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Section A :

Physique théorique

ABSTRACT. - We consider a system of quantum particles in 3)
obeying Maxwell-Boltzmann statistics and interacting via a supers table
and lower regolar potential. The following bounds for the Reduced Density
Matrices are proved for any value of [3 and x :

These inequalities are a consequence of the Ginibre representation [1 ] [2 ]
and estimates on the classical correlation functions defined on the space
of paths, in analogy with the Ruelle superstable estimates [3 ]. These
bounds allow us to obtain the existence of the pressure, its independence
of boundary conditions, and the existence of the thermodynamic limit,
extending previons results of Ginibre.
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128 R. ESPOSITO, F. NICOLO AND M. PULVIRENTI

1. INTRODUCTION

In 1965, Ginibre proposed an approach to Quantum Statistical Mechanics
based on functional integration [1 ] [2].

Consider a system of interacting quantum particles in a box A (A c !R~ is
assumed to be open and sufficiently regular). The (formal) Hamiltonian is :

where m is the mass of the particles, h = is the Planck constant,

and J7/ : R the potential energy.
We introduce the spaces gn() = L2(An) and g() = C gn(). If

41 is regular enough, a semigroup of operators is given in g by the following
kernel :

and is the conditional Wiener measure given by the Green function

1 , 8 = 03B2 m, 03B2 &#x3E; 0. P03B8xy(d03C9) is a measure on the

space of continuous functions a) = [0, 03B8] ~ Rv, 03C9 = {03C91 ... 03C9n }. The
function lI.A is defined as = 1 if the range of all the is contained

in A and = 0 otherwise. Finally 

where U03B8 = 03B2 U.
0

We denote by H~ the generator of because it is the selfadjoint
version of the formal hamiltonian with Dirichelet boundary conditions [2 ].

For a = 0, + 1, we define the grand-canonical particles density matrices

as positive trace class operators on Here S~ = 1/n ! in the case of

Maxwell-Boltzmann (M. B.) statistics (E = 0) and S~ is the canonical

projection on the symmetric or antisymmetric functions of for

Bose-Einstein (B. E.) Statistics (s = 1) and for Fermi-Dirac (F. D.) statistics

Annales de l’Institut Henri Poincaré-Section A



129MAXWELL-BOLTZMANN STATISTICS

(s = - 1) respectively. Z~ denotes the partition function for activity z
and inverse temperature /3 and is defined as :

where Trn means trace on ~n(A).
The m-particle reduced density matrices (RDM) are defined by:

where the above Trn means the n-particle partial trace on 
In terms of kernels this becomes

The integral representation (1.2) allows to write the RDM’s in the
following way when e = 0 :

where

Here X = ~ xi ~n=1 1 and we have dropped the indices m and B for nota-
tional simplicity. In this formula c~ E and ~2n is the symmetrized

n~0

space of all sets of continuous trajectories {~}?=~ [0, 0] - !RB
The union W u cu’ denotes the joint set of the trajectories in 03C9 and cv’,

I ~! denotes the number of components of cv E Q and Z~ = Z~ ; finally
dcv is a measure on Q defined as :

where

Vol. XXXVI, n° 2-1982.



130 R. ESPOSITO, F. NICOLO AND M. PULVIRENTI

The above representation holds for M. B. statistics and is a direct conse-
quence of 1.2 and the Feynman-Kac formula.
Analogous representations hold for the B. E. and F. D. statistics, but

with more complicated spaces of trajectories due to the combinatorics
arising from the statistics.
The RDM’s are expressed in term of the They have the same

structure of classical correlation functions in which points are replaced
by trajectories. Thus it is tempting to use the technology of Classical
Statistical Mechanics to obtain results for the quantum case. This has
been done by Ginibre, who proved the existence and uniqueness of infinite
volume limit RDM’s (for M. B., B. E., F. D. statistics) by means of a low
activity expansion, similar to that used in Classical Statistical Mechanics
(see ref. [1] ] [2 ]).

