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Huygens’ Principle (*)

R. G. McLENAGHAN

Department of Applied Mathematics, University of Waterloo,
Waterloo, Ontario, Canada

Ann. Inst. Henri Poincaré,

Vol. XXXVII, n° 3, 1982,

Section A :

Physique théorique.

ABSTRACT. - The known results on the question of the validity of
Huygens’ principle for second order linear partial differential equations
of normal hyperbolic type in four independent variables are reviewed.
A new family of space-times is given on which the self-adjoint differential
equation satisfies certain necessary conditions for the validity of Huygen’s
principle.

RÉSUMÉ. - On décrit les résultats connus, sur la question de la validité
du principe de Huygens, pour les équations aux dérivées partielles linéaires
hyperboliques du second ordre à quatre variables indépendantes. On donne
une nouvelle famille d’espaces-temps, sur lesquels les équations auto-
adjointes satisfont certaines conditions nécessaires pour la validité du

principe de Huygens.

1 INTRODUCTION

We shall be studying the general second order, homogeneous, linear,
hyperbolic, partial differential equation in n independent variables. Such
an equation can be written in coordinate invariant form as

(*) This paper was presented at the Journées Relativistes held at the Université de
Caen, France, May 9-11, 1980. The work was supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada.
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212 R. G. MCLEXAGHAN

where gab are the contravariant components of the metric tensor of a
pseudo-Riemannian space Vn of signature 2-n and « , » and « ; » denote
respectively the partial derivative and the covariant derivative with respect
to the pseudo-Riemannian connection. The coefficients gab, Aa and C as
w ell as Vn are assumed to be of class CX.

Cauchy’s problem for the equation (1.1) is the problem of determining
a solution which assumes given values of u and its normal derivative on
a given space-like (n - 1)-dimensional manifold S. These given values are
called the Cauchy data. The first general solution to Cauchy’s problem
for ( 1.1 ) was given by Hadamard [21 ] in his Yale lectures. Alternate solu-
tions have been presented by Mathisson [30], Sobolev [41 ], Bruhat [3] ]
and Douglis [10 ].
The question of how the solution u of Cauchy’s problem at a point

xo E Vn, depends on the Cauchy data is of considerable interest. Hadamard
shows that in general u(xo) depends on the data in the interior of the inter-
section of the retrograde characteristic conoid C - (xo) with the initial
surface S. If the solution depends only on the data in an arbitrarily small
neighbourhood of S n C-(xo) for every Cauchy problem and for every
Xo E Vn we say that the equation satisfies Huygens’ principle or is a Huygens’
differential equation. Examples of such equations are the ordinary wave
equations -

in an even number of variables n = 2m &#x3E; 4 (see for example Courant and
Hilbert [8 ], p. 690). 

B

Hadamard showed, using his solution formula, that in order that Huygens’
principle be valid it is necessary that n &#x3E; 4 be even. He then posed the
problem of determining all the Huygens’ differential equations. Since
none other than the equations ( 1. 2) were known he suggested that as
a first step one should attempt to prove that every Huygens’ differential
equation is equivalent to some equation (1.2). We recall that two equa-
tions ( 1.1 ) are said to be equivalent if they are related by one or a combi-
nation of the following transformations called trivial transformations
which preserve the Huygens’ character of the differential équation :

a) a transformation of coordinates,
b) multiplication of both sides of the equation by a non-vanishing

factor e - 2~, where 4J(x) is a function of position (this transformation induces
a conformal transformation of the metric),

c) replacement of the unknown u by where ;(x) is a non-vanishing
function of position.
Hadamard’s suggestion is often referred to as « Hadamard’s conjecture »

in the literature (see for example Ref. [8 ], p. 765).

Annales de l’Institut Henri Poincaré-Section A



213HUYGENS’ PRINCIPLE

The conjecture has been proven in the case n = 4, gab constant by Mathis-
son [31 ], Hadamard [22] and Asgeirsson (1 ]. However, it is known not
to be true in general. The first counter examples were given by Stellma-
cher [42 for the case n = 6. Later [43 ] he provided examples in all even
dimensions n &#x3E; 6. These examples are given by the equation

where

1)

2)

For example when n = 3. one possibility is

which is one of the first examples given by Stellmacher. In order to see
that these equations are not equivalent to the wave equation ( 1. 2) one
notes that necessary and sufficient conditions for equivalence are [7] ] [1 7] ]

where Cabcd denotes the Weyl conformal curvature tensor and R the curva-
ture scalar associated to the metric gab. The result then follows since the
conditions (1. 5) and ( 1. 6) hold for the equation ( 1. 3), while ( 1. 7) does
not since C # 0.
Counter examples for n = 4 have been given by Günther [18] ] (essen-

tially the same examples were rediscovered by Ibragimov and Mamon-
tov [25 ]). These examples arise from the wave equation

Jn the maximum mobility Lorentzian spaces of type T2 previously studied
by Petrov [36] ] with metric

Nhere the symmetric matrix is positive definite with components
vhich are functions only of x~. The above metric may be interpreted in

fol. XXXVII, n° 3-1982.



