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ABSTRACT. - We study in detail the low energy behaviour of Schro-
dinger operators with particular attention to scattering theory. We exploit
the fact that the low energy behaviour of - 4 + V(x) in L2([R3) is deter-
mined by the behaviour of the scaled Hamiltonian - A + 
for E -+ 0 + , which in turn is given by point interactions. In particular
we obtain analytic expansions in powers of E of the scattering matrix and
of the off-shell scattering amplitude. We also get Puiseux resp. Taylor
expansions for energy eigenvalues and resonances. The results are largely
independent of the shape of the interaction and correspond to expansions
around the zero energy limit, which is expressed by suitable point inte-
ractions.

RESUME. - On etudie en detail le comportement a basse energie des
operateurs de Schrodinger, en particulier en relation avec la theorie de
la diffusion. On exploite Ie fait que Ie comportement a basse energie de
- d + V(x) dans L 2(~3) est determine par celui du Hamiltonien trans-
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2 S. ALBEVERIO, F. GESZTESY AND R. HØEGH-KROHN

forme d’échelle - 0394 + pour E -+ 0 + , qui correspond a une
interaction ponctuelle. En particulier, on obtient des developpements en
puissance de E pour l’opérateur de diffusion et les amplitudes de diffusion
hors couche. On obtient aussi des developpements de Puiseux ou de Tay-
lor pour les niveaux d’energie et les resonances. Les resultats sont largement
independants de la forme de 1’interaction et correspondent a des deve-
loppements autour de la limite d’energie nulle, qui correspond a des inte-
ractions ponctuelles convenables.

1. INTRODUCTION

The study of the low energy behaviour of non relativistic quantum
mechanics has theoretical and practical importance, as recognized quite
early, e. g. in nuclear physics (see references to 1935-36 work of L. Thomas
and E. Fermi and the work in [13 ]).

In fact low energy quantum mechanical phenomena abound in atomic
and molecular physics and chemistry (see e. g. the references in [7] ] [28 ]
as well as in nuclear physics arid solid state physics (see e. g. the references
in [5] ] [9] ] [7~] ] [17 ]). Scattering at low energies has received great attention
in connection with partial wave analysis (see e. g. [28, ch. 11 ]), low energy
phenomena in three particle systems (Efimov effect, see [5 and references
therein), and propagation of cold neutrons in a cystal (e. g. [9] and references
therein). The study of the low energy limit permits the exact computation,
at the limit of zero energy, of quantities like scattering amplitudes and
bound states energies, and in turn these computations serve, at least in
principle, as a basis of a perturbation expansion around the zero energy
limit.

E. g. in the zero energy limit the scattering is as simple as possible and
has universal, geometrical features, largely independent of the particular
structure of the system. This is captured by expressions like « effective

range », « scattering length approximation », « shape independent approxi-
mation », which have a large literature (see e. g. [28 ]). In particular the zero
energy scattering is well described by a point interaction of suitable strength
(in the case of point interactions the scattering length approximation is
exact by construction). The study of a non relativistic particle interacting
with a (5-interaction has been done per se in a large number of papers,
see [7]-[~] ] [8 ]- [17 ] [~9] ] [41 ]- [43 ]. Recently methods of non standard
analysis [3] ] have permitted the extension to the study of one particle many
(infinitely many included) center problems [72] [7J]-[77] ] [23 ] [~9] [~7] [43 ].
Moreover the proof of the convergence of the resolvent of a one particle-

Henri Poincaré-Section A



3THE LOW ENERGY EXPANSION IN NONRELATIVISTIC SCATTERING THEORY

many center problem with local interaction to the zero energy limit [4 ],
as well as an expansion for the energy eigenvalues and resonances have been
obtained [6 ]. For the case of three particle systems some (at the moment
less detailed) results have also been obtained : 03B4-interactions have been
studied in connection with the deuteron problem (see e. g. [73] and refe-
rences therein) and the connection with the zero energy limit of systems
with smooth interaction has been studied mathematically (in connection
also with the Efimov effect) in [5 ].
The present paper is devoted to the detailed study of the low energy