Existence and properties of thermodynamic functions were also obtained
by Classical Statistical Mechanics techniques.

In this paper we want to apply to Quantum Statistical Mechanics a
classical idea due to Ruelle called superstability [3 ]. Roughly speaking
the problem solved in [3 ] is the following. In several problems one needs
to control large fluctuations of the number of particles in a small region r
of the physical space. Such fluctuations are prevented by the Gibbs factor
in a trivial way if the potential is non negative and positive at the origin.
But in the presence even of an arbitrarily small negative part, one needs
to solve a genuine many body problem, because the interaction between
the particles in r and the external particles, has to be controlled. Ruelle
solves this technical difficulty for a very large class of interactions, called
superstable interactions (see definition below). More precisely, for such
a class of interactions he proves that the grand canonical probability of

finding more than n particles in a box r is bounded by exp - + k2n J
where k 1 and k2 are constants depending only on the temperature ~3 -1,
the activity z and the interaction.

This probability estimate is a rather simple consequence of a highly
non-trivial estimate on the correlation functions.

It has to be remarked that this approach is not perturbative (a free gas
does not satisfy the above probability estimate), so it works for all values
of z and /i Among the consequences of this probability estimate is the

existence of the infinite volume correlation functions. These have already
been obtained (together with their uniqueness) by means of perturbative
techniques working only in some region of z and f3 (see [3 ] and [4 ]).
The plan of this paper is the following. We use the Ginibre represen-

tation and consider the PA(W)’S rather then the RDM’s as the main object
to investigate. They are correlation functions of a Classical Statistical

Mechanical system of interacting trajectories. Such objects are expected

Annales de l’Institut Henri Poincaré-Section A



131MAXWELL-BOLTZMANN STATISTICS

to satisfy bounds of the same kind as those obtained in [3 ] for classical
particles.

Let’s now outline the content of the paper. In section 2 we prove the
basic estimates on the for a large class of interactions in the case
of M. B. statistics for v ~ 3. These estimates allow us to control the fluctua-
tions on the number of particles in a box and hence the thermodynamic
limit for any value of z and f3 (section 5). Moreover, for the case of M. B.
statistics, we obtain the results discussed in [3 ] thus extending to a wider
class of interactions all the results already proven, controlling fluctuations
by positivity or by presence of hard-cores. In particular in Section 4, we
obtain the existence of the pressure and its independence of the quantum
boundary conditions. Section 3 is devoted to a probability estimate on
the number of particles in a bounded region F, and we discuss its classical
limit. Finally, in Appendix A we deduce a bound concerning Brownian
motion that will be used systematically, throughout the paper in combi-
nation with the estimates in Section 2. In Appendix B, we prove some
lemmas that are technical devices in deducing the main estimate of Section 2.

Although our results are obtained only for M. B. statistics, we believe _

that this work might provide a conceptual framework for the physically
more interesting B. E. statistics. Furthermore some of our results may be
applied also to bosons and fermions in one dimension, since, in this case,
the partition function is the same for all statistics if the potential is suffi-
ciently repulsive [5 ].
The main difficulty arising in dealing with B. E. statistics using this

approach is the arbitrary « length » of the trajectories. The correlation
bounds that one would hope to prove, at least in a small activity region,
thus become more difficult, and might require a non trivial modification
of the method. Furthermore if one has such estimates (even for any activity),
one cannot automatically deduce uniform bounds on the RDM’s because
of the divergence of the free measure. Thus the statistical mechanics of
interacting bosons at high activity has still to be understood for such

simple interactions as pure hard-cores or positive potentials.
It should be remarked that quantum systems of charged particles

interacting via a positive definite potential have been considered in [6] ]
by means of the Ginibre representation and the sine - Gordon transfor-
mation - Furthermore some properties of superstability in a Quantum
mechanical context have already been applied to deduce the barometric
formula [7].
We conclude this section by stating our assumptions on the potential

energy.

