
ANNALES DE L’I. H. P., SECTION A

I. M. BENN
Conservation laws in arbitrary space-times
Annales de l’I. H. P., section A, tome 37, no 1 (1982), p. 67-91
<http://www.numdam.org/item?id=AIHPA_1982__37_1_67_0>

© Gauthier-Villars, 1982, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1982__37_1_67_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


67

Conservation laws

in arbitrary space-times

I. M. BENN

Department of Physics, University of Lancaster,
Lancaster, U. K.

Section A :

Physique theorique. ’

Ann. Henri Poincaré,

Vol. XXXVII, n° 1. 1982,

ABSTRACT. - Definitions of energy and angular momentum are dis-
cussed within the context of field theories in arbitrary space-times. It is
shown that such definitions rely upon the existence of symmetries of the
space-time geometry. The treatment of that geometry as a background
is contrasted with Einstein’s theory of dynamical geometry : general rela-
tivity. It is shown that in the former case symmetries lead to the existence
of closed 3-forms, whereas in the latter they lead to the existence of 2-forms
which are closed in source-free regions, thus allowing mass and angular
momentum to be defined as de Rham periods.

INTRODUCTION

The concepts of energy and angular momentum are perhaps two of
the most deeply rooted concepts of physics, yet in general relativity their
exact role is still open to question [7] ] [2 ]. Their unambiguous definition
is related to their being conserved. Thus this paper discusses jointly the
definition and conservation of energy and angular momentum within
the context of field theories in arbitrary space-times.

Since conserved quantities are usually defined as integrals the use of
differentials forms is appropriate for their description. Further, for the
theorems of Stokes and de Rham to be accessible the use of differential
forms is essential. In this paper the conventional Cartan calculus is used [3 ].
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68 I. M. BENN

In section 1 it is shown in what sense the existence of a closed 3-form gives
a conservation law, and this is contrasted in section 2 with the definition
of electric charge as a de Rham period. Section 3 shows that symmetries
of a background geometry lead to the existence of closed 3-forms, and a
resulting conservation law. Section 4 contrasts this with the definition of
mass in Newtonian gravity as a de Rham period. It is shown in section 6
that in general relativity, for spaces admitting symmetries, both mass and
angular momentum are definable as de Rham periods.

1. CLOSED 3-FORMS AND CONSERVATION LAWS

The notion of a conservation law encompasses several related but
distinct concepts. In the context of energy and angular momentum the
existence of a closed 3-form is interpreted as a conservation law (see e. g.
ref. 4)
i. e. (1.1)

(M is the space-time manifold)..
This is interpreted as meaning that the total ’flux’ of energy (angular
momentum) entering and leaving a four dimensional region is zero. It

is then argued that if the fields that contribute to J vanish at (spatial) infinity
then we obtain a constant of the motion. Assume that J is closed on a

domain whose boundary is E1 + L2 + T, where are spacelike
hypersurfaces at tl(t2) and T is the timelike surface connecting them.

Since J is closed J == 0, and if T can be chosen such that J = 0,
Jzi+X2+T T

which follows from the assumed boundary conditions, then = 0.

Poincaré-Section A



69CONSERVATION LAWS IN ARBITRARY SPACE-TIMES

That is Q = J is a constant of the motion. In fact if J were closed on
this domain then it would be exact.
De Rham’s theorem [5] ] gives the necessary and sufficient conditions

for a closed form to be exact. A consequence is that if a 3-form is closed
on a region that admits no non-trivial (1) 3-cycles then it will be exact.
In general we will only obtain a constant of the motion from a closed 3-form
if it is also exact. Suppose J to be closed on the region shown, C4.

If r J = P, then J is exact on C4 iff P = 0. If the boundary condi-

tions are such that r J = 0 then r J = P, and thus Q -_- r J is a
T J~l 1 + ~2 

constant of the motion only if J is exact. If J is exact, J = dj say, then

r J = r j. However, in general a~ will not merely consist of one chainJ ~ a~
with the topology of a 2-sphere, S2, and Q will not be expressible as a fiux
integral at infinity.
An illustration of these ideas is provided by the electromagnetic field

system generated by an electric pole of strength q and a magnetic pole of
strength Q separated by a distance’ a’ .If the poles are taken to lie on the
z-axis with the magnetic pole at the origin then the electromagnetic 2-form,
F, is given by

(1.2)

(1. 3)

(1) A non-trivial cycle is one which is not a boundary.

