unpublished, 1980.

[224] L. MONROE and P. A. PEARCE, Correlation inequalities for vector spin models.
J. Stat. Phys., t. 21, 1979, p. 615-633.

[225] M. REED and B. SIMON, Methods of modern mathematical physics. II. Fourier analysis,
self-adjointness, New York-San Francisco-London, Academic Press, 1975.

[226] H. E. STANLEY, Introduction to phase transitions and critical phenomena, New York,
Oxford University Press, 1971.

[227] J. GLIMM and A. JAFFE, ø42 quantum field model in the single-phase region: differen-
tiability of the mass and bounds on critical exponents. Phys. Rev., t. D 10, 1974,
p. 536-539.

[228] G. A. BAKER, Jr., Critical exponent inequalities and the continuity of the inverse
range of correlation. Phys. Rev. Lett., t. 34, 1975, p. 268-270.

[229] M. AIZENMAN, Proof of the triviality of 03C64d field theory and some mean-field features
of Ising models for d &#x3E; 4. Phys. Rev. Lett., t. 47, 1981, p. 1-4, 886 (E).

[230] M. AIZENMAN, Geometric analysis of 03C64 fields and Ising models (parts I and II).
Commun. Math. Phys., t. 86, 1982, p. 1-48.

[231] J. FRÖHLICH, On the triviality of 03BB03C64d theories and the approach to the critical point
in d ~ 4 dimensions. Nucl. Phys., t. B 200 [FS4], 1982, p. 281-296.

[232] D. BRYDGES, J. FRÖHLICH and T. SPENCER, The random walk representation of
classical spin systems and correlation inequalities. Commun. Math. Phys., t. 83,
1982, p. 123-150. 

Vol. XXXVII, n° 4-1982.



398 A. D. SOKAL

[233] D. C. BRYDGES, J. FRÖHLICH and A. D. SOKAL, The random-walk representation
of classical spin systems and correlation inequalities. II. The skeleton inequalities.
Courant Institute preprint.

[234] D. C. BRYDGES, J. FRÖHLICH and A. D. SOKAL, A new proof of the existence and
nontriviality of the continuum 03C642 and 03C643 quantum field theories. Courant Institute
preprint.

[235] R. SCHRADER and E. TRÄNKLE, Analytic and numerical evidence from quantum
field theory for the hyperscaling relation dv = 20394 - 03B3 in the d = 3 Ising model.
J. Stat. Phys., t. 25, 1981, p. 269-290.

[236] K. OSTERWALDER, Unpublished, cited in [235, section 1].
[237] W. DRIESSLER and J. FRÖHLICH, The reconstruction of local observable algebras

from the Euclidean Green’s functions of relativistic quantum field theory. Ann.
Inst. Henri Poincaré, t. A 27, 1977, p. 221-236.

[238] J.-P. ECKMANN and H. EPSTEIN, Time-ordered products and Schwinger functions.
Commun. Math. Phys., t. 64, 1979, p. 95-130.

[239] A. D. SOKAL, Mean-field bounds and correlation inequalities. J. Stat. Phys., t. 28,
1982, p. 431-439.

(Manuscrit reçu le 27 mars 1981 )

Annales de l’lnstitut Henri Poincaré-Section A