We assume that our particles system interact via a two-body potential
1&#x3E;" 1&#x3E; : :(0, + oo) - [R1" such that (~ == ~i 1 + where discontinuous,
Vol. XXXVI, n° 2-1982.



132 R. ESPOSITO, F. NICOLO AND M. PULVIRENTI

positive, and strictly positive in a neighbour of the origin, and ~ 2 is conti-
nuous and stable, i. e.

Let us consider a partition f2 of [R" into half open cubes with side 1 :

We assume that there exist positive constants A, B such that

Here

and n (X, A) denotes the number of particles of the configuration X in the
element ~ E ~.
The following decay property, called lower-regularity, is also required. Put

where

and $ is the negative part of 4&#x3E;.
We require the existence of a positive, decreasing function ~ defined

on the positive, integers, such that

and

Annales de l’Institut Henri Poincaré-Section A
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1
where p &#x3E; - and

2

2. MAIN ESTIMATE

We introduce the functions:

which are the correlation functions up to the factor zl11l.
Let ~([0, 0]) be the a-algebra of Borel sets in [0, 0]; S28 the set of all

measurable functions

We define the following large space of trajectories :

where Qo is the vacuum element and

Clearly Q is a subset of Q and it is useful to consider the following exten-
sion of defined in sect. 1, from 03A9 to : if  ~  we put

where is the domain of (5.
We notice that for a fixed ~ E Q still denotes the joint set of

~ and ij i. u co E + I ~ I, and I ij is the number
of components of ~ ) 

- -

is measurable on Q w. r. t. the a-algebra of the Borel sets corresponding
to the pointwise convergence topology. In fact, for each positive integer l,
let ~I(x) = min {(~), t ~ and ()7ff the analogous of with 4&#x3E; replaced by ~~.
Then is continuous in the pointwise topology on Q for fixed
by Lebesgue dominated convergence theorem. The limit 

-

Vol. XXXVI, n° 2-1982.



134 R. ESPOSITO, F. NICOLO AND M. PULVIRENTI

exists a. e. dCrJ by monotone convergence theorem and coincides with
which is then measurable. 

--

The above remark allows us to put, for each ~ E Q

which is an useful extension of definition (2.1).
Let now r be a bounded measurable region in [R" and define the map

as follows : if cu 1 ... then

Here flrw is the trajectory of Ql whose domain is the measurable set

and, if it has non zero Lebesgue measure,

Otherwise, if B has zero measure,

We introduce also the map

The union is made on all A E f2 such that has domain of non zero

Lebesgue measure.
Notice that for all ~ ~ 03A9

Let ij E Q be such that each trajectory in it is completely contained in a
tessera A E ;!2; we also assume that the components of ij have domain
with positive measure. Let also Ai be the first lexicographic element in
the set of tesserae covering ~. We fix the origin in the center of Ai and
consider, for each integer q, the cubic region

where

’Y. &#x3E; 0 to be fixed later, and for x e R +, ~(x) is the integer part of x.

Annales de l’Institut Henri Poincaré-Section A



135MAXWELL-BOLTZMANN STATISTICS

If r is a region paved by fl, we denote:

and, ~r the set of trajectories of ~ contained in tesserae of 1.
We define, for 03BE ~ 03A9

For notational simplicity we systematically omit the effective integration
domain.

PROPOSITION 2.1. - There exist an integer qo, an a small enough and a
constant h(qo) (depending only on qo), such that:

where

and

ci and u being positive constants (see A. 15 and Lemma 2 . 3 below).
Ci 1 depends on v, and v on v and a.

REMARK 1. 2014 /(0) is bounded if v ~ 3 and is such that

REMAR K 2. - The sequence cq is fastly convergent, provided exp av  2,
and we denote by D its sum.

Proposition 2.1 will be proven below. It implies the following.
Vol. XXXVI, n° 2-1982.
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PROPOSITION 2.2. - Under the same hypotheses of Proposition 1, if
a x 3, p~(~ ) verifies the following uniform bound in A:

where ð is such that

Proof. Let ~’ be a proper subset of components then we assume
that (2.23) is true for any such ~’. 