Vol. XXXVII, n° 1-1982.



70 I. M. BENN

, is conventionally interpreted as being the density of field angular momen-
tum about that axis [6 ]. (Motivation for this identification is provided
in section 3 (2).
Here (r, 8, c~) are the usual spherical polar coordinates in Minkowski

space. JZ is closed everywhere except at the two poles where it is singular.
Because this region admits no non-trivial 3-cycles then by de Rham’s
theorem JZ is also exact on this region. So we may put

(1.4)
where a suitable 2-form is

(1. 5)

Let E be a constant time hypersurface with a 3-ball of radius ~, surrounding q,
and a 3-ball of radius  surrounding Q, removed. Then

( 1. 6)

The 2-form j can be used to evaluate this integral

(1.7) ,

where cl, c2, ~3 are as shown in figure 1.
It can be checked that

(1.8)

( 1. 9)

(1.10)

Thus

(1.11)

the value usually assigned to the field angular momentum. Note that

(2) In fact this identification needs to be treated with circumspection. In section 3 reliance
upon the action principle is made in constructing closed 3-forms related to symmetries
of a background geometry. If Maxwell’s (empty space) equations are obtained from the
usual action principle then they are d * d A = 0, rather than ~F==~F=0. Thus the
field system under consideration would only be a solution to Maxwell’s equations on a

region with a Dirac string removed.

Annales de l’lnstitut Henri Poincare-Section A



71CONSERVATION LAWS IN ARBITRARY SPACE-TIMES

whereas here j is the only non-vanishing surface term this is easilyC3
altered by adding closed 2-forms to j
e. g. let

such that (1.12)
Then

(1.13)

(1.14)

(1.15)

Similarly if

Vol. XXXVII, n° 1-1982.



72 I. M. BENN

such that
(1.16)

then

(1.17)

(1.18~

(1.19)

Thus it is necessary to consider the three 2-cycles that make up a~ in order
to express QZ as the integral of a 2-form over a 2-chain. Further, we may
write JZ as the exterior derivative of different 2-forms to redistribute the
’Sux’ between these three 2-cycles.

2. CONSERVATION OF ELECTRIC CHARGE

Consider firstly the case of classical fields interacting with some prescribed
background electromagnetic field. If the field equations are obtainable
from an action principle then the action-density 4-form (on M), A, will
be a functional of A and 4&#x3E;i where A is the electromagnetic connection 1-form
and ~~ are some dynamical fields. If the interaction is assumed to be U(l)
gauge invariant then

(2 .1 )

where 03B4g denotes an infinitesimal gauge transformation and J and 03A3i
are the coefficients of arbitrary variations in A and respectively. Since
the are all assumed dynamical then their field equations are

(2.2)

and when these are satisfied (2.1) gives

(2 . 3)

Substituting in the form of 03B4gA gives

(2.4)

where X is an arbitrary function. Thus

(2 . 5 )

Annales de l’lnstitut Henri Poincare-Section A



73CONSERVATION LAWS IN ARBITRARY SPACE-TIMES

and so we require

(2.6)

if we make the usual assumption about boundary terms. This gives

(2.7)

Thus the U(l) gauge invariant coupling of a background electromagnetic
field implies the existence of a closed 3-form; and hence a conservation
law in the sense previously discussed.
When the electromagnetic field is treated as dynamical the notion of

conservation of charge changes. In this situation we obtaine a field equa-
tion by requiring the action to be invariant under arbitrary variations in A,

(2 . 8)where F = dA.
The form of the left hand side is obviously a consequence of the parti-

cular choice of the Maxwell action. Now J is exact, and hence trivially
closed, wherever (2.8) is satisfied. Further, the definition of electric charge
is now

(2 . 9)

If T is a timelike 3-chain whose boundary consists of a spacelike s2 at
time t 1, and another at time t2 then

(2.10)

Thus if T can be chosen such that T J = 0 then the charge will be a constant
of the motion. Perhaps the most important facet of electromagnetism is
that for regions where J = 0 Q is thus defined as a de Rham period; that is,
the integral of a closed 2-form over a 2-cycle. Thus the value of Q depends
on the s2 chosen only up to a homology class; which is just a statement
of Gauss’s law, as treated in elementary electrostatics. Empirical justi-
fication for claiming that the most important facet of the Maxwell equations
is the source free case is that when we physically measure a charge it is
by probing F in a source free region. We neither know nor care whether
d * F = J everywhere when, for example, we measure the charge of a
charged conductor.