214 R. G. MCLENAGHAN

the framework of the General Theory of Relativity as an exact plane wave
solution of the vacuum or Einstein-Maxwell field equations. It has been
studied in this context by Ehlers and Kundt [13 in a different coordinate
system in which it has the form

where D = D(v) and e = e(u) - é. In addition it has been shown by
Künzle [28 using the form ( 1.10) that Huygens’ principle is satisfied by
Maxwell’s équations

(according to a criterion given by Günther [19 ]) for a differential form F
of all degrees in ’a plane wave space-time but is not satisfied by the wave
equation on p-forms for 0  p  4. These results have been generalized
by Schimming [39 ] who shows that in a Lorentzian space with metric ( 1. 9)
where a, 6 = 3, 4, ..., n, n even, Huygens’ principle holds for Maxwell’s
equations for differential forms of all degrees 1  p _ n - 1, and for the
wave equation on p-forms of all degrees 0  p  n except n = 4, p = 1, 2, 3.
(See also Ibragimov and Mamontov [27] for the scalar case). Recently
Wünsch [51 ] has shown that Huygens’ principle is also valid for the Weyl
equation -

and the wave équation

for a one-index two-spinor cPA on the plane wave space-time with metric
(1.9) or (1.10).

It has been shown by the present author [32 ] that a Huygens’ differential
equation on a conformally empty space-time is equivalent to Eq. ( 1. 8)
on the plane wave space-time which are the only known examples of
Huygens’ differential equations for n = 4. These results have been genera-
lized to a certain extent by Wünsch [51 ]. However, it seems that the general
problem of determining all the Huygens’ differential equations still remains
open. One of the purposes of the present work is to present a possible
new class of Huygens’ differential equations which are not equivalent
to the ones on the plane-wave space-time mentioned above. 

’

2. ELEMENTARY SOLUTIONS

In order to proceed with the discussion we shall need to examine Hada-
mard’s necessary and sufficient condition for the validity of Huygens’ prin-
ciple. This condition may be expressed in terms of the elementary solutions
of Eq. ( 1.1 ) which are distributions which satisfy the equation

Annales de l’Institut Henri Poincaré-Section A



215HUYGENS’ PRINCIPLE

where

is the adjoint differential operator to F(u) and bxo(X) is the Dirac delta
distribution. Lichnerowicz [29] ] has shown these elementary solutions

exist and are unique for CX equations. Furthermore for n = 4 they decom-

pose as follows (see for example Friedlander [14 ]) :

when x and xo belong to some simple convex set Q of V4. The function V
in Eq. (2.3) is defined by

where intégration is along the geodesic joining xo and x, x) is up
to a sign the square of the geodesic distance from xo to x and s is an affine
parameter. The functions V± (x0, x) are defined on the closures of the sets
D~(~o), which denote the respective interiors of the future and past pointing
characteristic conoids C~(xo), as follows:

Finally we have

while x) denote the characteristic functions on D T (xo).
In terms of the functions involved in the definition of the elementary

solutions, Hadamards’ necessary and sufficient condition for the validity
of Huygens’ principle takes the form

From Eq. (2.3) we see that this is equivalent to the elementary solutions
having support only on the characteristic semi-conoids C+ (xo). For purposes
of calculation a more useful form of the condition (2.4), first given by
Hadamard [22 ], is

where the brackets [ ] signify the restriction of the enclosed function
to the set

~--. ~ ~--~. 2014, , ~~ 2014 / , ’’’’ AB

Vol. XXXVII. n° 3-1982.



216 R. G. MCLENAGHAN

The convenience of the condition (2.7) results in part from the fact that
the function V defined by Eq. (2.4) can be expressed as

where

is the so called discriminant function and g(x) = det 
It should be mentioned that the condition (2.8) is also valid when the

coefficients of Eq. ( 1.1 ) are merely sufficiently differentiable (see Cheva-
lier [6] ] and Douglis [11 ]).