-

Therefore : 
-

since 1. But (2.23) is true when j E Qo and proposition 2. 2
follows by induction D.
We consider now It is true that verifies the hypotheses of

Proposition 2.1 and 2 . 2, and therefore, by (2 .14) we get the following:
THEOREM 2. 1. - If v ~ 3

We notice that I has a simple geometric interpretation as volume
of the region (shadow of ~)

We now prove Proposition 2. L
Fixed ~ and some integer qo (to be fixed later) denoting ~ and

we put the following decomposition :

where; denoting as usual by x(S) the indicator of the set S, for each q &#x3E; qo -1

and for q &#x3E; qo

having defined

Annales de l’Institut Henri Poincaré-Section A
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where

We now bound the r. h. s. of (2.33) term by term.
It will be useful to consider different contributions to Iq and Io arising

from the different behaviour of the trajectories 03C9 : we divide them in three
classes : 03C91 are trajectories completely contained in the interior of Aq,
~2 are trajectories completely outside Aq and ( are trajectories which
cross the boundary of Aq. Furthermore the trajectories are divided in two
classes: ’1 are trajectories which do not go out of Aq+ 2 while go (2 outside
of this region. To be precise, we decompose the total energy as follows :

where, if &#x26; and ~1 1 are in Q, we put

We also perform the integration according to the behaviour of trajectories.
In fact we use the following identity :

where o:r is the indicator of the event cv is always in the interior of r, while
is the indicator of the set { w I 3T E [0, 0 s. t. E or }. Furthermore

if a is any indicator on co, and cv = ... Wn) we denote

We have :

Vol. XXXVI, n° 2-1982.
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To get (2.40) we used twice the identity:

where oc~ = 1 - B1.., f is a symmetric function on trajectories and the other
notations have an obvious meaning.

Let now xs denote the indicator of the set

Then

where Xq is defined by the last steep of (2.43). Using still (2.41) we get
finally:

We now estimate the various terms in the decomposition of energy and
use such bounds to evaluate (2.44). We need some lemmas.

LEMMA 2.1. - For each positive integer q

The proof of this lemma is a slight modification of the one of [3 ] and
is given in Appendix B.
Now we have to estimate the interaction among the trajectories according

to the decomposition (2. 36). The first two W-terms in (2.36) are essentially
classical in the sense that they contain localized pieces of trajectories.
To treat them we use Lemma 2.2 below. The contribution of the last
W-term to the integration will be controlled with probabilistic arguments.

LEMMA 2.2. - If ç 1 and ç 2 are sets of trajectories of ç contained in
0) respectively and if Ze/ç) = 1. then there exist an a small

enough and a large enough, s. t. for each 

Lemma 2 . 2 will be used with 03BE1 - u 03BE2 = cq ~ 03C0 cq 03C9 and

a = 0, or with ~1 - ~2 = and a = 2. Also this lemma is

proven following Ruelle [3 ] with minor modifications and the proof is
given in Appendix B for sake of completness.

Annales de l’lnstitut Henri Poincaré-Section A
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The interaction of trajectories (2, which could be very long, cannot be
treaten by (2.46). 

-

LEMMA 2.3. - Let ~~ be trajectories in ç contained in As, s &#x3E; q and

~q(03BE) = 1. Then there is a large enough such that for each q  qh2)

where v is a constant depending only on dimensions and a.

Proof. 2014 We denote 03BE3 = 03C0cq03B62 and 03BE2 = cq ~ 03C92. By lower regularity,
fixed z E [0, 0 ]

Then

by a convexity inequality, for some Vb depending on v. But :

where r(n) is the smallest- of the integers r such that the set

is contained in 

Obviously

Then, integrating (2.49), still by convexity we get

since (2 is a subset of ~ ; using the condition Xq(5.) = 1 we have then

Vol. XXXVI, n° 2-1982.
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We now use Lemmas B.1) and B .2); we fix

(see Lemma B. 1). By Lemmas B .1 and B. 2 :

for each r &#x3E; 0. Then

Therefore

where

Obviously the bound (2.47) is useful only combined with a phase space
bound, based on the fact that very long trajectories have small ~-measure.

where ci 1 has been introduced in A .15.

