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Section A :

Physique théorique.

ABSTRACT. - In the framework of the theory of Lagrangian structures
of any ord’er r, the meaning of a natural intrinsic « regularity condition »
for the Lagrangian forms is investigated. This condition is used to charac-
terize so called Hamiltonian extremals and to define an invertible r-th order

Legendre transformation. Hamilton equations of order r are explicitly
calculated in terms of new « phase space » variables, thus providing a
completely equivalent counterpart to Euler-Lagrange equations (for
regular Lagrangians).

RÉSUMÉ. - Dans le cadre de la theorie des structures Lagrangiennes
d’ordre r quelconque, on etudie la signification d’une « condition de regu-
larite » naturelle et intrinseque pour les formes Lagrangiennes. Cette condi-
tion est utilisee pour caracteriser ce qu’on appelle les extremales Hamil-
toniennes et pour définir une transformation de Legendre inversible
d’ordre r. On établit explicitement les equations de Hamilton d’ordre r
en termes de nouvelles variables d’espace de phase, obtenant ainsi un
système completement equivalent aux equations d’Euler-Lagrange (pour
des Lagrangiens reguliers).

(*) Permanent address: Istituto di Fisica Matematica « J.-L. Lagrange », Universitá di
Torino, Via C. Alberto 10, 10123 Torino (Italy).
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296 M. FRANCAVIGLIA AND D. KRUPKA

0 . INTRODUCTION

As it is well known, classical mechanical systems with finitely many
degrees of freedom can be alternatively described from either a Lagrangian
viewpoint or a Hamiltonian viewpoint. The relations between these two
possible formulations are fairly well established. In particular, it is known
that a Lagrangian system admits an equivalent Hamiltonian counterpart
if the Lagrangian function is regular (in a standard sense), and, as a conse-
quence, the classical Legendre transformation is an invertible mapping
from « velocity space » to « phase space ».

It is also well known that the Lagrangian formulations of classical
mechanics arise from so-called « (classical) variational principles », whereby
the equations of motion are derived by requiring the stationarity of « action
functionals ».

Lagrangian methods and variational principles are in fact very common
in all domains of physics and they can be considered as the most frequently
used approaches to the formulation of physical field theories. While in
classical mechanics only « configurations » and « velocities » are involved
in the Lagrangian, in a generic field theory the Lagrangian function (which
is supposed to contain all informations pertaining to the physical theory
itself) is allowed to depend on higher order derivatives of the fields. This
is the source of a widespread interest in « higher order » variational prin-
ciples and their rigorous mathematical foundations.
Thanks to the contributions of several authors it has been reached a

relatively complete geometrical description of a rigorous framework for
higher order variational principles, especially by means of the calculus
of variations on fiber bundles and the use of jet structures (see e. g. [1 ]- [1 D ]
and references cited therein). We shall here rely on the approach developed
by one of us in [7]- [9]. It is based on assigning a « configuration bundle »
(Y, X, 7r) together with an r-th order Lagrangian ~, which is a diffe-
rential form on the r-th order jet prolongation of this bundle. Taking
in particular X = R, Y = M x R and r = 1, we can obtain the Lagrangian
formulation of classical mechanics, where M is the « configuration space »
of the mechanical system considered. So called higher order mechanics
is obtained by taking X and Y as before and letting r &#x3E; 1.

In the geometrical framework above, the corresponding Lagrangian
formalism is very well established at all orders r (see e. g. [9 ] [6 ]), containing
classical Lagrangian mechanics as a particular case. A completely satis-
factory Hamiltonian formalism has been formulated for 1-st order varia-
tional principles, containing classical Hamiltonian mechanics as a parti-
cular case (see e. g. [1 ] [3 ] [11 ] [12 ]). For the first order case, in fact, it
has been shown that if i satisfies an appropriate natural regularity condition,
there exists an equivalent Hamiltonian formalism (of order 1 ), which may

Annales de 1’Institut Henri Poincaré-Section A



297THE HAMILTONIAN FORMALISM IN HIGHER ORDER VARIATIONAL PROBLEMS

be obtained using an appropriate 1-st order Legendre transformation
which maps the original bundle j1Y to the so called ( 1 st order) Legendre
bundle, which plays the role of « phase space ».
A natural question then arises : does there exist an appropriate generali-

zation of the Hamilton formalism to higher order cases ? And if so, under
which conditions on the Lagrangian ?
As far as we know, no fully satisfactory answer to this question has been

given up to now. We remark that partial steps towards constructing higher
order Hamiltonian formalism have been taken by several authors, both
in the framework of higher order mechanics (e. g. [13 ] [14 ]) and in field
theory (e. g. [15 ]).