3. NECESSARY CONDITIONS FOR THE VALIDITY
OF HUYGENS’ PRINCIPLE

The necessary and sufficient condition of Hadamard (2.7) gives an
answer to the question of which equations (1.1) satisfy Huygens’ principle.
However, it does not satisfactorily resolve the problem since as has been
explained by Hadamard (on p. 236 of ref. [21 ]) « We have said that we give
an answer and not the answer, to our question : for it is clear that we can
wish it to be « plus resolu » then it has been in the above. We have enun-
ciated the necessary and sufficient condition, but we do not know how

. 

equations satisfying it can be found ». To circumvent this difficulty workers
on the problem have derived a series of necessary conditions that apply
directly to the coefficients of the Eq. (1.1). The first five of these conditions
are

1

II

III

IV

V

In the above conditions

Annales de l’Institut Henri Poincaré-Section A



217HUYGENS’ PRINCIPLE

where Rabcd denotes the Riemannian curvature tensor, Rbc = 
the Ricci tensor and R = i’cRbc the curvature scalar. The notation TS( )
dénotes the trace-free symmetric part of the enclosed tensor.
The history of these conditions is as follows : Hôlder [24 ] found Condi-

tion I in the case Aa = C = 0. Mathisson [31 ], Hadamard [22 ], and Asgeirs-
son [1 ] obtained the Conditions I, II and III in the case gab constant. The
Conditions 1 to IV in the general case were given by Günther [16] ] and
independently by Chevalier [6] for Aa = C = 0. McLenaghan [32 obtained
Condition V when Rab = 0. Subsequently Wünsch [47] ] gave it when
A" = 0. Condition V in the general case was found by McLenaghan [33 ].
Recently Vandercappellen [46 ] has obtained a further necessary condition
(Condition VI) which is too complicated to be presented here ( 1 ).

Before discussing the consequences of Conditions 1 to V we shall indicate
how they may be derived. To this end we shall need the transformation
laws for the coefficients of the equation under the trivial transformations (b)
and (bc) which is a combination of (b) and (c) defined as follows :

(bc) Replacement of the function u in ( 1.1 ) by (~ 5~ 0) and simultaneous
multiplication of the equation by i~ -1.

(The transformation (bc) has the property of leaving invariant the pseudo-
Riemannian metric gab). The transformations (b) and (bc) transform the
differential operator F(u) into an operator F(u) of the same form but with
différent coefficients gab, Aa and C. Explicitly

where

Under the trivial transformations cabcd, Hab and ~ transform as follows :

The transformation laws for the adjoint differential operator and the
elementary solutions are respectively [33]

(~) This problem has also been studied by Goldoni [15] who finds (see Theorem 2 of
his paper as modified in the note added in proof) that a necessary condition for the
equation ( 1.1 ) to satisfy Huygen’s principle when n = 4 is that space-time be conformal
to an Einstein space. However, the present author has been unable to rederive this
result.

Vol. XXXVII. n° 3-1982.



218 R. G. MCLENAGHAN

and

where ï o = 
In particular when n = 4

From this it follows that the transformation laws for V(xo, x) and (xo, x)
are given by

where

Finally we have

from which it follows that the condition (2. 8) is (as it should be) invariant
under trivial transformations.

If one considers only the transformation (bc), then it follows from Eqs (2 . 4)
and (3.6) that 

_

In contrast to Eq. (3.14) the above transformation holds at every point
in some normal neighbourhood of xo, not just on C(xo).
We now proceed with a sketch of the derivation of the necessary condi-

tions. The procedure to be described was first outlined by Mathisson
and later perfected by Hadamard [22], Günther [16] ] and the author
[32] ] [33]. One begins by choosing an arbitrary point xo E V4. Then a
trivial transformation (b) is made such that

where the small ° over a tensor denotes evaluation at xo. We next specify
the transformation (bc) by

where the tildes have been dropped. It follows that î o = 1 and that

Annales de l’Institut Henri Poincaré-Section A



219HUYGEXS PRINCIPLE

The choice (3.20) is equivalent to the requirement that

Finally the trivial transformation (a) is specified by choosing a system of
normal coordinates (xa) with origin xo. We recall that thèse conditions are
defined by the condition [38]

In view of the above choices for the trivial transformations the function V
has the especially simple form

1

from which it follows that the necessary and sufficient condition (2.8)
at xo can be expressed as

where (dropping the tildes and bars)

and where

Since 03C3 must vanish on C(xo) the following conditions must be satisfied
by the derivatives of cr at the point Xo:

The derivatives of 6 at xo are calculated in a systematic way from Taylor
expansions about xo of the tensors gab, gab, Aa and the function C. To obtain
the derivatives appearing in the condition (3.28e) it is necessary to expand
gab to sixth order, Aa to fifth order and gab and C to fourth order. This has
been carried out by the author in Refs [32 ] and [33 using the methods of
Herglotz [23] ] and Günther [16 ]. For the purposes of illustration we shall

Vol. XXXVII, n° 3-1982.