Proof. The lemma follows from the probability estimate A . 15 and
the inequalities -.1

where we used Lemma B. 1 and the fact that

Volume integration gives the extra factor AJ I 0 .
Above lemmas allow to estimate qo. In fact we fix

and in (2.44), decomposing the energy according to (2.36). We bound
u ~~2) by lemma 2.1, and u 7~M by stabi-

lity : 
~, _Ai v Y v .~ 1’1l I Y t ~ 1 Y I 1 I’7 ~’~ 1

Also we bound interaction energy by lemmas 2. 2 and 2. 3 since = 1 ; .

Annales de l’lnstitut Henri Poincaré-Section A
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we also decompose the integration on f2 according to the partition (2.43):

Then, using lemma 2.4 we get the estimate for qo

where cR is the coefficient of proposition 2.1.
To estimate Io, which has the same structure of 1~ but with Xqo-l 1 in

place of Xqo’ we cannot use lemma 2 . 2. In place of it we have, with the same
meaning of notation as in Lemma 2.2:

LEMMA 2 . 5. 2014 If ~ is such that = 1 and qo is fixed as above,
there exists a function h(qo) which does not depend on 03B2, z, 0, such that

Also Lemma 2.5 is proven in Appendix B.
Then, since = I, using Lemmas 2 . 1, 2. 3, 2 . 4 and 2. 5, eq. (2 . 36)

and performing integration as for 1~, we get the estimate

where co is given in Proposition 2.1. Therefore (2.19) is proven. D

3. A PROBABILITY ESTIMATE

In this section we obtain a probability estimate on the number of particles
in a given bounded region r. We shall also compare this estimate with
the classical one, already deduced in [3 ].
Vol. XXXVI, n° 2-1982.
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Let r and A be two bounded regions, exactly paved by fl, 1~ ~ I-’, and a,
a positive integer. We want to obtain an estimate on a), not
depending on A, where a) is the A grand-canonical probability
of finding more than a particles in r. Such a probability is defined as:

where Er(a) = ~a dEg, and is the spectral measure of the selfadjoint

operator Nr, number of particles in r.
Straightforward calculations on the Fock space g(), give :

where 6~( ~ , ~ ) is the kernel of the density matrix. Eq. (3.2) may also be
assumed as a definition for a) in analogy with the classical case.
Thus

where

and

Hence:

Annales de l’Institut Henri Poincaré-Section A
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for some y’ &#x3E; 0 depending on d and such y’ - y when d - 0 and g &#x3E; 0.

The last step is due to the fact that c ~ 1.

Furthermore :

Using Schwartz inequality in the last integral and A. 15 and A. 21:

where gi 1 = min y, and g2 some positive constant.

Thus the estimate we obtains is rather different from the classical one
that is (3.8). This difference is due to the delocalization of the quantum
particles that is responsible for the extra addendum (3.11). However C
and R have different order of magnitude. In fact, as is expected to be true,

Z

R -~ 0 as h - 0 and z - 0 in such a way that z - zo, that is the

classical activity. This may be seen by realizing that in all coefficients the

activity appears only in the form z/ 2~9v, so that in the above classical
limit, R -~ 0 and C tends to the classical estimate, with the same coefficients
obtained in [3] ] in which z is replaced by zo.
To get the right scaling see Ref. [8 ], Th. 10.1, p. 106.
Of course other scaling are possible to obtain the classical limit, all

of that describing different physical situations.

4. PRESSURE AND EQUIVALENCE
OF THE BOUNDARY CONDITIONS

The existence of the pressure may be obtained, in our context, by a
combination of the methods employed in the previous sections and the
classical ones in Statistical Mechanics.