limit of scattering in two particle non relativistic quantum mechanics.
Let us mention some preceding work on this particular problem. Much
work had been done in classical references going back to the late forties
and early fifties, in the work of R. Jost and N. Levinson, in the radial sym-
metric case, see e. g. [7] [28 ]. A recent extension of some of this work to
the non central case, centered around an extension of Levinson’s theorem
on the relation of the phase shift at zero energy and the number of eigen-
values, has been obtained by Bollé-Osborn, Buslaev, Dreyfus, Newton,
and Wollenberg, see the references in [29 ]. Asymptotic results for low
energy of the resolvent, the spectral density and the on shell scattering
operator have been obtained by Jensen and Kato [21 ], using methods
of weighted Sobolev spaces. Besides obtaining related results by completely
different means, namely by the method of scaling and under different
assumptions, we also obtain detailed results on the off-shell scattering
matrix, giving for all quantities involved the explicit computation of the
lower order coefficients in the analytic (resp. asymptotic) expansions around
the zero energy limit. Our method relies on the physical intuition that
small momenta (small energies) correspond to large distances which are
most easily attained by scaling x -+ E -+ 0 + , which can be unitarily
implemented in the Hilbert space Li(~3). Our results depend on a case
distinction according to possible zero energy resonances and eigenvalues
of H = - ~ + V. For general references concerning the discussion of
resonances we refer to [6 ] [20] ] [37] ] [37 ]. The limit situations where eigen-
values approach zero as the coupling constant approaches a « critical
value » is of direct relevance to our work and has been studied recently
by Klaus and Simon [2~] ] [25 ].

Let us now shortly summarize the content of our paper. In section 2
we introduce the basic Hamiltonian H(~) = 2014 A + ~(s)V(~) (~, analytic
in [0, 1 ], ~(0+)=1) and the scaled one H£= -~+À(f.)B-2V(x7f.), as well as
the associated scattering amplitudes. We point out that the expansion of the
latters for small f. is given essentially by the one of + 1)’B
where u(x) _ ~ sign V{x), v(x) _ ~ VM 2, and Gk = ( - 4 - k2)-1, 
We then recall the discussion of the poles of (uG0v + 1)*B distinguishing
four basic cases, and we discuss the limit of H£ as E -+ 0 + extending the
results of [4 ].
Vol. XXXVII, n° 1-1982.



4 S. ALBEVERIO, F. GESZTESY AND R. HØEGH-KROHN

In section 3 we discuss the detailed expansion in powers of E of the above
quantity + 1)-1 1 which gives the scattering amplitude for H~.
In some cases, which we specify, one has an analytic expansion and in some
other cases one has a Laurent expansion with a simple pole in 8. 

’

In section 4 we discuss the asymptotic behaviour at low energy of the
off shell scattering amplitude, the scattering operator as well as the energy
eigenvalues and resonances associated with the operator

The extension of this work to Coulomb and many center systems is in
progress.

2. NOTATIONS AND BASIC FACTS

Let À denote a real and analytic function on [0, 1] ] with ~(0 + ) == 1

and define Ug to be the unitary dilation group on 

(2 .1 )

Throughout this paper we assume V to be a real measurable function
on [R3 in the Rollnik class R i. e. such that

(2 . 2)

We shall use the notation Ve = so that

(2 . 3)

With these definitions we introduce the following operators in 

(2.4)
(2 . 5)
(2 . 6)

where - 0 denotes the usual kinetic energy operator in L2([R3) and all
Hamiltonians are defined in the sense of quadratic forms [22] ] [~2] ] [35 ].
We also note that

(2.7)

(2 . 6) and (2. 7) clearly indicate the connection between the spectra of H(B)
andH,.
Using the notations

(2 . 8)
and

(2.9)

Annales de Henri Poincaré-Section A



5THE LOW ENERGY EXPANSION IN NONRELATIVISTIC SCATTERING THEORY

we obtain by iterating the resolvent equation

(2.10)
where the t-matrix ~s, k) is given by

(2.11)
If in addition

(2 .12)

then the scattering § amplitude /(e, J9, q, k) corresponding £ to H(E), defined
by 

- -

(2.13)

is analytic k in the region |Im p|  aj  a, Im k &#x3E; - a [18]
[79] ] [27] ] [33] (35] (except for those discrete values of k where k) does
not exist).