This concept of electric charge, as a period of a 2-form, is quite distinct
from the concept of charge discussed in section I ; as the integral of a closed
3-form over a 3-chain which is not closed. Formally it is a consequence of
treating the electromagnetic field as dynamical, and of the particular
form of the theory chosen to describe that dynamics.
Vol. XXXVII, n° 1-1982.



74 I. M. BENN

3. BACKGROUND GEOMETRY

A theory of ’ matter’ fields in a background geometry will be assumed
to be specified by an action-density 4-form (on M)

The are any number of dynamical fields; that is, fields whose equations
of motion are obtained by a variational principle. The e  are the gM-ortho-
normal co-frames, where gM is the space-time metric, and the are the
connection 1-forms. The connection will be assumed to be metric compa-
tible, and nm to be locally invariant under the resulting gauge group of
orthonormal frame transformations 50(3, 1), or its covering SL(2, C) (see
ref. 7 for more details).

If X is an arbitrary vector field on M

where Suv, L, are the coefficients of arbitrary variations of ~t,
and JEx denotes the Lie derivative. The field equations for the ~i are ~i = 0,
so « on shell ».

(3.1)

where ix denotes the interior product

where Tu are the torsion 2-forms.
So

D denoting the gauge covariant exterior derivative.
But ix03C9 03BD ~ LSO(3,1), so

an infinitesimal gauge transformation of e  with parameters 

Thus (3.2)

Similarly

Annales de l’Institut Henri Poincaré-Section A



75CONSERVATION LAWS IN ARBITRARY SPACE-TIMES

where are the curvature 2-forms

(3 . 3)
Putting (3.2) and (3.3) into (3.1) gives

But

(3 . 4)
« on shell »

== 0, since we have assumed gauge invariance.
So we have

since

where

But £xm = since Am is a 4-form, and hence

and we have

for any X.
So we must have

(3 . 5)

Putting the explicit form of in (3.4) gives

Vol. XXXVII, n° 1-1982.



76 I. M. BENN

where E ~S0(3,1)

where e  ~ n 03BDe03BD.
Since this is true E 2S0(3, 1) we must have

Equations (3 . 5) and (3 . 6) are usually referred to as covariant conser-
vation laws’. However, it must be stressed that they are not conservation
laws, but are merely identities which follow from the assumptions made
at the beginning of this section. Further, it should be emphasised that
these relations put no restrictions on the form of the gravitational action
should we wish to consider dynamical geometry.

In view of these comments the presentation of these covariant identities,
as they stand, serves no more use than making contact with similar expres-
sions encountered in the literature, and making clear what conditions are
necessary for their derivation. However, if the background geometry
admits symmetries then these identities can be used to construct closed
3-forms in terms of z~, 

Before proceeding further two preliminary results are needed. Their
proof is straightforward but is included for completeness.

LEMMA A. = and if, and only if, 
T is the (2, 1) torsion tensor, that is T = T~‘ 8&#x3E; b~ where b~ is the tangent
frame dual to e

== 

Proof The only if part of the proof is trivial since gM and T are gauge
scalars, and so if we must have ~M=~xT=0.
We may write gM = where~03B103B2 is diag (-1,1,1,1).So if £xgM = 0,

Annales de l’Institut Henri Poincaré-Section A
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77CONSERVATION LAWS IN ARBITRARY SPACE-TIMES

giving

or + Aa~ = 0, with the usual lowering convention. So it has been
shown that gives with E ~fSO(3,1), i. e. 

Similarly

with 03B2  E 2S0(3, 1) since £XgM = 0 and b  transforms contragradiently
to e~‘.

