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On the acoustic impedence condition
for ondulated boundary

Marco CODEGONE (*)
Instituto Matematico del Politecnico, Corso Duca degli Abruzzi, 24,

10129, Torino, Italy

Ann. Inst. Henri Poincaré,

Vol. XXXVI, n° 1, 1982,

Section A :

Physique théorique.

ABSTRACT. - This paper deals with the reduced wave equation for
non-homogeneous media with an impedence boundary condition. The
domain is either bounded or unbounded, but its boundary is an ondulated
surface with small spatial period. The asymptotic behaviour of solutions
is studied as the period of the ondulations tends to zero. It appears that
the limit solution satisfies a different impedence condition. This result
is obtained by homogenization techniques, and holds for eigen-solutions
as well as scattering problems.
RESUME. - On considere 1’equation reduite des ondes avec une condition

aux limites d’impedance. Le domaine est aussi bien borne que non borne,
sa frontiere etant une surface ondulee de petite periode spatiale. On etudie
le comportement asymptotique des solutions lorsque la periode des ondu-
lations tend vers zero. On montre que la solution limite satisfait a une
condition d’impedance differente. Ce résultat, obtenu a l’aide de technique
d’homogeneisation a lieu pour des fonctions propres et pour des problemes
de diffusion.

0 . INTRODUCTION

It is known that, if the heat transfer equation is considered with a

boundary condition of the type :

(*) The results of this work were obtained whilst the author sojourned at the
Laboratoire de Mecanique Theorique, Tour 66, 4, Place Jussieu, 75230 Paris, France.
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2 M. CODEGONE

with positive A in a region bounded by an oscillating surface, the limit
behaviour for small period (of the ondulations) is given by a boundary
condition of the type (0 .1 ) with another value of ~,, which takes into account
the ondulations (see [7], ch. 5, § 7 and 8).
We consider here the generalizations of this result to the wave equation

with complex A. Condition (0.1) then becomes an acoustic impedence.
On the other hand, we also consider a non-homogeneous medium with
periodic structure : the coefficients of the corresponding equation are

periodic functions of the space variables. We then consider the asymptotic
behaviour as the period tends to zero, in the framework of the homogeniza-
tion theory. In this connection, it is to be noticed that we do not consider
small wave length problems; the spatial period of the ondulations of the
boundary and of the coefficients is the only small parameter in the problem.
The asymptotic processes at the boundary and at the interior of the

domain are handled by the homogenization classical techniques (cf. [2] [7]),
consequently certain parts of the proofs are analogous to that of other
well-known problems and we only give the corresponding reference.

In section 1 we state the problem in bounded domains. The correspond-
ing asymptotic behaviour for solutions and eigen-frequencies is given in
section 2. An explicit study of the solutions in the vicinity of the boundary,
in a particular case, is given in section 3 by boundary layer techniques; the
value of the limit impedence is obtained again as a compatibility condition
for the existence of the layer. Section 4 is devoted to the statement of the
problem in an unbounded domain and the definition of the scattering
frequencies. Sections 5 and 6 contain the corresponding convergence of
solutions and scattering frequencies. We note that other scattering pro-
perties, in the behaviour of homogenization theory, are studied in [3] ]
and [4 ].
The author thanks Mr. E. Sanchez-Palencia for his encouragement

and helpful advice.

1 PROBLEM IN BOUNDED DOMAINS

We consider a problem depending on two parameters 8, ~. The first
is related to the homogenization of the coefficients. The domain is made
by a non-homogeneous medium with periodic structure and the coeffi-
cients of the equation are periodic real functions of period 8Y:

bE;(X) = where aij(Y) and b( y) are piecewise constant, Y-periodic
functions of period a parallelopiped Y satisfying the ellipticity condition :

Annales de l’Institut Henri Poincaré-Section A



3ON THE ACOUSTIC IMPÈDENCE CONDITION FOR ONDULATED BOUNDARY

The second parameter 11 is associated with the form of the domain Q~
defined as follows : let Qo be a bounded domain with boundary Fo = rJ u r5.
In a neighbourhood of rJ we consider the local coordinates s2, N)
with N the outer unit normal. Let z~) &#x3E; 0 be a periodic function
with period a rectangle ~ ; s2) = 82/11). Moreover, let 8(x, ~)
be a smooth function such that : 0 = 1 on rJ except on a neighbourhood V~
of arJ and mes.V~ ~ 0, as 11 B 0, and 0 = 0 in a neighbourhood V; c V,r
of ~039310. We set :