220 R. G. MCLENAGHAN

give these expansions only to second order which is sufficient to enable
us to give the derivation of Condition I. One has

where It follows from the above and Eqs (3 . 26) and (3.27) that

Thus, in view of (3.28a), the first condition is

with our special choice of the trivial transformations. In order to express
this condition in a form invariant under the trivial transformations it is

0

necessary to find an invariant which reduces to C when our special choice
of the trivial transformations are made. Such a quantity is the Cotton
invariant defined by Eq. (1.7) which obeys the transformation law (3.10).
Thus the general form of the condition (3.34) at xo is

Since xo was chosen arbitrarily we must have at every point of V4

which is our first necessary condition for a Huygens’ differential equation.
The subsequent conditions are obtained by similar procedures (for details
see [33 ]) and by using the preceeding conditions to simplify the following
ones.

Each necessary condition must be expressed by the vanishing of a tensor
(necessarily trace-free and symmetric) which is invariant under the trivial
transformations [33]. In the case of the self-adjoint equation (A a = 0)
this involves the study of conformally invariant tensors which are functions

. Annales de l’Institut Henri Poincaré-Section A



221HUYGENS’ PRINCIPLE

of the metric tensor and its partial derivatives up to a certain order. In
particular the necessary conditions 1 to V reduce to

where

is the so called Bach tensor [2] ] [40 ], and where

A tensor T is said to be conformally invariant of weight w if and only if

Under this definition it can be shown that both Bab and Ytabcd are conformally
1

invariant tensors of weight - 1. A proof of this fact for the Bach tensor
may be found in Schouten [40 ]. The corresponding proof for the tensor
Yfabcd has been given by the author [33 ] and independently by Wünsch [49 ].
1

In [33 ] a second fourth rank, trace-free, symmetric, conformally invariant
tensor of weight-1, defined as follows, is given:

The tensors Bab, Yfabcd and Ytabcd are examples of the conformally invariant,
1 2

rational integral, metric differential concomitants studied by Szekeres [45 ],
du Plessis [12 ], and Wünsch [49 ]. Wünsch shows that the Bach tensor up
to a constant factor is the only trace-free symmetric, second rank, confor-
mally invariant tensor of this type of weight-1, and that any conformally
invariant scalar, vector or trace-free symmetric third rank tensor of this
weight is identically zero. It also follows from his work that every fourth
rank, trace-free, symmetric, conformally invariant tensor of weight-1
can be expressed in a unique way as a linear combination of 
and the tensor 

1 2

Necessary conditions for the validity of Huygens’ principle for Maxwell’s
equations may also be expressed in terms of the above tensors. The two
known conditions obtained respectively by Günther [19 ] and Wünsch [48 ]
Vol. XXXVII, n° 3-1982.



222 R. G. MCLENAGHAN

are (see also Günther and Wünsch [20] ] for a treatment of the special
case Rab = 0).

Recently Wünsch [51 ] has obtained analogous necessary conditions for
the Weyl equation ( 1.12).

4. CONSEQUENCES OF THE NECESSARY CONDITIONS

If Rabcd = 0 (Minkowski space) and if Aa = 0, Condition 1 implies
that C = 0. For this reason no counter examples of the form QM + Cu = 0
can be constructed in Minkowski space.

If Rabcd = 0, the Conditions I, II and III imply that a Huygens’ equation
is équivalent to Eq. ( 1. 2) with +n = 2. This is essentially the result of Mathis-
son [31 ], Hadamard [22 ], and Asgeirsson [1 ]. The proof depends on the
following lemma [16] ] (see also Ref. [26 ]).

LEMMA 4.1. - If .

then Eq. (1.1) is equivalent by a transformation (bc) to the self-adjoint equation

Proof - The left hand side of (4.1) may be interpreted as the energy
momentum tensor of the « Maxwell Field » Hab. It is known that the

vanishing of the energy momentum tensor implies the vanishing of the
corresponding Maxwell field (see for example Mathisson [31 ]).
Thus it follows that

that is that the differential one-form A = Aadxa is closed. Thus there
exists locally a function g such that A = dg. It follows that for the transfor-
mation (bc) defined by î = exp (- g/2) one has Aa = 0, from which it

follows by Condition 1 that C = Rj6.
Hadamard’s problem is solved in the case Rab = 0 (empty space-time)

by the following result due to the author [32 ] :

THEOREM 4.1. - The Eq. (4.2) satisfies Huygens’ principle on an empty
space-time iff the space-time is flat or a plane-wave space-time which admits
a coordinate system in which the metric takes the form of (1. lo) with e = 0.