In this paper we shall consider the question from the point of view of
the theory of Lagrangian structures, according to [8 ]. We shall show that
a suitable natural intrinsic regularity condition can be imposed to the
Lagrangian À of arbitrary order r, so that an appropriate equivalent Hamil-
tonian counterpart exists for the corresponding Lagrangian theory, and
we shall derive the explicit (local) Hamiltonian equations.

In Section 1 the basic notations are introduced. Section 2 contains a
discussion about the r-th order Poincare-Cartan form, which is a funda-
mental notion of the theory. In Section 3 the notion of Hamiltonian extremals
is introduced (cf. [16 ]) and it is shown that Hamiltonian extremals are
in one-to-one correspondence with critical sections of §., provided /. satisfies
the aforementioned regularity condition. Section 4 contains a technical
lemma which under the same regularity condition defines (locally) a natural
r-th order Legendre transformation, which may be interpreted as a change
of local coordinates in the underlying jet bundle. This enables us, in Section 5,
to derive a set of r-th order equations, that we call Hamiltonian equations
of order r, which are equivalent to the 2r-th order Euler-Lagrange equations
of ~. These Hamiltonian equations reduce to the well known ones if we
take r = 1. Finally, in Section 6 we consider some elementary examples
within the framework of second order mechanics.

1 PRELIMINARIES AND NOTATIONS

Here, we shall fix the notations which shall be used throughout this
paper and we shall recall some basic definitions from the theory of variational
problems on jet bundles. We shall essentially follow some previous papers
by one of us [7 ]- [9 ].
Throughout this paper all manifolds, all objects defined over them and

all mappings between manifolds, are implicitely assumed to be smooth
(in the 

Let X be a paracompact, Hausdorff, n-dimensional (real) manifold.
We shall assume for simplicity that X is connected, orientable and oriented.

Vol. XXXVII, n° 3-1982.



298 M. FRANCA VIGLIA AND D. KRUPKA

(These restrictions are unessential. See [9] ] for the details of the theory
when X is not orientable and not necessarily connected). We denote by
(Y, X, 7r) any fibered mani,fold over X (here Y is the total space, X is the
base Y - X is a surjective submersion). We set

We denote by (jry, X, 1[r) the r-th jet prolongation of Y and by 
the natural fibered structure of yY onto /Y (where 0  l  r - 1 and

Y=~Y).
If (V, is a fibered chart of Y, with local fibered coordinates 
lf~~l(7m, then the associated fibered chart of jrY is denoted
by (Vr, Here v,. = and defines local fibered coordi-
nates (Xi, &#x3E; y", &#x3E; ..., where 1  i  n, 1  6  m,

1 ~ ji _ J2  ...  jr  n. We stress that only non-decreasing sequences
of integers appear. 

-

In order to allow also arbitrary sequences of integers, which shall some-
times simplify the calculations in local coordinates, we introduce the
following conventions. Let s be any integer, 1  s  r. Let (i 1, ... , is)
be an arbitrary s-tuple of integers 1  ik  n (k = 1, ..., s). There exists
one and only one non-decreasing s-tuple of integers 1 jl _ j2  ... js  n
which is a permutation of the given s-tuple (fi, ... , fj. We call this non-
decreasing s-tuple the ordered form of (ib ..., is) and we denote it by

..., is). Accordingly we formally define for an arbitrary s-tuple
(fi, ..., is) by setting:

Let be any collection of functions on Vr, which are totally sym-
metric in all superscripts. Whenever such a collection appears in some
formula, the whole collection { will be replaced by its distinguished
member The same convention will be applied to any collection

of functions on Vr which are totally symmetric in all subscripts.
Accordingly, this convention will be applied as follows to summations.
If (respectively are expressions which are totally sym-
metric in their superscripts (resp. in their subscripts) then we shall denote
by

the expression obtained by extending the summation only to ordered non-
decreasing sequences ; namely, we set:

Annales de 1’Institut Henri Poincaré-Section A



299THE HAMILTONIAN FORMALISM IN HIGHER ORDER VARIATIONAL PROBLEMS

We shall use the following standard notations. By iE’1 we denote the
inner product of a vectorfield 0396 and a differential form ’1 ; denotes the

formal derivative (or total derivative) with respect to xi of a function
~ R ; if y : X ~ Y is a section of 7r, its r-th jet prolongation is

denoted by jry (we recall that fy is a section of similarly, jrs denotes
the r-th jet prolongation of a 03C0-projectable vector field E on Y (we recall
that jrs is a nr-projectable vectorfield on yY).
The following (local) differential forms on fY, which we define by their

coordinate expressions on Vr, will be used throughout:

For further details see e. g. [8 ].
Let (Z, X, i) be any fibered manifold. Recall that a vector-field L : Z -~ TZ

is 03C4-vertical iff = 0 (this means, roughly speaking, that £ is tangent
to the fibres ofZ). A differentialp-form p E QP(Z) is i-horizontal iff ..., ~p)
vanishes whenever at least one of the vectorfields 03A31, ..., Lp is r-vertical.

Consider now X, ns), where s is any integer. A p-form p E 
with p  n, is called a contact form iff the following holds :

for all sections y : X ~ Y of 7L Let then ~ be any p-form n E 
There exists one and only one 03C0s+1-horizontal p-form E 

such that the following holds : 
.

for all sections y of 7: (see [7], p. 23). The form will be called the hori-

zontal part of 11. We set :

The form is contact and we call it the contact part of q. We remark
that the two operations hand p may be suitably extended to the differential
forms of any degree p &#x3E; n + 1 (see [8 ]) in such a way that the decomposition
(~S + I ~S)* ~l = + still holds.

We recall that from the operational viewpoint the action of h on p-form
on ~~Y ( p  n) is completely described by the following local coordinate
relations:

where f is any function on VS.
Vol. XXXVII, n° 3-1982.



300 M. FRAXCAVIGLIA AND D. KRUPKA

We finally recall the following definitions. A Lagrangian of order r

for Y is a rcr-horizontal n-form i E (here n = dim x). The quadruple
(Y, X, z ; ;w) will be referred to as a Lagrangian structure of order r. Lagran-
gian structures (of order r) are the natural framework for formulating
and investigating variational problems (of order r).

2. THE GENERALIZED POINCARÉ-CARTAN FORM

In the calculus of variations on jet bundles a special role is played by the
so-called generalized Poincaré-Cartan form, which, as we shall see later,
is a fundamental concept for the transition from the Lagrangian formu-
lation to the corresponding Hamiltonian formulation of a variational
problem. The Poincaré-Cartan form for the order r = 1 was known since
a long time (see e. g. [3] ] [4 ]). A generalization to the second order was
first proposed in [7 ] ; finally the generalized Poincaré-Cartan form for
an arbitrary order r was defined an investigated in [17 ].

Let (Y, X, ~c ; h) be a Lagrangian structure of order r. The following
is a refinement of a theorem which was given in [7] (see also [9 ]).

THEOREM 1. - There exists a n-form such that the

following conditions hold :

i) for each 03C02r-1-vertical vectorfield E on j2r-l Y the (n - l)-form 
is 1-horizontal ; 

ii) h(O;, ) == i ;
iii) for each 03C02r-1-vertical 03C02r-1,0 projectable vectorfield S on j2r-1Y

the n-form h(iyd0;) depends only on the 03C02r-1,0-projection of the vector-’ 

. 

’

iv) for each isomorphism a : Y --~ Y of the fibered manifold (Y, X, ~)
the condition 0398jrx*03BB == * e; holds.. 
The n-form 039803BB E is called the generalized Poincaré-Cartan

form associated with E.. In local fibered coordinates the restriction of e. Á
to the fibered chart has the following explicit expression : 

’

Here we have set (locally):

Annales de l’lnstitut Henri Poincaré-Section A



301THE HAMILTONIAN FORMALISM IN HIGHER ORDER VARIATIONAL PROBLEMS

where L = L(xl, j’", ..., is a function from Vr to R. Moreover :

or more explicitly:

(for 1  s  r - 1 ).
We remark that from the structure of the coefficients jj1...js we imme-

diately infer that only the first one f’1 depends on all coordinates
Xi, y6, YJ1’ ..., More precisely, is a function of the
coordinates (xi, y6, ..., in (~2r-s,o) 1(~)~ for 1 sr.
As it is well known the Euler-Lagrange expressions of the r-th order

Lagrangian ~, are the following local functions BO"(L) : h2Y ~ R defined
for all local fibered charts V2r = (~~r.o) 1(h) of 

The Euler-Lagrange form associated with 2 is the (global) (n + I)-form
defined by the local coordinate expressions:

It is immediately seen that 8;. is n2r,o-horizontal.
An important property of the generalized Poincare-Cartan form 0;

is that the horizontal part of the (n + I)-form d0;, coincides with the
Euler-Lagrange form e~ itself; in formulae:

More precisely we have the following lemma.