(2.14)
and thus the t-matrix associated with He defined by (2.10) with H(a)
replaced by H~ is given by

(2 .15)
Under the condition (2.12) the scattering amplitude corres-

ponding to HE reads 
- -

(2.16)
(2 .17)

In order to have an expansion _q, k) at E = 0 we thus need an
expansion of + 1)-1. It turns-out that the explicit form of the
latter expansion strongly depends on the fact whether H has a zero energy
resonance (bound state) or not. We recall here the definition of a zero
energy resonance. If - 1 is an eigenvalue of uGov i. e.

(2.18)
we call the functions

(2.19)
(zero energy) resonance functions (cf. [4 ]) and note that

in the sense of distributions (here it suffices V E R). Since uGov is Hil-
Vol. XXXVII, n° 1-1982.
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bert Schmidt [35] N is necessarily finite. In general need not be in 
With these definitions we now distinguish the following cases (see also [21] ]

[2~] ] [29 ] ) :
CASE I : There exist no resonance functions 03C8j or equivalently, - 1 is

not an eigenvalue of uGov.
CASE II : There exists only one resonance function ~ (i. e. - 1 is a simple

eigenvalue of uGov) and 03C8 is not in 

CASE III : There exist N &#x3E;_ 1 resonance functions = 1, ..., N which
are all in L2(!R3).

CASE IV : There exist N 2 2 resonance functions = 1, ..., N and
at least one of them is not in L 2([R3).

Under suitable conditions on V there is a simple criterion which helps
to decide whether a resonance function ~ is in L2([R3) or not :

PROPOSITION 2.1. - Assume n R and let ~(x) _ 
where E L 2([R3). Then ~ E If in addition

is equivalent to

(2.20)

Proof - Following Newton [29] ] we decompose

(2 . 21)

where

(2.22)

From the fact that for any r &#x3E; 0

(2.23)

for some constant c, we immediately obtain local square integrability of 03C8
since

(2 . 24)

Annales de l’Institut Henri Poincaré-Section A



7THE LOW ENERGY EXPANSION IN NONRELATIVISTIC SCATTERING THEORY

On the other hand the assumption |x| |V(x)| ~ L1(R3) and the estimate

(2 . 25)

for some constant c, immediately yield

(2 . 26)

This shows that ~ E L2(~3) if and only if

(2 . 27)

REMARK 2.1. - a) The condition I:! I V(:!) E Ll([R3) is obviously too

strong but it suffices for our purposes since we are interested in a strong
fall off of V at infinity (see sections 3 and 4). For alternative conditions
on V yielding the same result see [2~] and [29 ].

b) Under the conditions of Proposition 2.1 we thus can always choose
in case IV a particular set of linear combinations of the resonance func-

tions such that 0 for some jo and = 0

ify = 1, ..., Under these conditions in case III zero is an eigen-
value of H with multiplicity N whereas in case IV its multiplicity is always
N - 1.

c) If V is spherically symmetric then, due to symmetry, 
for any resonance function ~ that belongs to angular momentum &#x3E;- 1.

For a discussion that 0 for s-wave resonance functions

(or for functions associated with the ground state absorption in the sense
of [2~] ] [36 ]) see [2~] and [29 ].
We now briefly describe the connection between HE and point interac-

tions. For a detailled discussion of this connection see [4] and for the theory
of point interactions compare [7]-[J] ] [9]-[77] ] [2~] ] [~9] ] [7]-[]andthe
references cited therein.
Let - Da denote the Hamiltonian with point interaction of parameter

a E [R centered at ~=0 i. e. - 4« is the self-adjoint extension of - 4 
given by the boundary condition

[-4~!~!~(!~!)+(~.v)(~~(~!)]~,,~=o, ;! = g I ~ I, (2.28)
in the partial wave subspace corresponding to angular momentum zero.
We also recall that

(2 . 29)

Vol. XXXVII, n° 1-1982.
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Then we have

THEOREM 2.1. - Let V ERin case I. In case II, and if ~,’(0 + ) 4= 0 in
cases III and IV, assume in addition (1 +! ~ ! I )2V E L 1([R3). Then He converges
to - ~a in norm resolvent sense. If ~,’(0 + ) = 0 in cases III and IV and in
addition (1 + ~ I )4V E then He converges to - Da in strong resolvent

sense. Here a is given by (with ~ = (sign 

(2 . 30)

In the case a = 00 one has - = - 4.
We defer the proof of Theorem 2.1 to the end of section 3 and note that

in cases II I and IV if ~,’(0 + ) = 0 strong resolvent convergence can not be
replaced by norm resolvent convergence in general (cf. Remark 4.2).