We also define the impedence 1/~ by taking )"" as follows :

where ~,1 (z 1, z2) is periodic with period the rectangle ~ and ~,2 constant.
We take the following hypothesis:

Under the preceding hypotheses, we consider the following boundary
value problem, where f is a given function of (continued with zero
values to Q~) and co is a complex spectral parameter : uEn E H 1 (52,~)

Vol. XXXVI, n° 1-1982.



4 M. CODEGONE

on the surfaces of discontinuity of ~.. [’ j is the symbol for « jump of ».

If we suppose that is the pressure, we can interpret the equation ( 1. 3)
as the acoustic wave vibration equation. Condition ( 1. 5) means that the
velocity of the displacement of the boundaries r# and ro is proportional
to the pressure with variable coefficient ~. It is an impedance boundary
condition. (1.4) is the transmission condition.
The operator corresponding to the problem (1.3)-(1.5) is not self-

adjoint, because ~,~ is complex. But (AE’’)-1 is compact and the spectrum
of is formed by isolated points with only infinity as an accumulation
point. By ( 1. 2) we see that the spectrum is such that Re mfl &#x3E; 0 and

0. In most of the following we shall consider :

g increasing and continuous, 0 = g(0) and there will be only a significant
parameter.

2. RESULTS OF CONVERGENCE

where luwdx. The problem (1.3)-(1.5) is equivalent to find

E satisfying (2 .1 ) dv E H 1 (SZ). Under the hypothesis ( 1. 6), and

by continuity and the ellipticity property we obtain :

Then we consider a subsequence of such that u~ Ino - u° in 
weakly and strongly. We remark that mes (011 0, 0.

By the classical results in the homogenization theory [2] ] the volumic

integrals in (2 .1) converge to :

Annales de l’Institut Henri Poincaré-Section A



5ON THE ACOUSTIC IMPEDENCE CONDITION FOR ONDULATED BOUNDARY

where ahij and b are the classical homogenized coefficients ([7], ch. 5, § 3).
Now we consider the surface integral in (2 .1 ). Using the metric tensor g,
of r# given by :

we have

Then by periodicity the weak limit of is the average Ao
in a period ( [7], ch. 5, § 4) :

Moreover, by a result in homogenization of boundary ( [7 ], ch. 5, § 8)
we have :

in strongly, as 0. Reasoning as before for the integral on Fj
we have

where

Then we obtain that u° is the unique solution of the following problem :

REMARK 2.1. - It is clear that Re A &#x3E; 0 and Im A ~ 0 and then OJ2
is not an eingenvalue of the limit problem. Then u° exists and is unique. /

REMARK 2 . 2. - We can suppose that in the interior ofQ~ for fixed-~,
has the following formal expansion :

with u~ (1 = 1, 2, ...) periodic in y with period the parallelopiped Y.

Vol. XXXVI, n° 1-1982.



6 M. CODEGONE

By the classical homogenization theory [2] we have that u° satisfies the
following equation :

Moreover we can suppose that u° has the following asymptotic expansion
in the parameter 11, as x is very near to the boundary 

where

is Z-periodic in zl, z2 with period the rectangle Z,

As in the homogenization theory for boundary ( [7], ch. 5, § 7), we have
that uOo satisfies :

REMARK 2. 3. - We consider the operators associated to the problem
(1.3)-(1.5) and A° associated to the limit problem. By hypothesis (1.2)
and remark 2.1, the eingenvalues W2 of and A° are contained in part
of the complex plane such that :

The convergence of the eingenvalues and the corresponding projectors
is studied as in ( [7 ], ch. 11, § 6), and we obtain :

THEOREM 2.1. - If y is a simple closed curve contained in the resolvent
set of A°, for any f E (we shall continuate f with zero values out
of Qo, and thus f E we have :

in strongly as B 0 where PEn is the projection

and Po is the analogous projector for 

THEOREM 2.2. - If ZE;l1 is a sequence of eigenvalues of with 8, 11 ~ 0,
such that z°, then z° is an eigenvalue of 