LEMMA 1. Let I be a Lagrangian of order r for Y. Then the following
decomposition holds :

where F03BB is a contact form on j2r- 1Y, locally defined by :

Proof - By direct calculation from (2 .1), (2. 3) and (2. 5) (see e. g. [9] [17] ]
for details).

V ol. XXXVII, n° 3-1982.



302 M. FRANCA VIGLIA AND D. KRUPKA

3. HAMILTONIAN EXTREMALS
AND REGULARITY CONDITIONS

Let us suppose a Lagrangian structure of order r (Y, X, 7c; ).) is given.
We recall that the action of J. on a domain Q ~ X is the mapping lq defined
by : ~

where y : Q - 7r ~(f~) c= Y is any local section of 7c. According to the
standard definitions, the extremals (or critical sections) of ~, are those
sections which make all mappings 03BB03A9 stationary (in the suitably defined
well known sense). We denote by rB the set of all critical sections of ~,.

All sections satisfy Euler-Lagrange equations :

which are in fact equivalent to the well known local equations

along the section y itself. It is easy to show that equations (3.2) may be
re-written as follows :

for all n-vertical vectorfields ç on Y. Using (2. 8) and recalling that F~, is
contact, conditions (3. 3) are immediately transformed into the following:

Equations (3 . 4) suggest to us the following definition :

DEFINITION 3 .1. - We say that a section 6 : X -~ j2r -1 is a Hamiltonian
extremal of 5. if it satisfies the following condition :

for all 03C02r-1-vertical 03C02r- 1,0-projectable vectorfields 3 on 
We note that Hamiltonian extremals may alternatively be defined by

means of some anholonomic jets [18 ] (added in proof).
The set of Hamiltonian extremals will be denoted by H;. If a section y

of 7r is a critical section of i, then we can prove that its jet prolongation
j2r-ly is a Hamiltonian extremal. We then have a mapping r; - HA
given by: 

’

Annales de l’lnstitut Henri Poincaré-Section A



303THE HAMILTONIAN FORMALISM IN HIGHER ORDER VARIATIONAL PROBLEMS

We are interested in investigating conditions on the Lagrangian i under
which the mapping J;, is a bijection, i. e. conditions ensuring that each
Hamiltonian extremal 5 E H;. be the (2r - I)-jet prolongation of a critical
section y E h J .
To this purpose we give first the following definition :

DEFINITION 3 .2. - We say that ).. is regular at a point ~xy f the
following condition holds : There exists a fibered chart V on Y, with coordi-
nates (xi, y~), such that E V and :

at the point where L : 1~ ~ R is defined by the chart representation (2 . 2)
of X. We say that ), is regular in an open subset W c jrY if it is regular at
each point of W.

In (3. 7) the rows (resp. columns) of the matrix are labelled by the multi-
indices 03C3i1...ir (resp. We refer to (3 . 7) as the regularity condition (for 03BB).
We remark that the regularity condition (3.7) does not depend on the
choice of a fibered coordinate system around the point considered. It is
therefore an intrinsic property of the Lagrangian itself.

Let us now assume that )" is regular. We shall calculate the explicit
coordinate expression of 5* (i0396d039803BB), where 3 is any 03C02r-1-vertical 03C02r-1,0-
projectable vectorfield Y, i. e. :

By a straightforward calculation we obtain :

Assume now that 5 is a Hamiltonian extremal of J.. By the arbitrariness
ofE and the linearity of 5* we should exploit (3 . 5) by requiring
that all the coefficients at the various components of E vanish identically.
However, it turns out that it is enough to restrict our attention to only
few of these coefficients. In fact, using (2. 8) together with (3.9) and (3 .10)

Vol. XXXVII, n° 3-1982.
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we obtain a number of conditions, among which we find the following ones :

r

These two sets of conditions imply, via a simple argument involving the
regularity condition (3 . 2), that the following holds :

Relations (3.13) imply in turn that there exists a section y : X ~ Y such
that :

At this point we see that it is not necessary to consider explicitly the further
coefficients arising from (3.5). In fact, replacing (3.14) into the original
equation (3 . 5) we see at once that y is a critical section of A.