3. EXPANSION OF 

We first start with a preliminary result :

LEMMA 3.1. - Let n R. Then (uGov + 1 + E) -1 has a norm
convergent Laurent expansion around E = 0

(3 .1)

where P is the projector onto the N-dimensional eigenspace of uGov to
the eigenvalue - 1 and is given by

(3.2)

where ~~ are the solutions of

(3.3)

Annales de l’Institut Henri Poincaré-Section A



9THE LOW ENERGY EXPANSION IN NONRELATIVISTIC SCATTERING THEORY

and T is a bounded operator given by

(3.4)

Here r surrounds in the usual way [22] ] [34] ] only the isolated eigen-
value - 1 of uG0v counter clockwise (if uGov has no eigenvalue - 1
then obviously P = 0 and T = (uGov + 1 ) -1 ).

(3 . 5)

where

(3.6)

and we only have to prove D = 0 and the second equality in (3.2). For
that purpose we introduce the self-adjoint operator G1/20VG1/20 and note
the following relation between eigenvectors of G1/20VG1/20 and uGov
resp. vGou: Let, for some number 03BB and function 03A6 E L 2(lR.3)

(3.7)
then

fulfills
(3 . 8)

If ~, =t= 0 then
(3 . 9)

(3 .10)
Thus Å is real and sign (C, D) = sign Å.

Conversely assume that for some xl E L2(I~3), ~,1 e [R

then
(3 .11)

fulfill (3.12)

If then
(3.13)

(3.14)
and thus

(3.15)
Since G1/20VG1/20 is self-adjoint and Hilbert Schmidt we have

(3 .16)

Vol. XXXVII, n° 1-1982.
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where QÂn and 03BBn are the eigenprojections and eigenvalues of G1/20VG1/20
respectively. Suppose ~,o = 0. Then, for n =t= 0, Q~n is of the type

(3 .17)

and thus

fulfills
(3 .18)

(3 .19)

where

If we define

(3 . 20)

(3 . 21)

and

(3 . 22)

then (3.19) obviously implies (with ~( . ) for range)

(3 . 23)

(3 . 24)
yielding

and

(3.25)

(3.26)

Since (3 . 25) implies ur~ = 0 by a distributional argument.
But u~ = 0 implies vr~ = 0 and thus

(3 . 27)
Annales de Henri Poincaré-Section A
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(3.26) and (3.27) yield

(3.28)

Since 9l(uGÕ/2) U ~(uGo~2~1 is dense in we finally obtain

(3.29)

and hence the second equality in (3.2) is proved. But then

(3.30)

and the proof is finished.

Remark 3.1. Lemma 3 .1 shows that all results of [4] where the addi-
tional assumption V  0 if N &#x3E; 2 has been made (in that case uGov is
self-adjoint and the above proof becomes superfluous) carry over to arbi-
trary potentials in L 1([R3) n R.

Before we state the main results of this section we introduce some further
notations. If E R for some a &#x3E; 0 then is analytic in E
and we expand

(3.31)
where

(3 . 32)
(3 . 33)

(3 . 34)

(3 . 35)

and similar for D and the other coefficients in (3.31).

Remark 3.2. - If E R for some a &#x3E; 0 then the singular
continuous part of the spectrum of H (and of H(E) and HJ is empty and
the bound states of H (and of H(s), HJ (in particular the positive bound
states) are finite in number [34] ] [35 ]. This assumption also implies
that + 1) is invertible for ~ &#x3E; 0 small enough.