So

giving
that is, an infinitesimal gauge transformation of the torsion forms. But

Thus

These 24 equations give

that is

completing the proof of the lemma.

putting

and so

but from the lemma above this follows if, and only if £xgM = 0.

Vol. XXXVII, n° 1-1982.
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bracket is an infinitesimal gauge transformation of 03C903BD  with parameters Ava.
If £x T = 0 then this will cancel by the first lemma. This completes
the proof.

These two lemmas ; one rather trivial and the other obscure ; can be
combined with the covariant identities (3 . 5) and (3 . 6) to construct a closed
3-form for every Killing vector of the geometry, that is an X such that

£xgM = = 0

(3 . 5)
by

since eviv is the identify operator on 1-forms

If £xgM = 0 then E LSO(3,1) by the corollary to lemma A, and so then

by (3 . 6)

If = 0 as well then

by lemma B,

Annales de l’lnstitut Henri Poincaré-Section A



79CONSERVATION LAWS IN ARBITRARY SPACE-TIMES

So finally, if £xgM = £x T = 0 then

(3 . 7)

That symmetries lead to the existence of closed 3-forms was first shown
by Trautman [8 ].
The theory of special relativity assumes a background geometry of

Minkowski space; that is, the space-time with zero torsion and curvature.
This space admits a ten-dimensional symmetry group : the Poincare group.
Thus (3.7) can be used to construct ten closed 3-forms. It should be noted
that since (3 . 7) is gauge invariant and makes no reference to any preferred
coordinates it is not necessary to use Minkowskian coordinates to compute
angular momentum and momentum densities. This affords the compu-
tational advantage of allowing coordinates and frames to be adopted
so as to exploit any symmetries a field system may possess.

Hehl and others [9] ] have argued that since the conservation laws for
momentum and angular momentum in special relativity result from inva-
riance under the Poincare group this group must be fundamental to any
gauge approach to gravity. Irrespective of any virtues or failings in attemp-
ting to formulate gravity as a Poincare gauge theory I believe this moti-
vation to be ill conceived. Gauge theories of gravity; including Einstein’s;
treat the geometry as dynamical, that is they give field equations for the
metric and connection. Minkowski space is usually required to be one
solution of the source free equations. As has been stresses above, the conser-
vation laws in special relativity follow from the invariance of the Min-
kowski metric under a group of diffeomorphisms; The Poincare group.
It appears to me illogical to tie the structure group of a dynamical theory
of geometry to the properties of one particular solution.

4. MASS AS THE PERIOD OF 2-FORM

IN NEWTONIAN GRAVITY

In section 2 it was shown that the coupling of a field theory to a back-
ground electromagnetic field in a U( 1 ) gauge invariant fashion lead to
the existence of a closed 3-form. This gave a conservation law in the sense
discussed in section 1. It was then argued that treating the electromagnetic
field as dynamical introduced a different concept of electric charge. In
particular, in source free regions, charge could be identified as the period
of a 2-form constructed out of the dynamical electromagnetic fields; namely
* F. It has been shown in the preceding section how the SL(2, C) gauge
invariant coupling of a relativistic field theory to a background geometry
with symmetries leads to the existence of closed 3-forms. Section 6 will

Vol. XXXVII, n° 1-1982.



80 I. M. BENN

exhibit that if the geometry is treated as dynamical, described by Einstein’s
theory, then mass and spin are definable as periods of 2-forms (in source
free regions). Here it is shown how the concept of mass as a period of a
2-form is present in Newtonian gravity.
The Newtonian potential, ~, is a 0-form on a three dimensional Eucli-

dean manifold. It is assumed to satisfy Poisson’s equation,

(4 .1 )

where p is the (mass) density. (Here all exterior derivatives and Hodge
duals act on forms on the 3-D manifold). Mass can be defined by

(4.2)

and is thus a period in source free regions. Since the Newtonian potential
for a sphere does not depend on whether or not the sphere is spinning,
there is no analogous period for angular momentum in Newton’s theory.

5. PSEUDOTENSORS AND SUPERPOTENTIALS

Einstein’s equations may be derived from an action principle with action
density

~~.1~
where

(5 . 2)

~, being some coupling constant, and Arn the action density for the ’matter’
fields. Variation of the orthonormal frames in (5 .1) yields the field equation

(5.3)

where G~,, the Einstein 3-form, is given by

(5.4)

was defined in section 3.