Annales de l’Institut Henri Poincaré-Section A



223HUYGENS’ PRINCIPLE

This result follows from Condition V which under the hypotheses of
the theorem reduces to

We note that the other conditions are satisfied identically in this case.
The solution of (4.4) may be achieved by introducing a two-component

- spinor formalism [35 ] [37]. We recall that in this formalism spinors and
tensors are related by the complex connecting quantities (a = 1, 2, 3, 4 ;
A, B’ = 1, 2) which are Hermitian in the spinor indices A and B’ and
satisfy the conditions

In Eq. (4. 5) the spinor indices have been lowered by the skew symmetric
spinors and defined The respective inverses
of these spinors and t:A/B’ are used to raise spinor indices, the convention
being KA = t;ABKB’
The spinor form of Eq. (4 : 4) is [32 ]

where ~ABCD is a completely symmetric four-indix spinor corresponding
to the Weyl tensor, defined by the equation

The proof of Theorem 4.1 depends on the following lemma which is
somewhat stronger than required and which will bé needed later.

LEMMA 4.2. In a space (not assumed empty) where

and where Eq. (4.6) holds (assuming 0), there exists a one-
index spinor KA and a non-zero scalar ~ such that

Proof - The proof this lemma is almost contained in the proof of
Theorem 1 of Ref. [32 ]. One only has to note the additional fact that
Eq. (4 . 8) (the defining equation of the C-spaces of Szekeres [44 ]) implies
that the spinorial Bianchi identities have the form

that is the same form as in empty space-time.
It should be noted that the case of an empty symmetric space-time

has to be given a separate treatment. This is because the defining equations
of a symmetric space-time namely

Vol. XXXVII, n° 3-1982.



224 R. G. MCLENAGHAN

imply that the Eqs (4.4) are identically satisfied. This case is studied in
Ref. [32] ] where it is shown that Theorem 2 .1 still holds with D a real
constant and e = 0 in the metric ( 1.10). The same remark applies to the
conformal symmetric space-time defined by the conditions Cabcd;e = 0,
which also implies that the left hand side of Eq. (4. 6) vanishes identically.
In Ref. [34 ] it is shown that these space-times are necessarily plane-wave
with metric ( 1.10) where D = 1. We thus conclude that the self-adjoint
equation (4.2) satisfies Huygens’ principle on a conformal symmetric
space-time.
Hadamards problem on a conformally empty space-time is resolved by

the following [32 ] :

COROLLARY 4.1. - An Eq. (1.1) satisfies Huygens’ principle on a confor-
mally empty space-time iff it is equivalent to the self-adjoint Eq. (4.2) on
a plane-wave space-time with metric (1.10) with e = 0.

Proof - A necessary condition that a space-time be conformal to an
empty space-time is that the Bach tensor (3 . 3) vanish at every point [40 ].
It thus follows from Condition III and Lemma 4 .1 that a Huygens’ differen-
tial equation on such a space-time must be equivalent to the self-adjoint
Eq. (4.2). The rest of the conclusion then follows from Theorem 2.1 once
a conformal transformation to empty space-time has been made.
Wünsch [51 ] has extended Theorem 4.1 to the case when Rab = ~gaa

(Einstein space-time) and finds when ~, # 0 that the validity of Huygens’
principle for the self-adjoint equation (4.2) implies that the space-time
is of constant curvature. Obviously Corollary 4.1 can now be generalized
to read : An Eq. ( 1.1 ) satisfies Huygens’ principle on space-time conformal
to an Einstein space-time 0) iff it is equivalent to the self-adjoint
Eq. 4. 2 on a space-time of constant curvature.
The case of a general symmetric space-time is covered by the following

due to the author [33 ] (see also Wünsch [48 ]).

THEOREM 4.2. - The self-adjoint Eq. (4.2) satisfies Huygens’ principle
on a symmetric space-time iff’ space-time is conformally flat or a symmetric
plane-wave with metric given by Eq. (1.10) where e and D are real constants.