In the following we shall discuss separately the cases I, IV defined in
section 2. We have

THEOREM 3.1. - Let for some a &#x3E; 0 and assume case I

Vol. XXXVII, n° 1-1982.
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(in this case P = 0, T = (uGov + 1 ) -1 ). Then + 1 ) -1 is analy-
tic at ~ = 0 and

(3.36)

Here the simplest case of Lemma 3 .1 namely (A + 1 + E) -1= T 2014 ET2 + 0(~2)
has been applied.

THEOREM 3 . 2. 2014 Let e R for some a &#x3E; 0 and assume case II

i. e. P = 201420142014, (v, 03C6) ~ 0 . Then + ) 1 -1 is analytic at ~ = 0
B (~ ~) /
and

(3 . 37)

Proof From (3.31) and (3.1) we obtain

(3 . 38)

Annales de Poineare-Section A
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Noting
(3 . 39)

(3.40)

(3 . 41 )

it is straightforward to get (3 . 37) from (3 . 38).

THEOREM 3 . 3. - Let E R for some a &#x3E; 0 and assume case III

below) then + 1 ) -1 is analytic at 8 = 0 whereas if ~,’(0 + ) = 0
(case b) below) it has a Laurent expansion around 8=0. More precisely,
we have the following results :

a) ~(0+) == 0 : In this case we have the Taylor expansion

+ 1)-1

(3.42)
~)~(0+)=0: In this case the Laurent expansion

(3 . 43)

where the following abbreviations have been used

(3.44)

Vol. XXXVII, n° 1-1982.
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here ( ~, denotes the inverse matrix of (~ 

(3 . 45)

(3 . 46)

~’roo, f: Let us first consider case a) where /~(0+) * 0. We note that

(3 . 47)
as in (3.38). Now (3.42) follows since by assumption we are in case III
and therefore

and
~3 . 4~)

We go now over to the case b) where ~(0+) = 0. We start from

(3.50)

Observing that in the present case we have

(3.51)
and

(3.52)
we get

From
(3 . 53)

(3.54)

(3 . 55)

Annales de Henri Poincare-Section A

(3 . 49)
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we finally obtain

(3 . 56)

and, after multiplying term by term, (3.43) results.

((case a) below) then + 1)-1 is analytic at E = 0 whereas if

~,’(0 + ) = 0 ((case b ) below) it has a Laurent expansion around E = 0.
More precisely we have the following results :

a) ~,’(0 + ) =1= 0 : Here we have the Taylor expansion

(3 . 57)

where the abbreviation

(3 . 58)

has been used and (~, denotes the inverse matrix of (~, 
~)~(0+)=0: Here we have the Laurent expansion

(3.59)

Vol. XXXVII, n° 1-1982.
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where {3 } denotes the expression

(3.60)
Proof. 2014 a) 03BB’(0+) ~ 0 : In this case inserting

(3.61)

(3.62)

into (3 . 38) we obtain (3. 57).
b) /L’(0+) = 0 : Here we insert

(3.63)

into (3 . 50) and get

(3.64)

From
(3.65)

REMARK 3 . 3. 2014 Although some of these expressions for + 1)-1
are complicated the computation of the scattering amplitude in all of these
cases is almost trivial (see the next section).
We finally present the

Proof of T heorem 2 .1. Using the resolvent equation we get

Annales de Henri Poincaré-Section A
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The first two terms on the right hand side of (3.66) tend to zero as E -)- 0 +
in norm [4 ], so we only have to study the third term. Following the nota-
tion in [4] ] we have

(3.67)
where AE, Bg, CE are Hilbert Schmidt operators with integral kernels

(3 . 68)
(3 . 69)
(3.70)

and

(3 . 71 )
In cases I and II and if ~,’(0 + ) 4= 0 in cases III and IV DE converges to some
operator Do in norm as E -+ 0+ (cf. (3.36), (3.37), (3.42), and (3.57)).
Also BE tends to Bo = uG0v in norm, Ag converges weakly to Ao = (v, . )gk,
and C, converges strongly to Co = (gk, .)M in the limit E -+ 0+ [4 ].