When discussing conservation laws in general relativity it is customary
to draw comparisons with Maxwell’s equations. To this end we may write

(5 . 5)

for some 2-form Su, and 3-form putting (5.3) in the form

(5 . 6)

resembling £ Maxwell’ equations. Su is designated the superpotential and t!l
the pseudotensor ; the prefix pseudo-indicating j that neither transform

Annales , de l’Institut Henri Poincare-Section A
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as tensors under SL(2, C). Mimicking Maxwell’s equations z~ + t~ is iden-
tified as the current of total energy-momentum, t  being the contribution
from the gravitational field. Of course there are myriad decompositions
of the form (5. 5). Those most frequently encountered have been reviewed
by Thirring and Wallner [10 ]. No such explicit expressions will be exhibited
here; all suffer from a common malady.
The total 4-momentum of the gravitating system is identified as

(5 . 7)

Since S~ does not transform as an SL(2, C) tensor there is the problem
of deciding in which gauge to evaluate this integral. It is usually argued [4] ]
that this definition only makes sense if we have asymptotic flatness, when
it is possible to define asymptotically global Minkowskian frames’. It
is then stated that (5.7) must be evaluated within this restricted class of
gauges, and the limit taken in which the S2 extends to infinity. In Min-
kowski space there exist coordinates x~‘ such that we may choose eu = 
a frame that asymptotically takes this form will be deemed asymptotically
globally Minkowskian’. Such frames are asymptotically related by a global
Lorentz transformation and thus the P~ will transform as a Lorentz vector
under this residual gauge freedom.

If, allowing for the possibility of spinors in our theory, we treat the
metric and connection as independent variables then we will get, in addi-
tion to (5.3), the field equation

(5 . 8)
with as defined in section 3. This equation may also be written expres-
sing a 3-form as the exterior derivative of a 2-form : say

(5.9)
If we pursue the approach taken above then we may (3) identify

(5 .10)

as the angular momentum of the system. Here also the frames must be
restricted to be asymptotically globally Minkowskian’ (with the pre-

e) In fact this is not what is usually done. It is usual to assume the asymptotic form
of the metric and identify certain terms as being the angular momentum [4 ). If the metric
does approach this form then it can be checked that this approach will agree (up to
a constant !) with (5.10).

Vol. XXXVII, n° 1-1982.



82 I. M. BENN

requisite of asymptotic flatness), and the limit taken in which the S2 extends
to infinity.

There are many unsatisfactory features of this approach to conservation
laws in general relativity. Firstly, decompositions of the form (5.5) are
not unique, and it would appear merely fortuitous that those commonly
made all give the same result for simple examples like the Schwartzschild
solution. Secondly, such definitions would appear inadequate if, for example,
gravitational radiation were considered. If it were necessary to require
asymptotic flatness then it would be more palatable if this requirement
were formulated in a less ad hoc fashion than the prescription given for
choosing the frames in which to evaluate (5. 7) and (5 .10).

In section 3 it was shown that for a field theory in a background geo-
metry conservation laws were only obtained if that geometry admitted

symmetries. It is therefore perhaps a little optimistic to expect to define
conservation laws in arbitrary spaces if that geometry is treated as dyna-
mical. This indicates an ingredient missing, or not overtly present, in the
above approach. That approach places reliance on parallels with Max-
well’s theory. However, it does not parallel that crucial facet of electro-
magnetism : the definition of charge as a de Rham period in source free
regions.

6. MASS AND ANGULAR MOMENTUM AS PERIODS

IN EINSTEIN’S THEORY OF GRAVITY

If X is a vector field then its metric dual, X, is defined by

(6.1)

If K is a Killing vector then I shall call * dK a ’ Komar’ (4) 2-form.

THEOREM. - If a solution to the vacuum Einstein equations is a space-
time which admits a Killing vector then the associated Komar 2-form
is closed.

Proof 2014

(4) See appendix A.