The proof of this theorem depends on the classification of symmetric
space-times given by Cahen and McLenaghan [5 in which it shown that
such space-times are of the following types : a) the symmetric plane wave
space-time with metric given by Eq. ( 1.10) where e and D are real constants ;
b) the Robonson-Bertotti space time with metric

where Rand /3 are constant ; c) three conformally flat space-times including
Annales de l’Institut Henri Poincaré-Section A



225HUYGENS’ PRINCIPLE

the space-time of constant curvature. The Eq. (4.2) is known to satisfy
Huygens’ principle on the space-times a) and c), but it does so for the

space-time b) iff the curvature scalar R = 0 that is when this space-time
is conformally flat. This result, which follows from Conditions III and
V, is a special case of the following theorem of Wünsch [51 ] :

THEOREM 4. 3. A self-adjoint Eq. 4.2 satisfies Huygens’ principle on a
(2 x 2~-decomposable space-time, that is a space-time admitting a system
of local coordinates in which the metric has the form

where oc, f3 = 1, 2 v = 3, 4, the space-time is conformally flat.
Wünsch [51 ] has presented a number of further consequences of the

Conditions 1 to V for the self-adjoint Eq. (4.2). The essential feature of
all these results is the demonstration that the validity of Huygens’ principle
for the Eq. (4.2) on a space-time satisfying some supplementary condition
(recurrent, conformally recurrent, etc.) implies that space-time is plane-
wave or conformally flat, these being the only known space-times where
the Eq. (4.2) satisfies Huygens’ principle.
The purpose of the rest of this paper is to present a possible new class

of Huygens’ differential equations not equivalent to known ones that
have just been mentioned. Our main result is the following :

THEOREM 4.4. - On a space-time where the conditions (4.4) and (4.8)
hold there exists a coordinate system (u, v, z, z) in which the metric has the form

where a and e are real valued and D and F are complex valued functions
only of v.

Proof - Since the conditions of Lemma 4.2 are satisfied there exist
a complex scalar function ~l and a spinor field KA such the Eq. (4.9)
holds. The tensorial form of this equation is

where

dénotes the self dual Weyl 1 tensor (*Cabcd = 1 2 ~abefCefcd, where ~abef are
the components of the volume element), where

Vol. XXXVII, n° 3-1982.



226 R. G. MCLENAGHAN

is a self-fual bivector and where

is a real null vector satisfying

The remainder of the proof depends on the following lemma :

LEMMA 4.3. - If the condition (4.15) is satisfied by a space-time, where
ka is a real principal null vector of the singular self-dual bivector one has

where

and

In other words space-time is a Petrov type N complex recurrent space-time
(because of Eq. (4. 20)) the recurrence vector of which (Ka) is proportional
to a principal null vector (ka) of the Weyl tensor. Assuming the truth of
this lemma, Theorem 4.4 follows immediately by the result of Sec. 7 of
Ref. [34 where a coordinate system is constructed on a complex recurrent
space-time with récurrence vector proportional to a principal null vector
of the type N Weyl tensor, in which the metric takes the form (4.14). In
the same reference it is shown that a complex recurrent space must be
either Petrov type N or D and that when such a space-time is type D it is
necessarily a (2 x 2)-decomposable space. Wünsch [51] ] has remarked

that, in view of Theorem 4 . 3, a self-adjoint Huygens’ equation on a complex
recurrent space-time implies Petrov type N.

Proof of the lemma. The proof is facilitated by the use of the vectorial
formalism of Debever, Cahen and Defrise [9] ] [4 ] (see Appendix). Contrac-
tion of both sides of Eq. (4.15) by yields

where D denotes the absolute covariant derivative of E. Cartan, where
C03B103B2 is defined by (A. I l), where

+

are the vectorial components of the self-dual bivector F, and where

defines a null one-form. Integrability conditions may be obtained by

Annales de l’Institut Henri Poincaré-Section A



227HUYGESS’ PRINCIPLE

taking the absolute covariant derivatives of both sides of Eq. (4.23) and
by employing the identities

which are a consequence of Eqs (A. 8) and (A. 13). One finds

In order to examine the consequences of this condition it is advantageous
to choose the null tetrad such that K. On account of Eq. (4 .19 )
we have 

which implies that F~ = When we take account of this and the fact
that 0, the condition (4.28) becomes

and Eq. (4.23) reads

When the latter équation is written out in expanded form using (A .13)
we obtain

Likewise we may obtain the expanded form of Eq. (4.30) by employing
the Eqs (A. 7), (A. 9) and (A. 10). After a considerable amount of calculation
we find the equations