But from

(3 . 72)
we infer that actually Af. and C, tend to Ao and Co in Hilbert Schmidt norm
(see [38 ) and the references cited there). Thus (3 . 67) converges to
- AoBoDoBoCo in norm, in the cases considered. From the explicit form
of Do we then get norm resolvent convergence and (2 . 30). If~(0+) = 0 in
cases III and IV we have to proceed in a different way since DE: has no
limit as ~ -+ 0 + . We only discuss case IV (case III is similar). From (3 . 59)
we infer

(3 . 73)
where

and (3 . 74)

(3 . 75)

(3.76)
where we used the assumption that (1 + Ic~ /)4V(~) E L1(~3) to control
the remainder. Now

(3 . 77)
Vol. XXXVII, n° 1-1982.
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where gk is defined by (2.29), and therefore the first term on the right
hand side of (3 .76) remains to be discussed. From the expansion

and (3 . 74) we get

(3 . 78)

where we used that BoD_1Bo = D _ 1. Since f and g have support bounded
away from zero we can expand the matrix element in (3.78) to get

(3.79)

by (3.74). Here D _ 1(x, x’) denotes the kernel of Ð_1. Since f and g were
taken arbitrarily in C~(~ - {0}) we have proved

(3.80)

and since the limit is the resolvent of a self-adjoint operator (namely the
resolvent of - ~(X with a = 0) strong resolvent convergence follows.

4. THE LOW ENERGY BEHAVIOUR

OF THE SCATTERING AMPLITUDE
AND SCATTERING MATRIX

We first recall that, from (2.17)

under condition (2 .12). To get the desired expansion of k) we thus

only need to expand ~), and use our previous results on

+ 1)-1. We state the results in a series of Lemmas, corresponding
to the different cases I-IV discussed in section 2.

Annales de l’Institut Henri Poincaré-Section A



19THE LOW ENERGY EXPANSION IN NONRELATIVISTIC SCATTERING THEORY

LEMMA 4.1. - Let for some a &#x3E; 0 and assume case I.

Then

(4.2)

Proof 2014 Insert (3.36) into (4.1) and expand ~(e) and both exponentials
using the analyticity of all functions involved.

LEMMA 4 . 2. Let E R for some a &#x3E; 0 and assume case II. Then

(4 . 3)

Proof 2014 Insert (3 . 37) into (4.1) and expand as in Lemma 4.1.

LEMMA 4. 3. - Let E R for some a &#x3E; 0 and assume case III. Then

(4.4)

(4 . 5)

Proof. - Noting that Pu = P*v = 0 in this case, one immediately
obtains (4.4) and (4.5) after inserting (3.42) and (3.43) in (4.1).
Vol. XXXVII, n° 1-1982.
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LEMMA 4 . 4. Let E R for some a &#x3E; 0 and assume case IV. Then

(4 . 6)

(4 . 7)

Proof From

(4. 8)

(4. 6) immediately follows from (3 . 57) and (4.1). (4. 7) requires a somewhat
lengthy but straightforward calculation using (3.59) and (4.1).
Lemmas 4.1-4.4 show that k) is analytic at E = 0 in all the

cases I-IV. Since we are actually interested in the low energy behaviour
of H = - ~ + V we summarize the above results in the special case

)~(8) = 1. As before we state the results for the cases I-IV of section 2 sepa-
rately :

THEOREM 4.1. Let E R for some a &#x3E; 0 and denote by 
the scattering amplitude associated with H = - 0 + V 

- -

(4.9)

Annales de Henri Poincare-Section A
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Then we have the low energy expansions

(4.10)

(4.11)

(4.12)

(4.13)

where C is defined by (3.35) and T is given by (3.4). Here ø is such that
03C8 = G0v03C6 is the zero energy resonance function of H in case II. Moreover
= G0v03C6j are the zero energy bound state functions of H in case III.
Having discussed the (off-shell) scattering amplitude f (~p_, E_q, Ek) we

now turn to the on-shell scattering matrix S(k) associated with the pair

We recall that S(k) is a unitary operator in L 2(S(2») (S(2) the unit sphere
in ~3) such that the integral kernel of S(k) - 1 (1 the unit operator in
L2(S(2»)) is proportional to k times the on-shell scattering amplitude

(4.14)

(4.15)

Hence taking |p| = |q| = k in (4.10)-(4.13) we get the low energy expan-
sion of S(~): 