Vol. XXXVI, n° 2-1982.
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Let’s consider the following rectangular regions:

We prove the following inequality, for Li 1 large enough:

where mo &#x3E; 0 and 0  b  1.
To do this let A(l) = [- I, I ] x S, I  Li integer and:

We claim that, for sufficiently large k :

Proof. ’.

We shall prove :

for some positive ml, and hence (4.4) follows by (4. 5), (4.6), (4.3).
Annales de l’Institut Henri Poincaré-Section A
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Proof ~ oj’ (4 . 6) :

as follows by (A .15) and (A . 21).
Thus :

where : Ri = n 1 B n(lo), R2 = A2 ""-1B(10) and 10 will be fixed later.
The last integral in r. h. s. of (4. 8) may be treated as in Section 2. In fact

the contribution of the trajectories’ 1 u _~2 (see lemma 2 . 3, 2 . 4 and 2 . 5)

give exp m2 | for some m2 &#x3E; 0 and for sufficiently large to.
Moreover if ~1 and are such that u = 1 then :

Thus we have, for some positive a :

because of ( 1. 20). Hence the inequality (4 . 2) follows after a suitable choice

of 10 as function of Li.
As consequence of inequality (4.2), one can get the existence of the

limit - log Z for a suitable sequence of increasing regions. We shall

denote such limit P.

It has to be remarked that for short range potential [2] ] or for bounded

potentials, the proof of the existence of the pressure may be considerably
shortned.
An interesting problem arising in Quantum Statistical Mechanics is

how the thermodynamical functions, as the pressure, depend on the different

Vol. XXXVI, n° 2-1982.
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boundary conditions, that, in principle, may be chosen for the Laplacian
operator.

It may be proven [9 ], [ 10 ], [2], that if we denote by ZX the partition
function constructed via 039403C3, the Laplacian operator with boundary condi-

tions 2014 2014 where 2014 is the inward normal derivative on ~, then

Z ~ Z~ Z03C3 Z0, 03C3 &#x3E; 0.
Thus if one prove that P°, the pressure obtained by the Neumann

boundary conditions cr = 0, is equal to poo = P, one can get the equivalence
of the pressure for all other intermediate cr boundary conditions.
The estimate exp 03B4|s(~) I allows to do this, so that previous

results obtained by Novikov (see [7] ] [2]) for hard spheres or positive
potentials, may be generalized to our situation.

LEMMA 4.1. - Let /11B be any Borel measure on Q with the following
properties : (A = [ - L, L]")

for all positive measurable functions f.

for some m4 &#x3E; 0. Then defining:

the following inequalities hold :

Proof.

The thesis follows from (4.13) Q.
Now, using the images methods, combining the arguments given by

Novikov [9] ] [2] ] and (A . 21 ), one can easily see that Z~ = Z~ for some

Annales de l’Institut Henri Poincaré-Section A
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suitable /1 satisfying (4.11), (4.12), (4.13). So the desired result may be
obtained by the use of (4.15).
We summarize the content of this section in the following.

THEOREM 4.1. - Let An = [ - n, and 6 ~ 0. Then the following
limit : (6 ~ 0)

exists. Moreover:

As a final remark, we mention that it is possible to prove the continuity
of the pressure as function of the density with an appropriate (but straight-
forward) use of the arguments in [3] ] and those of the next section.

5. THERMODYNAMIC LIMIT

In this section we discuss the thermodynamic limit and prove the existence
of the infinite volume correlation functions and RDM. It extends, for
arbitrary z, previous results obtained by Ginibre [1 ] [2] via low-activity
expansions.
To this purpose it is convenient to introduce a family of seminorms

on the real valued functions defined on Q.
We define for each m &#x3E; 0 and r bounded :

As a consequence of the estimate

we are able to prove the following Proposition.