We shall now show that 0° is a quadruply repeated principal null form
of the Weyl tensor which is thus necessarily of Petrov type N. We begin
by assuming that 0° is not a principle null form of the Weyl tensor that is
that 0. (See Ref. [9] for a discussion of the Petrov classification in
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the vectorial formalism) .By means of a tetrad rotation (A .14) which
preserves the direction of 03B8° we may set C’11 = 1 and C’13 == 0 (on account
of the formulas ( 19 . 20) of Ref. [9]). Dropping the primes we note that
Eqs. (4.37), (4.38) and (4.39) imply respectively that C12 = - R/12,
C23 = 0, and C22 = R~/16. Now Eq. (4. 32) implies ~3 - 0 while Eq. (4.33)
gives dCl2 - 0 from which it follows that dR = dC22 = 0. When we
take all this into account in Eq. (4.35) we obtain 0 which implies
si = 0 which is impossible. Thus we must have Ci 1 = 0. It follows immedia-
tely from Eq. (4.37) that C13 = 0 while Eqs (4.39) and (4.40) imply
C12(6C12 - R) = 0 and C2 3(6C 12 - R) = 0. We have two possibilities
i) 6C 12 - R # 0 or ii) R = 6C 12. Consider first the Case (i) : We have
Ci2 = C23 = 0, R # 0 so the Weyl tensor is of type N. It now follows
from Eq. (4.36) that C22a2 = 0 which implies 62 - 0 since space-time is
not assumed conformally flat. When this is taken account of in Eq. (4.42)
one finds RC22 = 0 which is a contradiction. We now study Case (ii)
where R = 6Ci2 ~ 0. This implies that 8° is at most a doubly repeated
principal null form. Thus we may use a tetrad rotation (A. 14) to align 0~
with one of the other principal null forms. This makes C22, = 0. Dropping
primes we remark that Eq. (4 . 34) yields a2 = 0. It thus follows from Eq. (4.42)
that C23 = 0 which together with Eq. (4.35) implies 0, a contra-
diction. Consequently we must have R = Ci 2 = 0 which on account of
Eq. (4 . 42) implies C2 3 =0. Thus the space-time is of Petrov type N with
0° a quadruply repeated principal null form. Finally it follows from Eq. (4.36)
that C2262 - 0 which implies a2 = 0. Thus all our equations are satisfied
and we have

where

and

When Eqs (4.43) and (4.45) are translated back to tensorial form one
obtains Eqs (4 . 20) and (4 . 22) respectively where ai’ = The Eq. (4.22)
follows from the fact that 0° is a principal null form of the type N Weyl
tensor. This completes the proof of Lemma 4 . 3 and hence of Theorem 4 . 4.
We shall now discuss some of the main properties of the metric (4.14)

of the general type N complex recurrent space-time with recurrence vector
proportional to a principal null vector of the Weyl tensor. We call this
space-time the generalized plane-wave space-time since the metric (4.14)
reduces, modulo a coordinate transformation, to the plane-wave
metric ( 1.10) when one sets a = 0. One of the most important properties
of this space-time from the point of view of the present study is given in
the following theorem:
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THEOREM 4.5. - On a generalized plane-wave space-time with metric
(4.14) one has

where the Bach tensor, is defined by Eq. (3.38) and where and

are defined by the Eqs (3.39) and (3.40) respectively.
2

Proof - In view of Eqs (4.4) and (4.8) the tensors and 
reduce to 1 2

To show that these tensors indeed vanish for the metric (4.14) we introduce
the following null tetrad:

The only non-vanishing Debever curvature components in this tetrad

are r341

It follows that

from which it is easily verified that

In view of Eqs (4. 54) and (4.56) it can be shown without much difficulty
that the right hand side of Eq. (4.49) and the second term on the right
hand side of Eq. (4 . 50) (and (4 . 51 )) both vanish. To show that the first
term on the right hand side of Eq. (4.50) (and 4. 51) also vanishes we note
that Eqs (4.54) and (4.56) imply
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The result follows when we observe that Eq. (4.55) implies

which completes the proof of the theorem.

COROLLARY 4.2. - The self-adjoint equation (4. 2) on the generalized
plane-wave space-time with metric (4.14) satisfies the necessary Conditions 1
to V for the validity of Huygens’ principle.

Proof Since R = Aa - 0 we only have to consider the Conditions III
and V which are satisfied in view of Eqs (4. 46) and (4. 47) of Theorem 4. 5.

COROLLARY 4. 3. - Maxwells equations (1.11) on a generalized plane-
wave space-time with metric (4.14) satisfies the necessary conditions (3.42)
for the vaUdity of Huygens’ principle.

Proof The result follows from Eqs (4.46), (4.47) and (4.48) of Theo-
rem 4 . 5.

It is worth remarking that on account of a necessary condition derived
by Wünsch [51] a result analogous to Corollary 4.2 is also valid for the
Weyl equation on the generalized plane-wave space-time in view of Theo-
rem 4. 5.
Another key property of the generalized plane-wave space-time is given

in the following theorem :

THEOREM 4.6. - The generalized plane-wave space-time with metric
(4.14) where a ~ 0 is not conformally related to the plane-wave space-time
with metric ( 1.10).