Annales de l’Institut Henri Poincare-Section A
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So

(6 . 2)

It is suggested that the mass and angular momentum of a gravitating
system should be defined as periods of the Komar 2-forms associated
with commuting timelike and spacelike Killing vectors. For these defi-
nitions to be applicable we need some source free region of spacetime;
containing closed two dimensional surfaces; which is stationary and (at
least) axially symmetric. The topological requirement is usually met by
physically interpretable solutions, but renders these definitions inappli-
cable to, for example, the Taub N. U. T. [77] solutions. Of course not all
solutions to Einstein’s source free equations will be stationary and axially
symmetric, but as stressed earlier we must be prepared to forego the defi-
nition of mass and angular momentum in arbitrary spaces. It is possible
that asymptotically flat spaces allow the introduction of asymptotic Kil-
ling vectors [72] ] [77] and hence the application of these definitions, but
no such attempt will be made here. Potentially more worrying than a
lack of Killing vectors; when trying to identify mass and angular momentum
as periods of Komar 2-forms; it a surfeit of Killing vectors : for then how
are we to interpret all the periods ? A partial answer is found in the theo-
rem below; but first we need a preliminary result.

Thus

giving
Vol. XXXVII, n° 1-1982.
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THEOREM. - The periods of Komar 2-forms associated with an algebra
of Killing vectors are related by the structure constants of that group.
That is, if = 0 VK,, i = 1, ..., nand KJ = CKKk, with the C~
constants,

But £ki ~ since the Lie derivative commutes with the

Hodge dual for Killing vectors, and it always commutes with d.
So use of the lemma gives

Thus

Hence

Determining the full extent to which this relation limits the number
of independent periods is work for the future. One simple consequence
is that Komar 2-forms associated with Killing vectors which generate
the rotation group have vanishing periods. This is reassuring if we wish
to identify angular momentum as the period of a Komar 2-form associated
with a spacelike Killing vector.

Periods of Komar 2-forms are certainly useful characterisations of a
spacetime, although it might be thought inappropriate to label them mass
and angular momentum. In section 4 it was shown that mass is definable
as a period in Newtonian gravity; thus defining mass as a period of a Komar
form in general relativity gives a Newtonian limit. In a static spacetime
with Killing vector

we may choose a gauge in which

Then

where d~3~ is the exterior derivative restricted to the three dimensional

spacelike submanifold.

Annales de l’Institut Henri Poincaré-Section A
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Thus * dt = * d(3)f2, where * is the similarly restricted Hodge dual.

So if

If the spacetime is asymptotically flat then this expression will meet (s)
the Newtonian one, (4.2), as the S2 extends to infinity if

(6 . 4)
with ~, and c constants. This is in accord with the usual identification.
It is explicity demonstrated in Appendix B that the constant appearing
in the Kerr metric wich is conventionally interpreted as being the angular
momentum is the period of the Komar 2-form associated with the axial
symmetry.
The Komar 2-forms will not be closed in regions where sources are

present. Thus the definitions of mass and angular momentum as periods
are lost in these regions. If we continue the analogy with electromagnetism
that has so far been relentlessly pursued then we will extend these defi-
nitions to regions where they no longer define periods. That is, we identify

r
mass and angular momentum with r *~K,, for the appropriate Ki,
even when d * 0. JS2

However, it is possible to argue that the concepts of mass and angular
momentum derive their usefulness from being defined as periods; in which
case it is natural to look for modified 2-forms that are closed even when
sources are present. In general such 2-forms cannot be found. When the
only source is an electromagnetic field then, with one caveat, such an exten-
sion can be made. Using (5. 3) in (6.2) gives

(6 . 5)
The Maxwell stress form is given by

(6 . 6)

e) In fact this will give Pt = but (4 . 2) and (6.3) are only trivially modified by achange of normalisation.