Therefore, we have proved the following theorem :

THEOREM 2. - Under the hypothesis that i is a regular Lagrangian of
order r in Y, i. e. under condition (3.2), the following two conditions are
equivalent :

i) ~ : X -~ Hamiltonian extremal (i. e. ~ E Hg) ;
ii) there exists a critical section y E Fg such that ~ - j2r- ly.
In other words we have proved the following : the mapping I;, : Fg - H;.

is a bijection if i~~ is regular. Thus we see that for regular Lagrangians the
search for critical sections is equivalent to the search for Hamiltonian
extremals.
We conclude by remarking that theorem 2 allows to replace condition (3.51

for Hamiltonian extremals with an equivalent condition, which shall be
however most suited for deriving the Hamiltonian equations for ~. In

fact, if i is regular and 5 E H; is a Hamiltonian extremal, then it is ð = j2r- ly
for some y E r;.. Therefore, applying ( 1. 3) to (3 . 5) we obtain the equivalent
condition :

or more simply :

(along the jet prolongation ~7). This result should not surprise, because
equation (3.15) is in fact equivalent to Euler-Lagrange equations (3.3).

Annales de 1’Institut Henri Poincaré-Section A
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Nevertheless, investigating condition (3.16) is simpler than investigating
directly (3.5), because of the condition iii) of theorem 1.
We might give a further interpretation of our last condition (3.16).

Let us first introduce a further notion, which will be helpful. We say that
a section 03C3 of ns is an extension of a section 5 of ni (where I  s - 1) if the
following holds :

Then we have the following immediate result: a section 5 of i is a

Hamiltonian extremal of i~~ if and only if all its extensions 6 to j2rY satisfy
the condition

(It is in fact 7* {TC2r,2r- i ° 6)* £5* by
virtue of (3.17) itself). It is easy to see that (3.18) reduces to (3.16) if we
take (2 . 8) into account and we remark that (~c2Y, 2Y -1 ~ 6)* vanishes

by virtue of the steps done when proving theorem 2.

4. THE LEGENDRE TRANSFORMATION OF ORDER r

In this section we shall prove that under the regularity condition (3)
a natural change of coordinates in jrY may be defined, together with its natu-
ral prolongation to This change of local coordinates in 
will be suited for the search of Hamiltonian extremals (for ;~), as we shall
see in the next section.

Let then (Y, X, n ; ).,) be a Lagrangian structure of order r. The following
holds :

LEMMA 2. - Let us suppose that i~ is regular on a fibered chart

Vr = sense of (3 . 7).
Then define: 

-

and :

for 1  l  r -1. The mappings ~r : V ( Vr)r -1 ~ ( I r)r -1 i
respectively defined 

Vol. XXXVII, n° 3-1982.
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and

are diffeomorphisms, i. e. they induce a local change of coordinates in 
(resp. in 

Proof i) The mapping ~ is a diffeomorphism of Vr if and only if the
jacobian with respect to the given coordinates is nonvanishing.
But (4. 1) gives us immediately :

Thus we see that is a difieomorphism if and only if (3 . 7) holds.
We now turn to consider § : ( I r)r _ 1 - ( vr)r - 1. We shall prove that

~ is a diifeomorphism by showing that the regularity condition (3.7)
assures the invertibility of the functions with respect to their higher
order variables y~...~,~..jp for all integers /(1  /  r - 1). In order to
prove this we shall more precisely show that~~’~ is an invertible affine

?2L
function of the highest order variables having ~y03C3j1...jr~y03BDk1...kr
as coefficient matrix, namely that it has the form :

where the functions do not depend on (Invertibility
follows of course from the regularity condition (3. 7) on ~).

a) Take = 1. Then we have by definition:

where are suitable functions on Vr (i. e. they depend on the coordi-
nates Xi, y°~, only). This proves our claim for I = 1.

b) Suppose our claim is correct for I = s (1  s  r - 1). We shall
prove that it is also valid for I = s + 1. We have in fact, by the induction
hypothesis : _ .-

where depend only on x~, ~y.6, Yf1,- ..., Calculating the
derivative we find thence :

Annales de 1’Institut Henri Poincaré-Section A
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where :
-2T