Proof We first remark that the plane-wave space-time has the property
that

This follows from the fact that this space-time satisfies the conditions (4. 20),
(4 . 21 ) and (4.22) that is it is a type N complex recurrent space-time with
recurrence vector proportional to a principal null vector of the Weyl
tensor. (Recall that we may get the plane-wave metric (1.10) by setting
a = 0 in the metric (4.14) and performing a suitable coordinate transfor-
mation). The Eq. (4. 59) is obtained by contracting both sides of Eq. (4. 20)
by gae using Eqs (4.16), (4 . 21 ), (4 . 22) and Bianchi’s identities

Now under a general conformal transformation of the metric given by
Eq. (3.5) one finds that
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Thus a conformal transformation that maps the generalized plane-wave
metric (4.14) onto the plane-wave metric must satisfy

Since the Weyl tensor is of Petrov type N with ka a principal null vector
satisfying Eq. (4.22) it follows that

In the coordinates system (u, v, z, z) of the metric (4.14) and the tetrad (4 . 52)
one has ka = ~~. Thus Eq. (4 . 63) implies that Ç = We now carry out
the conformal transformation on the metric (4.14). The resulting
metric has the form

where

It is remarkable that the transformed metric can be put into the same
form as the metric (4.14) by a suitable change of coordinates. If one now
introduces a null tetrad for the metric (4.64) which has the same form as
the null tetrad (4. 52) already defined for the metric (4.14) one finds expres-
sions for the non-vanishing curvature components of the same form as
Eq. (4.53). In particular

From this we deduce that E 2 3 # 0 since we are assuming that Ë23 ~ 0.
Thus we are able to conclude that the generalized plane-wave space-time
is not conformal to a plane-wave space-time for which E 2 3 = 0. This
completes the proof of the theorem.
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It is worth noting that the above argument can also be used to show
that the generalized plane-wave space-time is not conformally empty.
This is so because Sabc = 0 and E7;3 = 0 also hold in empty space-time.
On the other hand the plane-wave space-time is conformally empty. This
follows from an examination of the formulae (4. 53) and (4. 66) valid when
a = 0, which show that £22’ the only non-vanishing tetrad component
of the Ricci tensor, can be made to vanish by a suitable choice of ~. It is
also worth remarking that the generalized plane-wave space-time is an

example of a space-time satisfying the conditions of Theorem 3.6 of
Ref. [49 (namely Bab = 0 and Yfabcd - 3 H2 abcd = 0 in our notation) which
is not conformally related to an empty space-time.

CONCLUSION

In view of Corollary 4. 2 and Theorem 4. 6 the self-adjoint equation (4. 2)
satisfies the Conditions 1 to V for the validity of Huygens’ principle on the
generalized plane-wave space-time with metric (4.14) which is not confor-
mally related to the plane-wave space-time with metric ( 1.10). Analogous
results hold for Maxwell’s equations (1.11) and the Weyl equation (1.12).
This raises the possibility of a new class of space-times on which Huygens’
principle is satisfied by the self-adjoint equation (4.2), Maxwell’s equations
and the Weyl equation. However, it is not yet known whether or not

Huygens’ principle is actually satisfied by any of these equations on the
generalized plane-wave space-time..
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APPENDIX

Following Ref. [9] ] we introduce a covariant null tetrad of one-forms 0’ = 

(i = 0, 1, 2, 3) in which the metric has the form

The one-forms ()o and 83 are real while 03B81 and 03B82 are complex conjugate. A basis for the
space of complex self-dual two-forms is provided by

The components of the metric in this space are

The complex connection one-forms (5~ pare defined by the equation

which is equivalent to the first Cartan structure equation

that expresses the absence of torsion of the pseudo-Riemannian connection. The vectorial
connection one-form is defined by

where is the three-dimensional permutation symbol. The tetrad components (la a (rotation
coefficients) of c-~ are defined by

The complex curvature two-forms La {3 are defined by

and the vectorial curvature two-form by

The vectorial curvature components are obtained by expanding L2 in the basis { Zx, 
one obtains

where Crzp is a trace-free symmetric tensor corresponding to the Weyl tensor and Exs is a

Hermitian tensor corresponding to the trace-free Ricci tensor. The Weyl tensor and C~
are related by

where the connecting quantities are defined by
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We also note that the absolute covariant derivative of C2{J is given by

Finally we remark that the subgroup of the connected component of the identity of the
homogeneous Lorentz group which preserves the direction of (Jo is given by
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