Vol. XXXVII, n° 1-1982.
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if we use the Maxwell equations.
For general solutions of the Einstein-Maxwell equations symmetries

of the geometry will not be symmetries of the electromagnetic field [13 ] [14 ].
If we make the additional assumption that

(6 . 8)
(6 . 9)then

for some 0-form x.
Putting (6.8) and (6 . 9) in (6 . 7), and again using the Maxwell equations,

gives

That is, if
(6.10)

then jk is closed whenever we have a solution of the Einstein-Maxwell

equations admitting a symmetry (generated by K) of the metric and the
electromagnetic field (6). Since jk explicitly contains A its behaviour

under U( 1 ) transformations may be suspect. However, (6 . 5) is manifestly
U(l) invariant, and since we have only dropped (gauge dependent) total
derivatives in obtaining (6.10) jk can only change by a total derivative
under changes of gauge. This ensures the U(l) invariance of its periods.
Note, however, that jk also explicitly contains /; and for a given electro-
magnetic field (6.9) only defines X up to a constant function. Thus the
periods of jk are only defined up to arbitrary multiples of the electric charge.
This is no cause for concern if we are only interested in examining the
number of independent periods definable for a given spacetime.
As was anticipated in section 2 the existence of 2-forms that are closed

in source free regions of spacetime that admit symmetries is very much
a property of a particular theory : in this case Einstein’s. If, for example,
we modify Einstein’s theory by the inclusion of a cosmological constant
then there is no 2-form we can add to the Komar 2-form to construct

one which is closed under the above conditions (’). The realisation that
vacuum Einstein spaces with symmetries are characterised by the periods
of the Komar 2-forms suggests that it would be fruitful to look for similar

expressions when considering alternative theories of gravity.

(6} A similar analysis, with different motivation, has been carried out by carter [7~].
Note, however, that Carter formulates his symmetry condition on the electromagnetic
field as £kA = 0, which is not a D(l) invariant requirement.

(’) Of course, we may be able to do this for a particular solution, but what is required
is a generic expression which is closed for all solutions.

Annales de Henri Poincare-Section A
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CONCLUSION

It has been shown that the concepts of energy and angular momentum
owe their existence to symmetries of the spacetime manifold. When the
geometry is treated as being prescribed then these symmetries allow the
construction of closed 3-forms. Treating the geometry as dynamical;
with the dynamics described by Einstein’s theory; allows mass and angular
momentum to be defined (in source free regions), as periods of 2-forms.
These definitions place no fundamental reliance on asymptotic flatness.
It is stressed that the existence of these closed 2-forms is dependent on a
particular theory of gravity, and suggested that similar 2-forms should
be sought when considering alternative theories.
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APPENDIX A

In this appendix some explanation of the naming of the 2-forms introduced in section 6
is given. In 1959 [1( Komar concluded that there existed a conservation law corresponding
to an arbitrary coordinate transformation generated by a vector field ç. That is (in Komar’s
notation), corresponding to every ç is a ’ generalised energy fiux vector’ E~), where

such that
(A. 1)

In the language of this paper (A .1) is equivalent to
(A . 2)

(A . 3)

(A . 4)and (A. 2) to

which is of course true for any ç.
In 1962 [72] Komar considered the situation where the vector field ç is a Killing vector.

In that case the components of what I have called the Komar 2-form will correspond to
Komar’s generalised energy flux vector. However, reading Komar’s paper with attention
to the considerations of section 1 of this paper; and, for example, noting his treatment of
angular momentum; should make clear some of the important distinctions between his
approach and that taken here.
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APPENDIX B

THE PERIOD OF THE KOMAR 2-FORM ASSOCIATED
WITH THE SPACELIKE KILLING VECTOR

OF THE KERR METRIC

In Boyer-Lindquist coordinates the Kerr metric is

(B.I)

where (B . 2)
and (B.3)

We may choose a gauge such that

(B . 4 )

(B.5)

(B . 6)

(B.7)

a
The Killing vector associated with the axial symmetry is 2014. 

From the definition (equa-
tion (6.1)) we have 

(B.8)

(B.9)

Equations (B. 4) ... (B. 7) can be inverted to give
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and hence

We can now calculate

Use of these results in (B . 9) gives

Integrating over the r, t constant hypersurface, S2,

a2
where ’ z == - 2 . Reference 

’ to p. 389 of Gradshteyn and 0 Ryzhik [18 ) then gives
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where their notation is used for the beta functions B(x, y) and hypergeometric functions

F(x, /3; y; z). Substituting the definitions of these function gives

Thus we finally get

(B .10)

which will be seen to agree with the usual identification of the angular momentum (up
to a multiple). 

’
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