Annales de l’Institut Henri Poincaré-Section A



7ON THE ACOUSTIC IMPEDENCE CONDITION FOR ONDULATED BOUNDARY

3. BOUNDARY LAYER

In this section we consider the particular case where the boundary rj
is a portion of the plane (xi, x2). We suppose that the function F and À1
are periodic with period the rectangle Yl x Y2 = Z. We take s = ~ ;

and

We suppose has the following asymptotic expansion :

in the interior of the domain, with u 1 Y-periodic in y, and

for x very near to the boundary LB, with the hypotheses :

We easily see that u* 1 satisfies :

Moreover U1 satisfies in B the same equation as U*1. Then we can integrate
by parts in B these equations. By (3.1), (3 . 2) and (3.4) we obtain ;

But, by the flux equation (cf. [7], ch. 5, § 10), (3 . 5) becomes :

Vol. XXXVI, n° 1-1982.



8 M. CODEGONE

where g is the metric tensor of LB. Then by the classical homogenized
coefficients and by (2 . 2), we have :

The formula (3.6) is the compatibility condition for the existence of the
boundary layer, which is obtained by the following theorem :

THEOREM 3.1. - If u° is the solution of the problem (2.3)-(2.4) and
if U1 is a solution of the microscopic equation in the interior of the domain
(cf. [7], ch. 5, § 1) the local problem (3.1), (3 . 2), (3 . 3) and (3.4) for u* has
a solution, which is unique up to an additive constant.

Proof - Let us construct a function d( y) satisfying

d( y) is (Yl x Y2)-periodic; d( y) = 0 for sufficiently large - y3

on the surface of discontinuity of aij.
The function evidently exists and is smooth in any region where ai~ are

constant. Moreover

Now, we take the new unknown e = d. The problem for e is :

Let us define the set V of the functions w e x Y2)-periodic
and constant for sufficiently large - y3. We introduce the scalar product

in the space of the equivalence class of V difference of which is a constant.
We define V as the Hilbert space obtained by completion of the equivalence

Annales de l’Institut Henri Poincaré-Section A



9ON THE ACOUSTIC IMPEDENCE CONDITION FOR ONDULATED BOUNDARY

class space with the norm associated with (3.11). The variational formu-
lation of (3 . 8)-(3 .10) is : find e E V such that :

where the right hand side, by (3 . 7), is independent of the particular w E w
chosen. The existence and uniqueness of ê will be proved if we show that
the right hand side of (3.12) is a bounded functional on V. To this end,
we note that d is zero for sufficiently - y3 ; consequently the domain of
integration is in fact a bounded set and then, using the Poincare’s inequality,
the proof is achieved. []

REMARK 3.1. - If we take the impedence as the trace of a

Y-periodic ~° function 1/,u( y 1, y2, Y3), the corresponding" limit problem
has not uniqueness. For instance it is necessary to impose another hypo-
thesis that no one part of the boundary is included in a hyperplane of
rational coefficient ( [2 ], ch. 7, § 1). We give two exemples :

1. the boundary Fj is the hyperplane y3 = 0 and the period Y is Yi = 3,
Y2 = 1 and Y3 = 4. The function p is such that p = 1 in the region

-1&#x3E;~3&#x3E;20143}.
F(YI’ Y2) is such that y~ = F( yi, y2)  1 and then the boundary Xa is

enclosed in the region where J1 = 1. On the’ boundary the limit problem
gives :

2. The boundary is the hyperplane of the equation: y3 = (4/3)yl.
F and Y are the same as in example 1. The band B’ of periodicity is oblique,
it is bounded by the hyperplanes y~ = ( - 3/4)yi, y~ = ( - 3/4)(yl - 25),
y2 = 0, y~ = 1 and the normal section is a surface with area equal to 15.
We see that there is the region such that J1 &#x3E; 1. Then the limit problem
on the boundary is : 

.

where

4. SCATTERING PROBLEM

We consider an exterior domain 03A90 ~ [R3, which is the complement of
a bounded set E, with smooth boundary. We consider also a bounded
set Q1 such that rj = ~03A90 n 0 and a neighbourhood’ of rj
Vol. XXXVI, n° 1-1982.