-

THEOREM 4. 2. Let for some a &#x3E; 0 and assume case I.
Then the scattering matrix is analytic in E with the Taylor expansion

(4 .16)

where

(4 .17)
are spherical harmonics of degree zero and one.
Note that Yi(co) = 0 if V is spherically symmetric.
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THEOREM 4 . 3. Let for some a &#x3E; 0 and assume case II.
Then the scattering matrix is analytic in E with the Taylor expansion

(4.18)

(4.19)

THEOREM 4.4. Let E R for some a &#x3E; 0 and assume case III.
Then the scattering matrix is analytic in ~ and has the Taylor expansion

(4 . 20)

where T is given by (3.4) and

(4.21)

If V is spherically symmetric then 0 if correspond to p-wave
bound states.

THEOREM 4 . 5. Let for some a &#x3E; 0 and assume case IV.
Then the scattering matrix is analytic in e and has the Taylor expansion

(4 . 22)
REMARK 4.1. (4.10), (4.13) and (4.20) are new. (4.16), (4.18) (in less

explicit form), and (4 . 22) have been derived by Jensen and Kato [27] ]
with the help of weighted Sobolev spaces. Since they use weaker conditions
on V (but see Remark 4.4) they get asymptotic expansions of S(k) instead
of Taylor expansions at k = 0. All the above formulas generalize known
results from the special case where V is spherically symmetric (see
e. g. [7] ] [2~] and the references therein) to the non central case.
We now discuss some of the physical consequences of these results :

i) In cases I and III resp. (4~)"~~) are
nothing else but the scattering lengths. Actually

(4.23)
where C fulfills the inhomogeneous equation

(4 . 24 )

In case I (4.23) and (4.24) are obvious since the homogeneous equation
 = - vG0u has no solutions (P = 0). In case III there are solutions
j, j = 1, ... , N of  = - vG0u but since M is orthogonal to all
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(4.25)

and thus (4. 23). Hence in case I scattering in the low energy limit (E small)
is independent of the detailed shape of the potential V and determined
by the scattering length. This fact is clearly not confined to local potentials V
but also holds if non local interactions are present (see [~0]).

ii) Case III contains a striking fact. If the second term on the right-
hand side of (4.12) is non vanishing the scattering cross section even at
zero energy never becomes isotropic. For spherically symmetric poten-
tials this quisotropy is known to occur precisely at zero energy p-wave
bound states.

iii) In cases II and IV we recognize a fact which is also well known in
the spherically symmetric case : if there exists a resonance at zero energy (in
the sense that the associated wave function 03C8 is not in L 2(!R3)) the scattering
matrix converges to - 1 in the subspace of angular momentum zero as
8 -+ 0 + . (If V is spherically symmetric, then zero energy resonances only
occur in the s-wave and the corresponding phase shift tends to Tr/2
implying ~-~ - 1). In these two cases u is not

orthogonal to at least one ~ and hence (4 . 24) has no solution in L2(f~3). As
a consequence the scattering length becomes infinite.
Next we give a short description of complex poles in k). For a

classification of these poles see [40 ], for recent discussions on resonances
and threshold behaviour of eigenvalues see [6] [20] ] [24 [2J] [~7] [36] [~7].
In order to deal with bound states and resonances of H(s) = 2014 A + 
we consider the eigenvalue problem

(4 . 26)
assuming

Then, depending on the sign of (~,(~) - 1) near ~ = 0, there are the
following possibilities for ([6] ] [2~] ] [~7] ] [36 ]) :

i) In case II is analytic at 8 = 0 and

(4 . 27)

Since (cp, c~)  0, ~,’(0 + ) &#x3E; 0 corresponds to a bound state and ~(0+)0
to a virtual state of H(E). Looking at the poles of k) in (4 . 3) we
obtain to zeroth order in 8. In fact A;(0+) corresponds precisely to the
bound state or virtual state of - Da (the limit of HE as f. -+ 0 + in norm
resolvent sense cf. (2.30)).
Vol. XXXVII, n° 1-1982.
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ii) In case III, is of the type

(4.28)

For N = 1 we have

(4.29)

If 03BB’(0+) &#x3E; 0 we get a bound state &#x3E; 0, Re kj = 0) and a virtual
state  0, Re kj = 0) whereas if 03BB’(0+)  0 we obtain a resonance

pair. Since He tends in norm resolvent sense tends to infinity
as E -+ 0+.