It is clear that 03A6j1...jr 03C3,i1...is+ does not depend on the higher order coordinates
y03BD k1...kr,i1...is+1. This ends our proof.
The (local) transformation of coordinates  in jr-1(jrY) will be called

generalized Legendre transformation (or Legendre transformation of order r).
If the regularity condition (3 . 7) holds everywhere then the local

mappings !/ : ( T r)r _ 1 -~ ( ~r)r - 1 patch together to define a global mapping,
establishing a diffeomorphism between the jet and a suitably
defined Legendre bundle of order r. (Condition (3.7), as we remarked in
section 3, has a global intrinsic meaning, even if it is explicitly given in a
local form, see [3 ] [11 ] for a definition of the Legendre bundle of order 1 ).
This problem, which is related to the definition of « phase space » for )w will
be dealt with elsewhere.

5. HAMILTON EQUATIONS

We are now in position to derive the Hamiltonian equations for the
Lagrangian structure (Y, X, 7:; ~), under the assumption of regularity
of ~ . We shall in fact derive a set of explicit equations for the Hamiltonian
extremals 5 defined in section 3 ; according to Theorem 2 these differential
equations for ð are equivalent to the Euler-Lagrange equations for y E rB
because of the regularity condition (3.7). These new equations will be
called the Hamiltonian equations for ~~ (or, more generically, the r-th order
Hamiltonian equations). Our procedure will consist in exploiting condi-
tion (3.9) in the new local coordinates defined by the regular change of
variables § : ( I Y)r -1 -~ ( I r)r -1, which is admissible by virtue of lemma 2.

Since the mapping ~ defined by equation (4.3) is invertible, we may
express as a function of the new local coordinates (xi, y~, 

namely, we have

Let us define H : F, - R by setting

shortly we shall write:

Vol. XXXVII, n° 3-1982. 11 1
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We call H the Hamiltonian function (of i ) in hr. Let us now re-express
the Poincare-Cartan form 0~ in terms of H and of the new coordinates
on Vr defined by (4 . 4). After some calculations we find :

(where the functions are considered as functions of the new variables

Let us now consider a 7~-1-vertical projectable vectorfield E, having
the following local expression in the new coordinates :

We now turn to calculate explicitly the horizontal (n + I)-form h(iEd8;),
with the aid of equation (5 . 3). A simple calculation gives us the following :

where we have taken into account that H does not depend on the variables
Moreover we have :

Finally, an easy calculation gives:
- - 1

We now collect our results and calculate h(i‘d0;.) by using relations (5.3),
(5 . 5), (5 . 6). To this purpose relations (1. 5) will be helpful. In fact, we see

Annales de 1’Institut Henri Poincaré-Section A



309THE HAMILTONIAN FORMALISM IN HIGHER ORDER VARIATIONAL PROBLEMS

immediately that when applying the operation h to the left hand sides of
both equations (5.6) and (5.7) several identical terms of the form

are generated. As a consequence, in the final result
only the term:

(which comes from (5.7)) will survive. After some standard calculations
we obtain the following result:

where:

Let us now require that condition (3 . 5) is satisfied for all 7~-1-vertical
projectable vectorfields E. Taking (5.9) into account and collecting pro-
perly the terms, from the arbitrariness of the components and

we derive the following system of differential equations :

Equations (5.10) are satisfied along the Hamiltonian extremals 5 E Hg.
They can in fact be considered as a system of differential equations in the
unknown variables ..., 1(xi), We remark that also
the variables appear implicitly in equations (5 .10), through the
functions However, this does not play a significant role. We recall,
in fact, that lemma 2 assures us that the variables may be easily
re-expressed in terms of the original variables But theorem 2
tells us that ð is the jet prolongation of a section y : : X ~ Y. Therefore the
higher order derivatives may be formally eliminated from equa-
tions (5.10), providing us with an unambiguous system of differential
equations. See also later for some further remarks and examples.

Equations (5.10), which are equivalent to Lagrange equations (3.2’),
will be called the Hamiltonian equations for 5,. We remark that the

system (5.10) is a system of differential equations of order r, while Euler-

Vol. XXXVII, n° 3-1982.
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Lagrange equations are of order 2r. We therefore see that, as we should
have expected, the Hamiltonian equations are, at least in principle, easier
than the original Lagrange equations.
We can state our results in the form of the following theorem, which

was in fact our principal aim.