10 M. CODEGONE

have a system of local coordinates. We set r5 = rj. As in section 1,
we define the perturbed boundary r,~ , such that the corresponding perturbed
domains 5~,~ and Qi containing Qo and Qi respectively. The hypotheses
are the same as in section 1, with the following modifications :

where b( y) and are almost every where constant and Y-periodic.
Under the preceding hypotheses, we consider the following problem
P~,~(cc~, n,,): let f be a given function of L~(Q~) with {supp f ~ c Qo ;
find E such that :

on the surface of discontinuity of 

Annales de l’Institut Henri Poincaré-Section A
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The expression (4.2) is equivalent, for cv real, to the outgoing Sommerfeld
radiation condition at infinity. We have supposed the time dependence
of the form 

THEOREM 4.1. - If w is real &#x3E; 0, the preceding problem ~) has
at the most one solution.

Proof Using the radiation condition (4 . 2), by a classical argument ( [9 ])
we obtain the conditions to apply the Rellich theorem, which shows that 
is zero in a neighbourhood of infinity. The proof is then achieved noting
that

are homogeneous Cauchy conditions at the boundaries between the

regions where the coefficients b’ are constant, and that equation (4.1)
is piecewise elliptic with constant coefficients. II
We now deal with the method of reduction to a problem in a bounded

domain ([6]), which gives the scattering frequencies in a simple way and
which also supplies an existence and uniqueness theorem. In this section,
8 and 11 will be considered constants and we shall omit them. Under the

preceding hypotheses let p be a real number such that the ball I x  p

contains ~ E ~ Qi u supp / }. Let g be a function of L2(R3),

We consider g known for the time being. We construct the function :

which satisfies

and the outgoing radiation condition. Also, we construct the function
where such that :

on the points of discontinuity of 

Vol. XXXVI, n° 1-1982.
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Where Ào is chosen such that Im ~,o &#x3E; 0 and then, by (1.2), we have the
existence and uniqueness of the solution v of (4.3)-(4.6). Now we consider

a function y( I x I ) of class which is equal to 1 (resp. 0) for p + -
resp. &#x3E; p + - 2B J, and we construct the function : 

3

u is the solution of the problem SZ,~~, if the following relation is satisfied :

where T(OJ) is a compact operator in and holomorphic on the
complex plane [6]. Moreover using a general theorem on the bounded
holomorphic families of compact operators [8 ] we see that (I + 
is a meromorphic function on the complex plane with values in ~(L 2(0~+ 1),
L 2(0~+ 1 )).

DEFINITION 4.1. - The poles of the meromorphic function (I + 
are such that there exists 0 for f = 0, and we can construct solu-
tions ~ 0 to the problem with f = 0, by using w and v. These
solutions are scattering solutions and the corresponding values of m are
the scattering frequencies. /

5. STUDY OF THE CONVERGENCE

Under the hypotheses of section 4, we consider the limit, as 11 B 0 and,
by (1.6), a B 0, for the problem 03A9~) with 03C9 real &#x3E; 0.

LEMMA 5.1. - The solutions of the problem Q~) are such
that:

with k independent of 11 and 8 for fixed p with

Proof - By contradiction, if the statement is not true, there exists a
subsequence of 11 (and by ( 1. 6) a corresponding subsequence of 8) such
that:

We define

we have :

Annales de l’Institut Henri Poincaré-Section A



13ON THE ACOUSTIC IMPEDENCE CONDITION FOR ONDULATED BOUNDARY

Then for a subsequence, we have :

We multiply (4 .1 ) by with v 1 E and v |03933 = 0 and integrate
by parts on Q’}:

and integrate by parts on S2~ + 5 "’" Qi :

15t step. - We want to study the properties of w° in the region
{p)~p+5}.In this region satisfies an elliptic equation with
constant coefficients. Moreover, by interior regularity of solutions of the
elliptic equations, we obtain that the norm of in H2(p + 1  I x  p + 4)
is bounded. By the fact that ~ Aw° in L2(p  I x  p + 5) strongly
and by the trace theorem we can take the limit of (5 . 5) for ~, ~ B 0 and we
obtain the uniform convergence of the function and derivatives, in

We consider the analytic continuation of w° for I x &#x3E; p + 2 given by
the same expression (5.6). We consequently consider (5 . 6) for ~&#x3E;p+2,
which implies that w°(x) satisfies the outgoing radiation condition.