If ~,’(0 + ) = 0 and N = 1 we obtain

(4 . 30)

(4.31)

(4.32)
iii) In case IV one of the branches say is analytic at e==0 and

(4.33)

Note that is precisely the solution of

(4.34)
and hence corresponds to the pole of k) in (4 . 6). Similar to case II,

corresponds to the bound state or virtual state of - Da (see (2 . 30)).
The remaining = 1, ... , N behave like (4 . 28) or (4 . 31)
according to whether ~/(0+) =b 0 or ~,’(0 + ) = 0.

REMARK 4 . 2. 2014 If //(0+) = 0 and /T(0+) &#x3E; 0 the results of ii) and iii)
imply in particular that in these cases the convergence in Theorem 2.1
is not in the norm resolvent sense.
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We now summarize the discussion concerning the low energy expansion
of eigenvalues and resonances (for detailed expositions and proofs see [6 ]) :
we have functions k(~,(E) resp. kE(~,(~)) which give the eigenvalues and reso-
nances for H(e) == 2014 A + ~(8)V(x) resp. HE = - 0 + 8’~(a)V(~/e) and are
defined as the solutions of

where D2 denotes the modified Fredholm determinant. From (2. 6) we have

and therefore

(4 . 35)

We also note that kE(~,(E)) = k(E), where satisfies (4.26). It is shown
in [6] that the functions k(~,(E)) have at most branch points of finite order
as singularities and else are holomorphic in /L Using then Puiseux resp.
Taylor expansions for k(~,(E)) and the above results (4.27)-(4.34) on

= k£(~,(E)), together with formula (4.35) we obtain the following

THEOREM 4 . 6. Let V E R with compact support and assume ~,{E) is
real analytic. Let k(~,(E)) resp. ~(~(e)) be the functions giving the eigenvalues
and resonances of H~ _ - ~ + E - 2~,(E)V(x/E), then
we have

k(~,(E)) is an analytic function of f., except for possible branch points of
finite order. As f. -+ 0 + we have the following low energy expansions :

1 ) 

(4 . 36)

2) If ~(0+)) = 0 then a) in case II kE(~,(E)) is analytic at E = 0 and

(4 . 3 7)

b) In case III with ~,’(0 + ) + 0, has N branches ~.,(~))J= 1,..., N
behaving as follows :

(4.38)
For N = 1 we have

(4 . 39)
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If A’(0+) = 0 then we have for N = 1

(4 . 40)

and for N &#x3E; 1 we have again N branches behaving like

(4.41)

c) In case IV one of the branches is analytic at ~ = 0 and

(4 . 42)

The remaining branches k~,E(~,(~)) behave in case ~,’(0+) ~ 0 as in (4.38)
and in case ~,’(0 + ) = 0 as in (4 . 41 ).

REMARK 4.3. - The formulas for the asymptotic behaviour of the
energy eigenvalues and resonances in Theorem 4.6 are expansions in E
with the leading coefficients determined by suitable point interactions,
as expected from the strong (resp. norm) resolvent convergence described
in Theorem 2.1. ,

In conclusion the low energy behaviour + V(x) is completely
governed by expansions around the point interaction and is therefore

largely independent of the special features of the interaction V.
We finally end with a remark concerning possible generalizations of our

approach.

REMARK 4.4. - Throughout section 4 we used the strong condition
e2a~lv(:!) E R for some a &#x3E; 0 implying exponential falloff of V at infinity.
As a consequence we got strong results for k), namely analyti-
city in ~ at E = 0. If we only assume V E R and (1 + |x|)nV(x) E L 1([R3), n &#x3E; 2

we obtain asymptotic expansions for k), S(Ek) as E -+ 0+, the
order in 8 up to which the expansion is valid depending on n. E. g. in case I
if n = 4 we obtain Lemma 4.1, (4.10), and (4.16) with the remainder
being O(~), O(~), and 0((Ek)3) respectively. Corresponding results hold in
all cases.
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