PROPOSITION 5 .1. - Let A / [R" be a sequence of bounded open regions.
One can extract a subsequence { n }~n= 1 such that there exists

moreover

and for all m and r bounded

Proof. - By the estimate

Vol. XXXVI, n° 2-1982.
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and the Banach-Alaoglu Theorem, there exists p such

00 for some subsequence { An in the topology of LX) as dual
of L 2(Q, 
On the other hand the pgs satisfy the Mayer-Montroll equations : (see (2 ),

p. 371) 
" ’ "

where

Thus, because of the estimate

that will be proven later, also (5.3) holds.
Now, using the pointwise convergence of we can obtain also

the uniform convergence on the set Q~ c Q of all trajectories ~ such that
=1, I = m. In fact we prove:

uniformly in co E Q~ simultaneously obtaining the bound (5.10). Let us put

then

where

Now we estimate exp ~ ~ ~ 7)/r(7) and exp ~ ~ ~ 
in terms of two integrable functions and g2(y) not depending on cv
but only on m = ~ I. So we obtain (5 .10) and, by the use of dominated
convergence theorem also (5.11).
We have : (n 

where B is a minimum of cpo The integrability of the r. h. s. of (5 .15) follows
easily by the Schwartz inequality, (A. 15) and the dy integrability of xr
(gaussian decay of dy). 

’
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Moreover if ( is such that /K? = 1,

where $ is some positive decreasing function not depending on , such that :

and finally, for some Cv &#x3E; 0

Let us put

and define the infinite volume RDM by

First we observe that the following bound

holds in virtue of (A. 15), where

(The same bound obviously holds for the ~(X. Y)’s). It is not hard to prove
Vol. XXXVI, n° 2-1982.



150 R. ESPOSITO, F. NICOLO AND M. PULVIRENTI

that pA.(X, Y) --&#x3E; p(X, Y) uniformly on compact sets for X and Y. Infact
(see [2], p. 379 for details)

and one can split the above integration in two parts : trajectories « near »
X u Y give rise to a small contribution for large n in virtue of Proposition 5.1.
The others, for which at least one goes far enough from X u Y give a small
contribution for the gaussian decay of P~y. To summarize :

PROPOSITION 5 . 2. - The RDM’s have a limit for n - +00 uniformly
on compacts sets. Moreover such limit is given by (5.20) and satisfy the
bound (5.21).
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APPENDIX A

Let Px the Wiener measure associated with a v-dimensional Brownian motion starting

at the point x E Px lives on the Borel sets of the space M = n where = 

t~[0,+oo)
More precisely, Px is concentrated in the small subset of M of all Holder continuous

trajectories with exponent IX  2 as consequence of the following Lemma 2 :
LEMMA A. 1. - Defining :

then:

where (2~t)-’’~2 exp ( - x2 B2t), and (A . 2) defines G.

The above lemma has as corollary the estimate (A. 10) (see below) that is the main tool
in proving the result of Section 2.
The following lemma is the core of Proposition A. that plays a central role in Section 3,

4, 5.

LEMMA A. 2. - Let { 03941 ... } be a finite sequence of elements of 2 such that

d(A;, A~) ~ 1 for i, j = 1 ... N. Suppose that d(x, 4~) &#x3E; 1 for all i. (Here d(x, ~t)
denotes the Euclidean distance between x and A;). Denoting:

then:

Proof. - Let t; = f,(M) be the family of the random variables time of the first entrance
in the set A; and consider the event :

Then:

Defining the new random variables:
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We define the new processes:

In virtue of the strong Markov property Wi(t) is independent of t  Thus
since : i

we have :

after maximizing on r; with the constraint Er~  2N.
The thesis follows taking into account all possible permutations. 0
The above estimates on Px induce estimates on the conditional Wiener measure PJ~that is the only measure used for our purposes.
By the following inequality we have, for all events H8~ z depending only on what happens

in [0, 8/2 ],

Hence:

for I # 1, 0 smaller then some fixed constant, and ci, depending only on the dimensions.
(A .15) is a consequence of (A .14) Lemma A .1 and some tricks [7].
(A. 16) follows easily from(A .14) and Lemma A. 2. Finally we prove :

PROPOSITION A .1. - For k large enough:

for some positive constants c2 and ~3. 
"’-v

Proof. - Given a shadow S, we construct the set T(S) in the following way. We take the
first element of S in the lexicographic order Ai E S and consider the set S Ri where:

Let 03942 be the first element of S"" R l’ We iterate defining A, as the first element of

.......... R - l’ Let T( S) Then T(S) contains at least I S 1/ c elements,
i

where ~ is a positive constant depending only on the dimensions. Then:

where E(T(S)) is the event in which the Brownian particle starting at x visits all the tesserae
of T(S) in the time B. Hence : 

-,-,
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where k’ = |T(S)| - 2 and G n, 2 e and G (n’, 03B8 2) denote respectively the events in . which

the particles visit at 
least n tesserae of T{S) in 0, 2 and visit at least n’ tesserae in - , 2 ©

Since G n, 0 2)) - G n, 0 2)) we obtain (A .17) by (A .16), the inequality

-. 1 (n + n’)2, Schwartz inequality and a rearrangement of the constants. As
2 .

consequence of the above proposition we have the following estimate:

where depends only on the dimensions if is chosen in some fixed but arbitrary interval

[0, 
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APPENDIX B

We begin with some elementary considerations.

LEMMA B .1. - Given s &#x3E; 0, 0  a  1, there exists an integer so large enough, such
that for each 

Proof. -

if

and, of course, if s ~ s2 where

~ B . 1) is verified.
Finally, if s &#x3E; s3, where

we have

and (B.2) follows from the inequality

LEMMA B . 2. - Put, for each r(k) = min + k 1 }. Then

Proof. -

Then:
1

r(k)  min {r E |e03B1r &#x3E; k + 2} ::::;; 1 + - log (k + 2) . Q
a

Estimates (B . 2) and (B . 8) are used in Lemma 2 . 3.
In this appendix we use, instead of (B. 1) and (B . 2) the estimates
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which follow from (B .1) and (B . 2), taking G  GO, where

is positive, if a is small enough.

Proof of Lemma 2 . I . - By superstability, fixed 1" in the intersection of the domains of the

t ra jectories in j Àq and we have

I n fact, for any n such that

we have

Therefore, integrating in 1" we prove the lemma. 0 
°

The proofs of Lemma 2.2 and 2.5 are based on the following decomposition of the
interaction energy: fixed 1" in the intersection of the domains of the trajectories in ç and
~2’ by lower regularity ( 1.17), if a ~0, 

-

Omitting the dependance on we write the r. h. s. of (B. 16) as follows

The first term in the bracket is a « short range » term and is easily bounded by (see 1. 20)

The fourth term is also of « short range » type and is bounded as

The second and third terms are of similar nature and are bounded respectively by
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and

where F(n) denotes the rest of order n of the series defining F.
The last term is bounded by

where

After integration on T, since .£1 and (~ are subsets of f, we have

where we have collected T1 and T4 to get the first contribution and T2 and T3 to get the
second one, since lq+a+ 2014 lq+a &#x3E; lq - i for q large enough.
We have now:

LEMMA B . 3.. - Let p = q + a. Then :

LEMMA B .4. - If q  qb1) with qo large enough, and a is small enough:
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inequality (B. 27) is true if we choose a so small that

Furthermore (B .11) and the fact that

prove (B. 28), if qo is chosen large enough.
We have, denoting q + a = p, for 1

but by (B .10)

Then the 1. h. s. of (B. 29) is smaller then

but the last series converges by (1. 20), and then (B. 35) is bounded by an infinitesimal as

q - oo ; therefore, if qo is large enough, by (B. .11), (B. 29) is proven. 0

Lemmas B. 3 and B. 4 and (B. 24) imply Lemma 2 . 2 since ç is such that xq(~) = 1 for

q &#x3E; qo and qo is chosen large enough. 
- 

-

Lemma 2 . 5 is easily proven using still (B. 24), Lemma B. 3, (B. 28) and (B. 29), since

xqo -1(~) = 1. Thus : - . 1 ,

with h(qo) defined by the last step and then independent of f3, z, 8.
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