2nd step. - Ne now study the properties of w° at finite distance i. e. for
I x  p + 5. As in section 2, we take the limit of (5 . 3) and (5 . 4) as ~, s B 0.

Vol. XXXVI, n° 1-1982.



14 M. CODEGONE

We obtain :

The equations (5.7) and (5.9) are elliptic with constant coefficients and
then w° is holomorphic in SZ1 and in { B 03A91 } and can have disconti-
nuities on r3. By virtue of (5 . 2) we have w° E ~). Then by a standard
development and an integration by parts, we obtain the transmission
conditions on r3. Then we can write (5 . 7) and (5 . 9) in the following form :

in the sense of distributions, where :

3rd step. - By (5.6), (5.8), (5.10) and (5.11) and by the uniqueness
theorem (see section 4), we have : .

We are going to verify that (5.2) is also true in H1(Qg+ 5) strongly. We
multiply the equation (4.1) by wE’’ and integrate by parts on SZ~ + 2. Using
the elliptic condition (1.1) and the trace theorem on I x - p + 2 we
obtain

But using the uniform convergence of the function and derivatives on
{ p + 1  ~ x ~ I  ~ }, with s &#x3E; p + 5, we have that (5.13) is true in

H1(0~+ 5) and this is a contradiction with (5.1). II

THEOREM 5 .1. - Let be the solution of the problem Q,), where w
is real. Then, as ~, ~ E 0, one has :

weakly where u° is the solution of the problem which is given
by taking u°, aH, bH, A, in place of ~,,~ in the problem PE,~(c~, 

Annales de l’Institut Henri Poincaré-Section A



15ON THE ACOUSTIC IMPEDENCE CONDITION FOR ONDULATED BOUNDARY

Proof - By lemma 5.1 we can extract a subsequence, still denoted

by M~, such that : ~~g + 5 - u° in ~) weakly. Afterwords we reason
as in the first and second steps of the proof of the preceding lemma. /

6. CONVERGENCE OF SCATTERING FREQUENCIES
AND SOLUTIONS

In section 4 we have studied the scattering frequencies which are the
poles of (I + T(cc~)) -1, and the associated solutions. We now consider a
point (D of the complex plane which is an accumulation point of scattering
frequencies of the problem 03A9~) (see section 4), as ~, 8 B 0. There
exists a subsequence of 11 and 8, such that c~E~ --~ úJ. We consider, for

any a corresponding scattering solution 0. We suppose the M~
are normalized :

Each satisfies the problem with f = 0.

LEMMA 6.1. - Under the preceding hypotheses the scattering solu-
tions are such that :

The proof is analogous to that of formula (5.13). II

LEMMA 6.2. - Under the preceding hypotheses, if 11, s B 0 (and then
c~£~ -~ we have :

weakly where u° is the solution of the homogenized problem Qo)
(see section 5) with f = 0.

Proof - By (6 . 2) we can extract from a subsequence, still denoted 
such that (6.3) is verified. Moreover as in the first step of the proof of
lemma 5.1, with in the place of we show that satisfies the outgoing
radiation condition. Next with the same reasoning as in the second stage
of lemma 5.1 we achieve the proof.

THEOREM 6.1. - If 03C9 ~ C is an accumulation point of scattering fre-
quencies of the problem as r~, E ~ 0, then W is a scattering
frequency of the homogenized problem Qo).

Proof - By the lemmas 6.1 and 6.2 we have that u° satisfies the problem
Qo). Then we must show that .

Vol. XXXVI, n° 1-1982.
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Thus we note that, taking the limit, as ~, 8 ’Ba 0, in the outgoing radiation
condition, the convergence is uniform in every annulus { p + 2  ~ x ~  s)
for each s &#x3E; p + 2, then - u° in L2( p + 2  x ~  s) strongly.
Then with (6 . 3), we deduce that u° in 5) strongly, 11, 8 ’Ba 0.
But, by the hypothesis (6.1), we have (6 . 4)..