THEOREM 3. - Let (Y, X, 7r) be a fibered manifold and i a regular Lagran-
gian of order r for Y. Then the critical sections (of ;w), satisfying the Euler-
Lagrange equations (3.2’), may be equivalently characterized by the Hamil-
tonian equations (5.10). -

Remarks. i) We immediately see that our equations (5 1 0) are a genuine
generalization of classical Hamiltonian equations of order 1. If in fact
we set r = 1, the intermediate equations (5.10)n are empty and our system
reduces to the well known system of canonical equations :

ii) We remark that the intermediate Hamiltonian equations 
are in fact equivalent to the following relations between the Lagrangian
function L and the Hamiltonian function H in Vr :

(These relations generalize to all orders r the analogous well known rela-
tions for r = 1 ).

iii) We finally remark that our choice (5 . 2) for the Hamiltonian H seems
to be the most convenient and the most natural one. Other choices for H

might be proposed (and have in fact been proposed in the literature) ;
for example, one could take: ..

or any other « intermediate » choice in which some « lower order momenta »

(1 ~ r) undergo a sort of Legendre transformation.
Nevertheless, any such different choice would not produce different

results. It would rather produce, however, a more complicated Hamilto-
nian theory. In fact any such new Hamiltonian would depend on some
of the « higher order coordinates » which do not appear instead
in (5.2). As a consequence, the corresponding « Hamiltonian equations »
would be more complicated than equations (5.10), even though perfectly
equivalent to them (and to Euler-Lagrange equations, too !).
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6. HIGHER ORDER MECHANICS. EXAMPLES

In this section we shall re-write equations (5.10) for the case of higher
order mechanics and we shall give some elementary examples.
The case of r-th order mechanics is obtained by taking X = R (the real

line), Y = M x R, where the m-dimensional manifold M is the configu-
ration space of a mechanical system. We have then only one base coordi-
nate xi, which is usually denoted by the letter t. Accordingly, the local
coordinates in/’Y will be denoted as follows :

or also :

where the classical mechanical notation q6 is used for the coordinates in
configuration space M.

In these notations the Hamiltonian equations (5 .10) reduce to:

where p6 and = 1, ..., r) are defined by:

tr}

Here pj are assumed as independent variables in place of q03C3, provided of
course the regularity condition:

holds.
In particular, we shall be for simplicity interested in the case of second
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order mechanics (r = 2). In this case the previous relations take the following
form :

~T

and the Hamiltonian equations are:

Here, p6 are taken as independent variables (in place of q6) provided the
regularity condition :

holds ; 03C603C3 are instead functions of (t, q6, q6, qa, which can be re-expressed

as functions of (t, qa, g6, Pa, Pa) where p03C3 = 2014 p03C3), because of the relevantform of lemma 2. ~ ~ ~
We are now ready to discuss some very elementary 2nd order examples,

just to show how Hamilton equations may work in place of the corres-
ponding Lagrange equations.

a) Let us take m = 1 (one dimensional mechanical systems) and r = 2.
Let the Lagrangian be defined by:

where U : R3 ~ R is a C~ function (generalized potential). Our Lagrangian
function L is regular. We have:

where U- denotes 2014. Analogous notations will be used for the other
oq 

g

partial derivatives of U. Euler-Lagrange equations are:
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with

Let us now calculate Hamilton equations, in terms of the new variables
(t, q, q, p). Relation (6.10)j inverts to give = p ; therefore H(t, q, q, p)
is given by:

1

while ~p(t, q, is given by:

Applying equation (6.7) we find then:

Equivalently:

It is immediate to see that the 2nd-order equations (6.14’) are in fact

equivalent to the 4th-order equations (6.11’).
b ) Let us generalize the example a) to the case of many degrees of free-

dom m and to Lagrangians of the « dynamical type » :

where J is a symmetric m x m matrix.
If L is regular the matrix J aap II J is regular and we shall denote by

II q"., I its inverse. We have soon the Euler-Lagrange equations:
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which might be re-written as follows :

for a suitable function F (1’ The explicit form of F6 is interesting for further
investigations ; however, it is not relevant to our present purpose and it
shall therefore be omitted.
We now turn to Hamilton equations. We have:

Inverting (6 .17) and re-expressing in terms of (t, q~, 4~, we find :

Replacing (6.17Q into Hamilton equations (6 . 7) for the Hamiltonian H ;
1  ’

we find the following system :

which is of course equivalent to the Euler-Lagrange equations (6.16).
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