THEOREM 6 . 2. - Let 0 be a scattering solution, associated with the
scattering frequency of the problem PE;l1(WE;", Q~), with f = 0. If 
is the limit of ~, 8 ’Ba 0, in weakly, then u° is a scattering
solution of the homogenized problem Qo).

Proof - We reason as in ( [4 proof of theorem 5. 2).
Now we consider a scattering frequency of the homogenized

problem PH(w, and a circle D centered at cv. We suppose that the
boundary aD of D is such that no scattering frequency of the problem

Qo) belongs to ~D. If we also suppose that no scattering frequency
of the problem Q~) 8, belongs to ~D, we have the existence
of a unique solution of the problem PE,~(6E,~, (11) with fixed f and 7~ E ~D.
LEMMA 6 . 3. - The unique solutions of the problems PE,~(6E,~, SZ,~), (JE;’1 E aD,

are bounded in L2(SZ~ + s), 11, G ’Ba 0, by a constant independent of 11 and 8.

. 

By contradiction, if the solutions are not bounded, there
is a subsequence of such that = uE,~(6E,~) with 7~ E aD and :

The 6E,~ e ~D are bounded and we can assume that they converge, B 0,
to o-e3D. We normalize uE,~ : = )~ uE,, !!L~np+5),

As in the proof of lemma 6.1, we obtain :

weakly. 
U ’ ’

Moreover reasoning as in lemma 5.1, we have that w° # 0 satisfies
the problem PH(u, Qo) with f = 0 and then w° and o- are a scattering
solution and frequency of the homogenized problem. This leads to a
contradiction because U E 

THEOREM 6.3. - Let (D be a scattering frequency of the homogenized
problem PH(w, Qo). Then, 0, there exists at least a scattering
frequency of the problem PE,~(c~E,~, S2~) such that cv.

Proof Let f be an arbitrary element ofL 2(0~); f will be fixed through-
out. The proof uses the fact that, if 6 is not a scattering frequency of the

Annales de l’Institut Henri Poincaré-Section A



17ON THE ACOUSTIC IMPEDENCE CONDITION FOR ONDULATED BOUNDARY

problem PH(a, Qo), there exists a unique outgoing solution u(a) E 
We know also (see section 4) that u(a) has an isolated singularity (pole)
for a = co, i. e. the scattering frequency co is isolated. Let D be a circle

centered at co and aD its boundary ; assume aD is sufficiently small so
that no further scattering frequencies, except co, belong to D. If the state-
ment is not true, for any 11 and 8 the corresponding problem QJ
has no scattering frequencies on D. Then we can consider the unique
outgoing solution with 6E~ E aD of the problem PE,~(6E,~, ~). Then
by lemma 6 . 3 the norm of uE,~(6E,~) is bounded in 5), 11, 8 ’Ba 0, and

by the same reasoning of lemma 6.1 it is bounded in H1(0~+3).
Then, for any fixed a E aD, we take the limit of homogenization as in

lemma 6. 2 :

strongly, 11, 8 B 0 where M((7) is the solution of the problem Qo).
Moreover by the fact that u(6) has a pole in co, we can take the Laurent’s
series of u(6) and there is an entire m &#x3E; 0 such that (6 - has a

residue A # 0 on aD. We can calculate :

and by the hypothesis that 6 E aD and M~(7) have no singularities on D,
V11, 8, we have :

Moreover, by (6. 5) and by the Lebesgue dominated convergence theorem,
we can take the limit in (6. 6) :

then A~ -~ A # 0 and we have contradiction with (6.7).
Theorem 6.3 is proved. /

THEOREM 6.4. - Let u # 0 be a scattering solution, associated to the
scattering frequency c~, of the problem Qo). There is a sequence

Mg~ ~ 0 of scattering solutions of the problem Q~) which converges
to u in weakly.

Proof - We suppose u normalized and, proceeding as in the proof of
theorem 6.3, we obtain a sequence of scattering frequencies of the

problem 03A9~), such that 03C9~~ ~ W for ~, ~ B 0. We normalize the
scattering solution M~ ~ 0 corresponding to Proceeding just as in
the proof of lemma 6.1 and 6.2 we show that - u in weakly.

N
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